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Abstract: Hydroxyapatite nanoparticles (HAn) have been produced as biomaterial from biowaste,
especially snail shells (Atactodea glabrata). It is critical to recycle the waste product in a biomedical ap-
plication to overcome antibiotic resistance as well as biocompatibility with normal tissues. Moreover,
EDX, TEM, and FT-IR analyses have been used to characterize snail shells and HAn. The particle size
of HAn is about 15.22 nm. Furthermore, higher inhibitory activity was observed from HAn than the
reference compounds against all tested organisms. The synthesized HAn has shown the lowest MIC
values of about 7.8, 0.97, 3.9, 0.97, and 25 µg/mL for S. aureus, B. subtilis, K. pneumonia, C. albicans,
and E. coli, respectively. In addition, the HAn displayed potent antibiofilm against S. aureus and
B. subtilis. According to the MTT, snail shell and HAn had a minor influence on the viability of
HFS-4 cells. Consequently, it could be concluded that some components of waste, such as snail shells,
have economic value and can be recycled as a source of CaO to produce HAn, which is a promising
candidate material for biomedical applications.

Keywords: snail shell; hydroxyapatite; nanoparticles; antimicrobial; antibiofilm; biocompatibility

1. Introduction

Since humans used antibiotics as treatment in their early history, antibiotic resistance
has arisen as problematic. It currently represents a huge danger to human health [1].
Pathogenic bacteria exist most regularly in the biofilm form responsible for this problem,
making extra bacterial resistance to antimicrobial medicines. Biofilm is thought to be an
essential driver of antibiotic-resistant bacteria. The high resistance of biofilms to current
antimicrobial treatments a challenge. Likewise, biofilm eradication is challenging, regard-
less of whether in medication or industry. Antibiotic treatment alone regularly neglects
to destroy microbial biofilms [2–4]. Microorganisms have developed a variety of defense
mechanisms to maintain activity in the face of human immune responses and antibiotic
therapy. Biofilms are microbes that adhere to biotic or abiotic surfaces and are surrounded
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by an extracellular polymeric substance (EPS) [4,5]. So, developing new antimicrobial
therapies that can overcome this resistance is urgent. Natural sources are considered an
alternative to antibiotics and have fewer side effects than allopathic cures [6–9].

Molluscs are considered a natural source for pharmacological applications. Further-
more, mollusc aquaculture is a highly cost-effective food source that has the potential to
play a significant role in global food security in the future [10,11]. With creation expanding
worldwide, the time has come to assess all aspects of aquaculture while considering its
expanding role as a food source. Snails belong to the phylum molluscs and gastropods.
This class incorporates gastropods, slugs, and snails [12].

One element of mollusc aquaculture waste creation that is sometimes ignored is the
formation of calcareous shells. Shell trash from the aquaculture industry is commonly
recognized as a nuisance waste product; shell debris may pose a substantial logistical
and financial challenge for shellfish growers, sellers, and consumers. Species subordinate
shells can account for up to 75% of an organism’s total weight [13]. Shells are regarded as
a useful biomaterial by the aquaculture and fishing industries. They may be reused for
environmental and economic reasons.

Hydroxyapatite is produced from a variety of sources, including eggshells [14,15]
animal bones [16], seashells [17], and plants [18]. These resources are a good source of
hydroxyapatite or a viable option for Ca and P precursors in producing pure and thermally
stable hydroxyapatite. HA made from natural sources or waste might be more helpful
since it frequently includes essential ions present in biological HA [19].

When crustaceans are eaten, much calcium- and HA-rich waste is produced. So,
different bioactive compounds can be prepared from marine waste [19]. With the increasing
significance of HA in various clinical fields, many overview studies on the synthesis of HA
nanoparticles and their usage and production methods have been authored. Nonetheless,
no critical studies on the composition of hydroxyapatite nanoparticles from biowaste
products or other sources have been conducted so far [19].

Emerging bioceramic materials, which are widely employed in numerous biomedical
applications, including dentistry, are biologically relevant forms of CaPs. They offer
excellent biomedical and biological characteristics.

CaPs have unique properties because their composition and structure are identical to
human teeth and bones. As a result, CaPs possess excellent possessions. Biocompatibility
and one-of-a-kind bioactivity are two terms that are frequently used [20].

The most common type of CaPs used in dental applications appears to be apatites
(HA, CDHA, and FA). Because nano-dimensional and nano-crystalline apatites are often
regarded as model compounds for dental enamel due to chemical and phase similarities [21],
their use in restorative dentistry has a number of promising benefits, including intrinsic
radio-opaque response, enhanced polishability, and improved wear performance. They
also have a hardness that is comparable to that of actual teeth [22].

Nano-dimensional HA particles, for example, were discovered to have the capacity
to permeate a dentin collagen matrix that had been demineralized, which provides a
suitable scaffold.

Teeth caries are produced by bacteria -creating acid in biofilms on dental surfaces; as
such, avoiding it requires control of the microorganisms that produce the acids. Mouth
rinses containing HA were reported to reduce early bacterial colonization [23]. In a sepa-
rate study, CDHA-osteopontin biocomposite particles were designed to bind to bacteria in
biofilms, prevent biofilm formation without killing the microflora, and release orthophos-
phate ions to buffer bacterial acid production when the pH fell below six. According to the
findings, treatment with either CDHA-osteopontin or pure osteopontin resulted in reduced
biofilm development than untreated controls. Thus, osteopontin was responsible for the
anti-biofilm effect of the CDHA-osteopontin particles, while CDHA was responsible for
the buffering effect, which kept pH constant [24].

Coatings of CaPs (both HA and -TCP) have been effectively applied to titanium
implants, and the coated implants that performed well were discovered to be suitable for



Membranes 2022, 12, 408 3 of 16

use as anchoring in short-term orthodontics. Both types of coatings appeared to be effective
stimulators of new bone formation [25].In addition, researchers added nano-dimensional
composite particles of HA with silver to commercially made light cure adhesive Transbond
XT (3M Oral Care, St. Paul, MN, USA) to boost antibacterial capabilities. Bacterial growth
inhibition zones were observed on Transbond XT composite discs containing 5% and 10%
Ag/HA, and antibacterial capabilities against biofilms were discovered [26].

The present study aims to recycle the waste product of snail shells in a medical appli-
cation. So, we use green, economical, and waste-derived HAn prepared from snail shells
(Atactodea glabrata) as a cheap, readily available, non-toxic means of producing antimicro-
bial and anti-biofilm agents to overcome antibiotic resistance as well as biocompatibility
with normal tissues.

2. Materials and Methods
2.1. Snail Collection

Snails were collected from Ras Sidr, South Sinai Governorate, Egypt. The samples
were washed and cleaned with water to remove sand and other dust particles [27].

2.2. Identification of Snails

Snail samples were verified according to the whole number and the opening posi-
tion [28].

2.3. Preparation of Snail Powder

The clean snails were dried in the oven at 100 ◦C for 24 h before being crushed using
milling balls. The powder was placed in an electrical furnace and heated to 900 ◦C for three
hours to convert the CaCO3 in the seashell to CaO. XRD was used to establish the presence
of CaO in the resultant powder [29]. By adding the predetermined amount of distilled
water to the resulting powder, 1 M of calcium hydroxide solution was created. The solution
was agitated for about two hours to achieve homogeneous Ca(OH)2 mixing.

2.4. Preparation of Hydroxyapatite from Snail

Synthesis of hydroxyapatite was conducted by using calcination and wet chemical
precipitation technique. Briefly, phosphoric acid (0.6 M, H3PO4) was dropped to Ca(OH)2
at a 15–20 drop/min rate with continuous stirring at room temperature to produce hydrox-
yapatite. Then adding ammonium hydroxide solution (NH4OH) until the reaction was
completed, the pH was kept around pH 8 for around 2 h, and the solution was constantly
stirred and aged. The gelatinous white precipitate emerged after the solution stopped
stirring and was left to precipitate overnight. The solution was then filtered and rinsed
many times with distilled water before being dried at 200 ◦C for 24 h to eliminate the water.
Finally, the hydroxyapatite obtained was sintered in the furnace at a temperature of 1000 ◦C
for 4 h. The resulting hydroxyapatite was characterized using XRD, EDX, and FT-IR [30,31].

2.5. Physical Characterization
2.5.1. FTIR Spectrum

FTIR spectrum was performed using an FTIR spectrophotometer (Model-4100, Jasco,
Easton, MD, USA) to characterize the snail shell powder and hydroxyapatite. FTIR spectra
were recorded in the range of 400–4000 cm−1 [32].

2.5.2. X-ray Diffraction

The hydroxyapatite samples’ crystalline phases were identified using the X-ray powder
diffractometer (XRD, PW3040/60, PANalytical, Almelo, The Netherlands). A Cu-Kα

radiation light (λ = 1.5401 Å), with power generated at 30 mA and 45 kV with a scan
speed of 2◦/min over a 2θ-range of 5–75◦ was used. The diffraction peaks of the examined
crystalline phase were studied with (JCPDS, 896438, Karlsruhe, Germany) files and were
marked with different symbols.
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2.5.3. Energy Dispersive Analysis of X-ray (EDX)

The presence of Calcium and phosphate elements was confirmed through EDX. The
X-ray micro-analyzer carried out the EDX microanalysis (Oxford 6587 INCA, Oxford
Instruments, Abingdon, UK) connected with the JEOL JSM-5500 LV-SEM (Jeol, Tokyo,
Japan) at 20 kV [33].

2.5.4. TEM

For TEM analysis, a drop of the solution was placed on the carbon-coated copper grids
and dried by allowing water to evaporate at ambient temperature. Electron micrographs
were taken using a JEOL JEM-1010-TEM (Jeol, Tokyo, Japan) at 70 kV [34].

2.6. Antimicrobial Activity

Microorganism cultures are used in this study, which includes gram-positive bacteria,
Staphylococcus aureus (ATCC 6538), and Bacillus sutilis (ATCC 6633) as well as gram-negative
bacteria, Klebsiella pneumonia (ATCC 13883), and Escherichia coli (ATCC 8739), unicellular
fungi, Candida albicans (ATCC 10221), and filamentous fungi, Aspergillus Niger. Nutrient
agar plates for bacteria and malt agar plates for fungi were prepared. Then, 0.1 mL of
the inoculum from the standardized culture of the test organism spread uniformly. Wells
were made using a sterile tool of diameter 10 mm and 0.1 mL of each sample. A standard
antibiotic was added to each well separately. Gentamicin, a common antibiotic, was tested
against bacteria, whereas amphotericin B was tested against fungus. The plates were
incubated for 24 h at 37 ◦C. Antimicrobial activity was expressed as the diameter of the
inhibition zone [35].

2.7. Minimal Inhibitory Concentration (MIC)

The MIC of the samples was determined using sterile 96-well plates. In brief, 0.1 mL
of standardized inoculums of 1 to 2 × 105 CFU/mL for E. coli (ATCC 8739) and S. aureus
(ATCC 6538) was added to each well. For the stock solution preparation, 10 mg of each
sample was dissolved in 10 mL of sterile distilled water (1 mg/mL). Serial two-fold dilutions
of the sample were added into a 96-well tissue culture plate. The plate was incubated at
37 ◦C for 24 h. The MIC was detected by measuring optical density at 600 nm using a
microplate reader (Sunrise, TECAN Inc., San Jose, CA, USA) [36].

2.8. Antibiofilm Activity

Single-species biofilms of E. coli (ATCC 8739) were formed by adding 10 µL of the
bacterial cell suspension to 0.19 mL TSB media in each well, and 0.2 mL of sterile distilled
water was added in wells to reduce the water loss. Then the microtiter plate was incubated
overnight at 37 ◦C. The following day, the wells were rinsed twice with 0.9% NaCl; after
that, the fresh medium containing the samples at their MIC concentration was added; a 0.9%
NaCl solution was used as a control. After incubation for another 24 h, the medium was
removed. Each well was gently washed three times with phosphate buffer saline or sterile
saline water and left to dry at room temperature. Then, 200 µL of crystal violet solution
(0.2%) was added to all wells. After 15 min, the excess stain was dragged, and plates
were washed twice and air-dried. Finally, the cell-bound crystal violet was resuspended in
33% acetic acid. The biofilm growth was monitored at 600 nm using a microplate reader
(Sunrise, TECAN Inc., San Jose, CA, USA) [37].

Biofilm inhibition ability of sample =
(Absorb.control − Absorb.blank)− (Absorb.sample − Absorb.blank)

(Absorb.control − Absorb.blank)
× 100 (1)

2.9. MTT Assay

The MTT test was used in triplicate to evaluate the viability of control and treatment
cells. The MTT assay is a laboratory test and a widely used colourimetric assay (one
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that detects colour changes) for determining cellular proliferation. The cell lines used in
this work, i.e., HSF-4 Skin (normal fibroblast cell line), were obtained from the American
Type Culture Collection (Manassas, VA, USA). HSF-4 cells were seeded at a density of
1 × 104 cells/well in 96-well plates with 100 µL of growth media. Cells were allowed
to attach for 24 h until conjunction, and then washed with a phosphate buffer solution
before being treated with various concentrations of samples in a new maintenance medium
ranging from 500 to 15.63 µg. They were then incubated for 24 h at 37 ◦C. A 96-well plate
was loaded with serial two-fold dilutions of the material using a multichannel pipette
(Eppendorf, Germany). After treatment, the culture supernatant was replaced with a new
medium (24 h). The cells in each well were then treated for 4 h at 37 ◦C with 0.1 mL of MTT
solution (5 mg/mL). The MTT solution was withdrawn once the incubation period was
completed, and 0.1 mL of DMSO was added to each well. A microplate reader (Sunrise,
TECAN Inc. USA) was used to measure the absorbance at 570 nm [38].

2.10. Microscopic Studies

An inverted microscope (CKX41; Olympus, Tokyo, Japan) coupled with a digital
camera was used to acquire pictures showing the morphological alterations of the treated
cells stained with 0.25% crystal violet compared to control cells.

2.11. Statistical Analysis

Experiments were carried out three times in total. The mean ± standard deviation
(SD) is used to represent all data.

3. Results
3.1. Identification of the Snail

The snails have been described as Atactodea glabrata Family: Mesodesmatidae based
on their characteristics of morphology and physiology, Figure 1.
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Figure 1. Species of gastropod snails and shells (Atactodea glabrata) collected from Ras Sidr, South
Sinai Governorate, Egypt: Family Mesodesmatidae.

3.2. Characterization of Snail Shell Powder and HAn
3.2.1. FT-IR Analysis

The FTIR spectra of raw snail shells powder and HAn formed via a chemical pre-
cipitation method using thermal decomposition (calcite) to the snail shells are shown in
Figure 2a. The Atactodea glabrata snail shell powder spectrum as a calcium source has been
confirmed by identifying the main functional groups of the snail in the region between
400 cm−1 and about 1500 cm−1. The spectrum values in Figure 2a were compared to the
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previous studies [39], and the data support the presence of CaCO3. The snail shell powder
shows (Figure 2a) characteristic absorption bands for carbonate ions (CO3) at a spectrum of
1448.15 cm−1, 860.60 cm−1, and 712.66 cm−1, respectively. In addition, the major vibration
CO3 bonds in aragonite occur at a wavenumber of 1448.15 cm−1. Aragonite is naturally
associated with ores and the 1082.85 wavenumber corresponds to sulfate [26].
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Figure 2. FT-IR of (a) Atactodea glabrata snail shell, and (b) HAn.

Figure 2b describes the FT-IR spectra of HAn designed by a chemical precipitation
procedure using calcite from the snail shells. New regions have appeared in the FT-IR
spectra of HAn, which occurred due to replacing carbonate (CO3) with phosphate (PO4)
in calcite. The specific bands for PO3 were recorded from 1100 to 1027 cm−1, from 970
to 934 cm−1, from 575 to 526 cm−1, and from 493 to 430 cm−1, inferring the composition
of HAn, and in agreement with published data on HA [40]. Furthermore, the original
band for functional groups CO3 and OH was indicated at 724 cm−1 and 634 cm−1 for HA.
In addition, the presence of PO4 groups, characteristic of β-TCP, is shown by absorption
bands from 1100 to 1155 cm−1, which is characteristic of [PO4] v2 group (v2 O-P-O) bending
variations [41–43].These results have confirmed the composition of HAn and have also
been supported by XRD data. Thus, our outcomes agree with previously published data
on HA [39].
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3.2.2. XRD Analysis

The hydroxyapatite samples’ crystalline phases were identified using the powder X-ray
diffraction. The results of XRD patterns for the phases of calcium phosphate present in the
samples prepared are presented in Figure 3. The XRD pattern showed that the composite
was mainly constituted of Hydroxyapatite mixed with a phase of tricalcium phosphate.
The XRD presented in the figures was compared with JCPDS (896438) [33], showing that it
was formed of phase clear crystalline HA with a hexagonal crystal structure [33,34].
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3.2.3. Energy Dispersive X-ray (EDX) Analysis

The EDX profile of snail shell and HAn is shown in Table 1. The quantitative and
qualitative status of components implicated in the snail shell and HAn is determined using
EDX. EDX micro-analysis measured the energy and intensity distribution of X-ray signals
generated by a focused electron beam on an object. It is clear that the percentages of Ca, O,
and P were 35.54%, 61.24%, and 0.01%, respectively, for the snail shell of Atactodea glabrata.
While the percentages of Ca, O, and P for HAn are about 24.53%, 48.48%, and 20.67%,
respectively (Table 1). According to the findings, the average proportion of calcium in snail
shell powders for Atactodea glabrata was 35.54%.

Table 1. The elemental composition of the snail shells and HAn of EDX spectra.

Element (%) Snail Shell
Atactodea glabrata

HAn
Atactodea glabrata

Ca 35.54 24.53
P 0.01 20.67
O 61.24 48.48

The findings also showed that the investigated snail shell, which contains the bulk of
calcium carbonate, may be utilized as a calcium precursor in the production of calcium
phosphate (Ca3(PO4)2) bioceramics. Calcium phosphate-based biomaterials are a class of
substances with a Ca/P molar ratio of 0.5–2 [44–47]. They are commonly used as biomate-
rials for the reconstruction of various bone defects, notably in dentistry and orthopedics.
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The prior finding that the prepared HA had a Ca/P molar ratio in the range of 0.5–2 is
consistent with our results in which a Ca/P molar ratio of about 1.19. Our findings support
those of [48–50], who determined that the snail shell contains enough calcium carbonate
to be used as a calcium source (Ca). In dry matter, the calcium concentration of snail
shells is usually around 34–35%. For Achatina achatina and Lanistevaricus snails, the average
proportion of CaCO3 in shell powders was 98.5% and 98.75%, respectively, according to
Osseni et al. [51]. The greatest Ca2+ and Fe2+ concentrations were found in M. lussoria and
M. mercenaria (clam species), while the lowest amounts were found in A. achatina [52].

3.2.4. TEM

The data obtained from the transmission electron-micrograph showed the distinct
shape of snail shell powder of Atactodea glabrata and HAn (Figure 4). The particles with
13.302 and 15.22 nm diameters for Atactodea glabrata snail shell and HAn powders, respec-
tively. According to the previous studies, nano-sized (20 nm) HA, which were counter-
parts to the fundamental building blocks of the enamel rods, could perform a localised
biomimetic repair of the enamel surface. Because of these similarities, artificial biomaterials
could adhere well to natural tissues. Furthermore, because secondary caries were con-
trolled and hardness was maintained, the enamel structure was strengthened by nano-sized
HA [25]. Dentin remineralization may occur in a remineralizing environment [53]. Fur-
thermore, it was shown that nano-sized HA particles may self-assemble into enamel-like
patterns [54].
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3.3. Antimicrobial Activity of Atactodea glabrata Snail Shell

Most of the literature concentrates on the flesh and haemolymph of molluscs, whereas
the shell, particularly the traditional usage of mollusc shells, receives very little attention.
Snail shell powders were tested for antibacterial activity in this study.

Snail shell powder of Atactodea glabrata was tested for antimicrobial using the agar
well diffusion technique. Table 2 displays the sample’s inhibition zone diameter (mm)
against various pathogenic organisms. The outcomes revealed that the snail shell powder of
Atactodea glabrata showed a higher inhibitory effect than the reference compound gentamicin
against B. subtilis (32 mm) Figure 5. In addition, high inhibitory activity was detected against
S. aureus (20 mm) and E. coli (26 mm), which wasstill fewer than the reference compound.
Similarly, moderate inhibitory activity was observed against C. albicans (17 mm). In contrast,
no inhibitory effect against A. niger and K. pneumonia occurred. Our findings contradict
earlier findings, indicating that mollusc shells do not have antibacterial properties since
they did not prevent pathogenic isolates from growing. According to Kehinde et al. [52],
snail haemolymph did not prevent the development of fungal and bacterial isolates. The
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epiphragm of albino and normal skinned A. marginata, conversely, inhibited four bacterial
isolates better than conventional antibiotics (streptomycin) [55].

Table 2. Antimicrobial activities of snail shell powder Atactodea glabrata against different pathogenic
microorganisms.

Tested Organisms
Inhibition Zone Diameter (mm)

Snail Shell (Atactodea glabrata) Standard

Gram-positive bacteria Gentamicin
Staphylococcus aureus (ATCC 538) 20 ± 0.06 22 ± 0.03

Bacillus subtilis (ATCC 6633) 32 ± 0.12 26 ± 0.09
Gram-negative bacteria Gentamicin

Klebsiella pneumoniae (ATCC 13883) No activity 25 ± 0.15
Escherichia coli (ATCC 8739) 26 ± 0.07 30 ± 0.16

Fungi Amphotericin B
Candida albicans (ATCC 10221) 17 ± 0.04 21 ± 0.06

Aspergillus niger No activity 15 ± 0.08
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3.4. Antimicrobial of HAn

Previous results found that the snail shell powder of Atactodea glabrata had high
inhibitory activity. The hydroxyapatite was prepared from the Atactodea glabrata shell
according to these results. Elevated inhibitory activity occurred from HAn against all
tested organisms. Table 3 showed higher inhibitory effect than the reference compound
gentamicin against B. subtilis (43 mm), S. aureus (30 mm), and K. pneumonia (42 mm). In
contrast, a slight inhibitory effect was observed against E. coli (26 mm). In addition, a higher
inhibitory effect than the reference compound amphotericin B against C. albicans (44 mm)
and A. niger (22 mm) was observed (Figure 6).
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Table 3. Antimicrobial activities of HAn prepared from snail shell powder of Atactodea glabrata against
different pathogenic microorganisms.

Tested Organisms
Inhibition Zone Diameter (mm)

HAn Standard

Gram-positive bacteria Gentamicin
Staphylococcus aureus (ATCC 6538) 30 ± 0.03 22 ± 0.03

Bacillus subtilis (ATCC 6633) 43 ±0.05 26 ± 0.09
Gram-negative bacteria Gentamicin

Klebsiella pneumoniae (ATCC 13883) 42 ± 0.14 25 ± 0.15
Escherichia coli (ATCC 8739) 19 ± 0.18 30 ± 0.16

Fungi Amphotericin B
Candida albicans (ATCC 10221) 44 ± 0.07 21 ± 0.06

Aspergillus niger 22 ± 0.19 15 ± 0.08
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According to Osseni et al. [51], only calcium phosphate bioceramics produced from
Lanistes varicus snail shells [56] may be utilized to prevent the formation of microorganisms
that cause tooth cavities. As a bioactive biomaterial in dental applications, its antibacterial
properties should be exploited to their full potential [57]. Products made from Achatina
achatina snail shell powder, conversely, showed no antibacterial action on both types
of bacteria.

3.5. MIC of HA

The MIC of HAn with strong antibacterial activity was investigated further by a tube
dilution technique against S. aureus, B. subtilis, E. coli, K. pneumonia, and C. albicans (Table 4).
The HAn extracted from the snail shell Atactodea glabrata has shown MIC values of 7.8, 0.97,
3.9, and 0.97 mg/mL for S. aureus, B. subtilis, K. pneumonia, and C. albicans, respectively,
confirming its antibacterial effectiveness. In contrast, HAn showed a 25 µg/mL MIC for
E. coli. The highest activity of the extracted HAn can be explained by the presence of slightly
basic compounds (HA, TCP) to some extent neutralizes the acid molecules, provides with a
weak pH-buffering effect at the polymer surface and, therefore, reduce the bacterial growth
in which bacteria creating acid in biofilms on dental surfaces [56,58,59].
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Table 4. Minimum Inhibitory Concentration (MIC) of HAn by (µg/mL).

Pathogenic Microorganism HAn

Staphylococcus aureus (ATCC 6538) 7.8 ± 1.24
Escherichia coli (ATCC 8739) 25 ± 0.85
Bacillus sutilis (ATCC 6633) 0.97 ± 1.35

Klebsiella pneumoniae (ATCC 13883) 3.9 ± 1.46
Candida albicans (ATCC 10221) 0.97 ± 0.76

3.6. Biofilm Formation Effects of HAn

Biofilms are crucial virulence agents for certain pathogen microorganisms, and some
biofilm infections appear almost impossible to stop [60]. Pathogens such as P. aeruginosa [61],
S. epidermidis [62], C. albicans [63], S. aureus [64], and S. enterica [65] can form biofilms. These
pathogens form biofilms in the same way and share many characteristics [66,67].

The HAn extracted from the snail shell of Atactodea glabrata was assessed for its
antibiofilm activity against the selected bacteria (S. aureus, B. subtilis, E. coli, and C. albicans)
using crystal violet stain. Results in Figure 7 showed that the HAn exhibited a strong
biofilm inhibition effect opposed to S. aureus and B. subtilis, with a biofilm inhibitory ratio
of 81.26% and 77.25%, respectively. At the same time, it showed moderate biofilm inhibition
activity against E. coli 58.7% and C. Albicans 51.2%. According to Abdelraof et al. [68], the
HAn had a significant biofilm inhibition effect against B. subtilis, a biofilm inhibitory ratio
of 77.25%, and a mild biofilm inhibition effect against E. coli, with a biofilm inhibitory ratio
of 66.69%.
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Figure 7. Antibiofilm activity of HAn.

3.7. MTT Assay

The in vitro biocompatibility of materials was examined in this study by using an
MTT assay against normal skin cells (HSF-4). The cytotoxic effects of samples after 24 h
of treatment on the HFS-4 cell line are shown in Figure 8a. The results suggested that the
snail shell powder, Atactodea glabrata, slightly affected the cells of HFS-4 even at a high
concentration, with a viability percent of about 96.43% at 125 µg/mL. No visible cytotoxic
effects were noted against HSF-4 cells, rising dilutions from 125 to 15.63 µg/mL. Moreover,
the HAn displayed viability of about 76.83 at 125 µg/mL. No cytotoxic effects were detected
against normal cells with rising dilutions from 62.5 to 15.63 µg/mL.

The reverse microscope examination revealed a low cytotoxic effect of all treatments
after 24 h in the culture at 125 µg/mL. At confluence, control HFS-4 cells established a
monolayer of elongated cell sin Figure 8b. After treatment with 125 µg/mL of both samples,
only minor morphological alterations were found. With higher dilutions, the number of
floating cells was reduced after 24 h. As an untreated cell, the HFS-4 cells were able to
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multiply and develop in a monolayer. Previous research supports the findings, which
indicate that the primary objective of biomaterials is to promote cell development while
also protecting them from harmful consequences [68–70].
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compared to control HSF-4 cell.

Compared to commercially available HA, HA isolated from tilapia (Oreochromis sp.)
significantly improved MG63 type cell viability. The smaller particle size (719.8 nm) is
credited with the increased biological activity [19]. At the same time, the HA sample retains
good biocompatibility at neutral pH values of the medium, which is the best pH for cell
growth [71].

pH variations influenced the physicochemical and biological characteristics of the
samples. It has been shown that NBG-CaCl2 offers normal cells with somewhat higher
viability than NBG; this might be related to Ca2+, which plays a function in biological
system control [68]. Due to adhesion of molecules on cell surfaces, studies have revealed
that appropriate Ca2+ and Mg2+ ions can enhance cell attachment and proliferation [72–74].
According to several research studies, nanosized HA particles improved the mechanical
and biological characteristics of the scaffold by increasing protein adsorption and cell
adherence to the interior surfaces [75].

4. Conclusions

A green, eco-friendly, and biocompatible waste-derived HAn was prepared from snail
shells, Atactodea glabrata. TEM showed the particle size of prepared snail shell powder
of Atactodea glabrata, and HAn powders ranging from 13rangingfrom13.3 to15.2 nm in
diameter. Snail shell powder has high antimicrobial activity. The HAn prepared from
the snail shell Atactodea glabrata presented a higher inhibitory effect than the standard
compounds against all tested organisms. The lowest MIC values were observed against
E. coli, S. aureus, B. subtilis, K. pneumonia, and C. albicans from HA. In addition, the HAn
displayed potent antibiofilm against S. aureus and B. subtilis. At the same time, it had
moderate biofilm inhibition activity against E. coli and C. Albicans. The findings observed
that the snail shell powder, Atactodea glabrata, slightly affected the viable cells of HFS-4 even
at higher concentrations, followed by HAn. In conclusion, HAn prepared from snail shells
is expected to be a cheap, natural, and biocompatible material. The HAn is promising for
producing antimicrobial and anti-biofilm agents to overcome multidrug-resistance bacteria.
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