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Estimating parent-specific QTL effects through cumulating
linked identity-by-state SNP effects in multiparental
populations

A Maurer1, W Sannemann1, J Léon2 and K Pillen1

The emergence of multiparental mapping populations enabled plant geneticists to gain deeper insights into the genetic
architecture of major agronomic traits and to map quantitative trait loci (QTLs) controlling the expression of these traits.
Although the investigated mapping populations are similar, one open question is whether genotype data should be modelled as
identical by state (IBS) or identical by descent (IBD). Whereas IBS simply makes use of raw genotype scores to distinguish
alleles, IBD data are derived from parental offspring information. We report on comparing IBS and IBD by applying two multiple
regression models on four traits studied in the barley nested association mapping (NAM) population HEB-25. We observed that
modelling parent-specific IBD genotypes produced a lower number of significant QTLs with increased prediction abilities
compared with modelling IBS genotypes. However, at lower trait heritabilities the IBS model produced higher prediction abilities.
We developed a method to estimate multiallelic QTL effects in multiparental populations from simple biallelic IBS data. This
method is based on cumulating IBS-derived single-nucleotide polymorphism (SNP) effect estimates in a defined genetic region
surrounding a QTL. Comparing the resulting parent-specific QTL effects with those obtained from IBD approaches revealed high
accordance that could be confirmed through simulations. The method turned out to be also applicable to a barley multiparent
advanced generation inter-cross (MAGIC) population. The ‘cumulation method’ represents a universal approach to differentiate
parent-specific QTL effects in multiparental populations, even if no IBD information is available. In future, the method could
further benefit from the availability of much denser SNP maps.
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INTRODUCTION

During the past decade, several multiparental mapping populations
have been established in different plant species to dissect the genetic
architecture of important agronomic traits. Especially nested associa-
tion mapping (NAM) and multiparent advanced generation inter-
cross (MAGIC) populations found their way as useful tools to dissect
various trait complexes in different crop species like maize (Yu et al.,
2008; Bauer et al., 2013; Dell’Acqua et al., 2015), wheat (Huang et al.,
2012; Mackay et al., 2014; Milner et al., 2015; Thépot et al., 2015), rice
(Bandillo et al., 2013), barley (Maurer et al., 2015; Sannemann et al.,
2015; Nice et al., 2016) and sorghum (Jordan et al., 2011). Because of
sophisticated mating designs, these populations often represent a
mixture of classical linkage mapping and association mapping
populations. So far, there is no general method of how to analyse
these populations in genome-wide association studies (GWAS). One
open question is whether genotype data are modelled as identical by
state (IBS) or identical by descent (IBD). Whereas IBS simply makes
use of biallelic single-nucleotide polymorphism (SNP) genotype scores
to distinguish alleles, IBD also considers their inheritance and there-
fore enables modelling of parent-specific marker effects. The inter-
pretation of the term IBD is not uniform. Classically, it describes the
probability that two homologous alleles are descending from a

common ancestor. However, it is not clear how far a common
ancestor has to be traced back. Therefore, the probability that two
alleles are IBD has to be defined with respect to a specific base (Powell
et al., 2010). In a NAM population we know the pedigree and hence
the individuals at the top of the pedigree (the parental lines) represent
the possible ancestors of an allele. Therefore, in a first step the
probability that two alleles are IBD can be determined in relation to
the recurrent parent, that is, we can distinguish whether the allele is
inherited from the recurrent parent or a wild donor across the whole
NAM population. However, one could also assume a common
ancestor for the parental lines that could, for instance, be modelled
by definition of haplotypes. There are several methods described of
how to define these haplotypes in programs like, for instance,
clusthaplo (Leroux et al., 2014) or R/mpMap (Huang and George,
2011). However, defining haplotypes is not trivial and requires careful
consideration (Ding et al., 2005). There is a multitude of adjusting
parameters that have to be defined a priori.
In a classical biparental population, IBS and IBD would be equal, as

usually only polymorphic markers are considered. However, if multi-
parent populations are used, there are SNPs that segregate only in a
subset of parents. If we look at the resulting progeny of multiparent
crosses, this SNP allele state is not different from a specific reference
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parent. Nevertheless, this SNP could have been inherited from another
parent sharing the same IBS allele state as the reference parent. In this
case they would show different IBD states, although they share the
same IBS allele.
Here, we derive IBD from IBS genotype data in a wild barley NAM

population. Subsequently, we test whether parent-specific IBD calling of
SNPs is superior over classical biallelic IBS calling in GWAS. For this, we
apply GWAS to four agronomic traits of increasing complexity (grain
colour, grain threshability, flowering time and thousand grain weight).
Subsequently, we develop a novel approach to model parent-specific
quantitative trait locus (QTL) effects in the wild barley NAM population
HEB-25 (Maurer et al., 2015) without the need of IBD information or
modelling haplotypes a priori. To test the method’s accuracy we perform
extensive simulation studies with varying trait complexities. We then
show that this approach is also suitable to model parent-specific QTL
effects in a barley MAGIC population (Sannemann et al., 2015).

MATERIALS AND METHODS

Plant material
The NAM population HEB-25 (Maurer et al., 2015), consisting of 1420
individual BC1S3 lines in 25 wild barley-derived families, was used in this
study. HEB-25 is the result of initial crosses between the spring barley cultivar
Barke (Hordeum vulgare ssp. vulgare) and 25 highly divergent exotic wild barley
accessions (H. vulgare ssp. spontaneum and H. vulgare ssp. agriocrithon),
hereafter referred to as donors. F1 plants of the initial crosses were backcrossed
with Barke. For detailed information about the population design, see Maurer
et al. (2015).
The barley MAGIC population consists of 533 doubled haploid lines, created

through intermating eight founder genotypes of barley breeding in Germany.
For more details about this population, see Sannemann et al. (2015).

Phenotype data
Four major agronomic traits were investigated in this study. Phenotype data
were collected in field trials in Halle, Germany (51°29′46.47′N; 11°59′41.81′E)
during the seasons 2011–2014. Briefly, the complete population was grown in
double rows following a randomised complete block design in two replications.
For details on the experimental setup, see Maurer et al. (2016). Flowering time
(heading (HEA)) and thousand grain weight (TGW) data were taken from
Maurer et al. (2016). Grain threshability (THR) was manually scored on a scale
from 1 (difficult to thresh) to 9 (easy to thresh), after threshing mature spikes
using a home-made rotating threshing drum. In addition, data on grain colour
(GrCol), manually scored as 1 (light) or 9 (dark) after visual assessment, were
scored. These traits were selected because we assumed that they are controlled
by few (GrCol, THR) or many (HEA, TGW) genes.

Genotype data
All 1420 BC1S3 lines and their corresponding parents were genotyped with the
barley Infinium iSelect 9K chip (Illumina Inc., San Diego, CA, USA) (Maurer
et al., 2015), consisting of 7864 SNP markers as reported in Comadran et al.
(2012). SNP markers that did not meet the quality criteria (polymorphic in at
least one HEB family, o10% failure rate, o12.5% heterozygous calls) were
removed from the data set. A total of 305 markers were removed as they
revealed the exact segregation among all HEB lines as a twin marker, indicating
that they were in complete linkage disequilibrium (LD). Only one of the twin
markers was kept, resulting in a total set of 5398 remaining markers. Out of
these markers, 4861 segregated in less than 25 families, and 448 thereof
segregated only in a single family.

Defining IBS and IBD matrices
Polymorphic SNP alleles originating from Barke or the wild barley donors of
the NAM population HEB-25 are easily distinguishable by state. Based on the
Barke reference genotype, the wild barley allele can be specified in each
segregating family. To set up the IBS matrix the state of the homozygous Barke
allele was coded as 0, whereas HEB lines that showed a homozygous wild barley

genotype were assigned a value of 2. Consequently, heterozygous HEB lines
were assigned a value of 1. If a SNP was monomorphic in one HEB family but
polymorphic in a second family, lines of the first HEB family were assigned a
genotype value of 0, as their state is not different from the Barke allele. Gaps
resulting from missing genotypes (0.6% of all data points) were filled with the
mean of polymorphic flanking markers, based on the map of Maurer et al.
(2015). This way a complete genotype data set (IBS) was retained that is
required to carry out the following multiple regression GWAS.
To convert the IBS matrix into an IBD matrix, we first replaced each marker

value that was monomorphic in a HEB family by an empty value. Then, the
resulting gaps (44.9% of all data points) were filled with the mean of the next
polymorphic flanking markers of this gap. This way we can distinguish whether
the allele is inherited from the recurrent parent Barke or a wild donor across
the whole NAM population. The newly assigned IBD value reflects the marker’s
probability of being inherited from the wild barley donor.
Both matrices are available as Supplementary Figure S1 and Additional File S1.

Models used for genome-wide association mapping
We used two different multiple linear regression models to conduct genome-
wide association mapping on best linear unbiased estimates of each HEB line
trait performance. The best linear unbiased estimates were obtained from a
linear mixed model with effects for genotype, environment and interaction of
genotype and environment.
Model ‘IBS-M’ corresponds to Model-A of Liu et al. (2011), where SNP

markers are included as main effects using the quantitative IBS genotype matrix
scores.

Model `IBS-M' : Y ¼ mþ SSNPIBS þ ε

This model showed the highest predictive power and detected the highest
number of QTLs when compared with other joint linkage association mapping
models (Würschum et al., 2012). Model ‘IBD-M×F’ models the SNP markers
as interaction effect with the HEB family. This model is based on the
quantitative IBD genotype matrix scores.

Model `IBD-M´ F' : Y ¼ mþ S SNPIBD ´ Famð Þ þ ε

The analyses were carried out with SAS 9.4 Software (SAS Institute Inc.,
Cary, NC, USA) using Proc GLMSELECT. This procedure selects the best
model out of a set of predefined possible factors. In our case, all SNPs were
initially defined as possible factors. Significant SNPs were then determined by
stepwise forward–backward regression. SNPs were allowed to enter or leave the
model at each step until the Schwarz Bayesian criterion (Schwarz, 1978) could
not be reduced further. SNPs included in the final model are hereafter referred
to as significant SNPs. The total number of significant SNPs included in the
final model was recorded. A SNP effect estimate can be interpreted as the allele
substitution effect (α) and represents the regression coefficient of the respective
SNP in the final model. Note that all significant SNP effect estimates are
modelled at the same time in the final model.

Cross-validation
A fivefold cross-validation was run 20 times to increase the robustness of the
results. For this, 100 subsets were extracted out of the total phenotypic data.
Each subset consisted of 80% randomly chosen HEB lines per family. This set
was used as the training set to define significant markers and to estimate their
effects, whereas the remaining 20% of lines were used as the validation set. The
phenotypes of the validation set lines were predicted based on marker effects
estimated in the training set. Prediction ability (R2val) was then calculated as
the squared Pearson product–moment correlation between the observed and
predicted phenotypes of the validation set, whereas R2train represents the
model fit of the training set.
To define QTL regions, we calculated a SNP marker’s detection rate as the

number of times, out of 100, it was included in the final model. Robust major
QTLs were defined if they were detected more than 20 times in IBD-M×F.

Cumulating SNPs to estimate parent-specific QTL effects
To estimate a parent-specific QTL effect from model ‘IBS-M’ we cumulated
significant SNP marker effects. First, a peak marker for each expected parent-
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specific QTL was selected from model ‘IBD-M×F’ where the number of model
inclusions across all 100 cross-validation runs was maximised. Each peak
marker was placed central in a 26 cM interval (that resembles the mean
introgression size in HEB-25) to look for significant SNPs in this region. Then,
‘IBS-M’ SNP effect estimates of all markers within this interval were cumulated
for each of the 25 donors, following

Pn
i¼1 SNPðdonorÞi � ai, where i iterates

through all significant SNPs (n) in the respective QTL interval. SNP (donor)i
represents the quantitative IBS donor genotype (that is, 0 vs 2) of the i-th
significant SNP and ai denotes the SNP effect estimate of this SNP obtained
from model ‘IBS-M’. As SNPs show different IBS segregation patterns across
the donors of HEB families (Supplementary Table S1), a different cumulated
effect was obtained for each donor. This procedure was conducted within each
of the 100 cross-validation runs and the mean of them was taken as the final
parent-specific QTL effect estimate. For an illustration of the workflow and an
example see Supplementary Figure S2.
Finally, we determined cumulation precision that is the correlation of the

cumulated parent-specific effects with the effects obtained from model ‘IBD-
M×F’. We chose this comparison to check our hypothesis of whether multiple
SNPs clustering in specific regions are able to represent parent-specific effects.
To test its general transferability to other multiparental populations, we

applied the same approach to a barley MAGIC population comprising 533
doubled haploid lines (Sannemann et al., 2015). We used the above described
model ‘IBS-M’ to derive parent-specific QTL effects for flowering time from
4550 biallelic SNP markers. Peak markers were chosen based on minimum
P-values and a window of 20 cM was used to cumulate QTL effects on
flowering time. We chose this window size, as here LD fell below the
population-specific critical value of 0.021 (Breseghello and Sorrells, 2006;

Sannemann et al., 2015). We then compared the estimated parent-specific QTL
effects with haplotype-based QTL estimates obtained from modelling parental
haplotypes with R/mpMap, as presented in Sannemann et al. (2015).

Simulation studies
We performed simulation studies to further check the suitability of the
investigated models and the ‘cumulation method’. For this purpose we used
our existing real genotype matrices and simulated different QTLs for an
artificial trait. We created scenarios that differed in the number of estimated
QTLs (1, 3 and 8) and the amount of noise added to the phenotypes to decrease
heritability. QTL positions were defined by picking single random SNPs from
the IBD genotype matrix throughout the genome. The SNP that was selected
for the one QTL scenario was also one of the three SNPs in the three QTL
scenario and these three QTLs were part of the eight SNP scenario. The SNP
genotypes of the eight simulated QTLs were removed from both genotype
matrices and not used in the further analyses. The trait mean was set to 50.
Parent-specific allele substitution (α) effects could take defined values (−5, − 3,
0, 1 and 2) and were randomly assigned to families (Supplementary Table S2).
To add noise to the phenotype data an error term was added that was defined
as a normally distributed value (μ= 0, σ= 1), multiplied by 0 (no noise), 3
(medium noise: noise moderate compared with simulated effect sizes) or 6
(high noise: noise may be bigger than simulated effect sizes). The same training
and test sets as described above have been used to scan for significant
associations and to estimate prediction abilities. The obtained QTL positions
and parent-specific effect estimates were compared with the truly simulated
data and the rate of false positives (that is, significant SNPs that did not match
the respective QTL interval) and the power to detect QTL precisely (that is, at
least one significant marker in a 5 cM interval surrounding the QTL) have been
defined for each of the 100 cross-validation runs. In addition, different window
sizes (2–40 cM) to cumulate SNP effects in model IBS-M were tested to
determine the optimum window for SNP effects to be cumulated. For this
purpose, cumulation precision (that is, correlation of cumulated and true
parent-specific QTL effects) and the mean difference from the true effect (that
is, absolute difference of the cumulated effect and the true parent-specific QTL
effect, averaged across parents) have been determined.

RESULTS

QTL detection
In general, a considerably lower number of significant markers was
detected by ‘IBD-M×F’ than by ‘IBS-M’, irrespective of the trait. For
instance, on average 80 and 6 significant markers for HEA were
detected by model ‘IBS-M’ and model ‘IBD-M×F’, respectively
(Figure 1a and Table 1). All significant markers detected by model
‘IBD-M×F’ were also detected by model ‘IBS-M’, irrespective of the
trait (Figure 2).

Prediction ability
The prediction ability estimates (R2val) of ‘IBS-M’ and ‘IBD-M×F’
were on comparable levels for the traits HEA and THR. Model ‘IBD-
M×F’ showed the highest predction abilites for the assumed mono-/
oligogenic traits GrCol and THR. However, for TGW, ‘IBS-M’

predicted phenotypes better than ‘IBD-M×F’ (Figure 1b and
Table 1). All comparisons of ‘IBS-M’ and ‘IBD-M×F’ were significant
at Po0.001 after applying one-way analysis of variance, except for
HEA (Supplementary Table S3).

Cumulating SNPs to estimate parent-specific QTL effects
As already mentioned above, model ‘IBS-M’ detected much more
significantly associated SNPs than model ‘IBD-M×F’ (Figure 1a and
Table 1). In Figure 2, the contrast in detection rate of QTL regions is
visualised. The comparison indicates that model ‘IBD-M×F’ detects
major QTLs as single associations, whereas numerous significant
markers from model ‘IBS-M’ cluster in these major QTL regions.
Based on the observed differences, we wondered whether these SNP

Figure 1 Variation of number of significant SNPs (a) and variation of
prediction ability (R2val) (b) in the barley NAM population. Box plots
indicate the distribution across 100 cross-validation runs. Empty and filled
boxes represent models ‘IBS-M’ and ‘IBD-M×F’, respectively. Traits are
separated by columns.
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clusters from model ‘IBS-M’ were able to reflect parent-specific effects
obtained from model ‘IBD-M×F’. Therefore, we cumulated SNP
effect estimates (taken from model ‘IBS-M’) surrounding the 12 clear
QTL peaks obtained from model ‘IBD-M×F’ within a window of
26 cM, representing the mean introgression size in HEB-25
(Supplementary Figure S3).
To estimate the cumulation precision as a measure of appropriate-

ness of the method we correlated the averaged cumulated QTL effects
with the average IBD-M×F effect estimate for each QTL. Cumulation
precision ranged from 0.26 (HEA, 3H-107.8 cM) to 0.96 (GrCol,
1H-116.8 cM) with a mean of 0.65 (Table 2 and Figure 3). In addition,
the mean number of significant SNPs per QTL interval was recorded.
The mean number ranged from 2.6 (HEA, 3H-107.8 cM) to 24.1

(GrCol, 1H-116.8 cM) and was positively correlated (r= 0.69) with the
above-mentioned cumulation precision (Table 2).
When applying the method to a barley MAGIC population to

estimate parent-specific QTL effects for flowering time and comparing
them with the haplotype-specific QTL effects presented in Sannemann
et al. (2015), we observed a mean cumulation precision of 0.60,
ranging from 0.26 (QFT.MAGIC.HA-3H.a) to 0.98 (QFT.MAGIC.
HA-7H.a, Table 2).

Simulation studies
In a designed simulation study we modelled specific scenarios of
possible trait architectures in our NAM population to check the
performance of model IBS-M and IBD-M×F and the general
suitability of the cumulation method. These scenarios differed for
the number of QTLs, the size of QTL effects and the background noise
of modelled phenotype values.
Generally, both models detected simulated QTLs with high preci-

sion, that is, a significant marker was detected in a 5 cM interval
surrounding the true QTL position (Table 3). However, with increas-
ing noise added to the phenotype values, QTL detection was
decreased. In particular, model IBD-M×F was not able to detect
any QTL if eight QTLs with high background noise were modelled. In
contrast, model ‘IBS-M’ could detect all modelled QTL with high
precision even at higher background noise. The aforementioned
clustering of significant SNPs surrounding the QTLs in model IBS-
M was also observed in the simulations (Supplementary Figure S4).
The rate of false positive associations that were not part of the
respective QTL interval was low for model IBD-M×F, ranging from
0.00 to 0.31, whereas for model IBS-M, rates from 0.46 to 0.83 were
obtained (Table 3). Prediction abilities exceeded 0.5 in all scenarios
when no noise was added to the phenotypes and decreased with

Table 1 Comparison of mean R2 and mean number of significant

SNPs across 100 cross-validation runs, calculated for two models and

four traits

Trait R2val R2train Number of significant SNPs

'IBS-M' 'IBD-M×F' 'IBS-M' 'IBD-M×F' 'IBS-M' 'IBD-M×F'

HEA 0.62 0.63 0.85 0.76 80 6

TGW 0.52 0.31 0.77 0.40 74 2

THR 0.78 0.82 0.89 0.86 54 3

GrCol 0.71 0.85 0.93 0.95 80 5

Mean 0.66 0.65 0.86 0.74 72 4

Abbreviations: GrCol, grain colour; HEA, heading; IBD, identical by descent; IBS, identical by
state; R2train, model fit of the training set; R2val, prediction ability; SNP, single-nucleotide
polymorphism; TGW, thousand grain weight; THR, threshability.
Traits studied: HEA, TGW, THR and GrCo; Models applied: only marker main effects based on
IBS (‘IBS-M’) and only marker-by-family effects based on IBD genotypes (‘IBD-M×F’). The last
row indicates the mean across traits.

Figure 2 Comparison of detection rates of significant markers across the genome between models ‘IBS-M’ and ‘IBD-M×F’ in the barley NAM population.
Each of the four rows represents a different trait. The height of the peaks indicates the number of significant effects detected per SNP marker out of 100
cross-validation runs, ordered by genetic position according to the map of Maurer et al. (2015). Orange dots represent IBS-M, and blue dots IBD-M×F.
Major QTLs detected by IBD-M×F are indicated by vertical lines. Dashed vertical lines indicate the 26 cM window used for cumulation.
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increasing number of simulated QTLs and noise (Table 3). Prediction
abilities of model IBD-M×F were higher than those of IBS-M, except
when IBD-M×F failed to detect any QTL.
Applying the cumulation method to estimate parent-specific

effects from IBS-M revealed high accordance with the truly estimated
effects. Cumulation precision increased with increasing window size of
included SNP effects and reached a plateau at ∼ 22 cM (Supplementary
Figure S5). At this position a cumulation precision of 0.94 was
obtained if one QTL was simulated and no noise was added. In case of
eight simulated QTLs with high noise, a cumulation precision of 0.54
was obtained. The mean difference of cumulated effects and the truly
simulated effects decreased with increasing window size. At a window
size of 26 cM, a mean difference of 0.6 was obtained if one QTL was
simulated and no noise was added.

DISCUSSION

QTL detection
In general, both models reliably detected simulated QTLs with high
precision (Table 3 and Supplementary Figure S4). Expectedly, with
increasing number of simulated QTLs and increasing noise, QTL
detection power was decreased, especially when model IBD-M×F was
used. The number of significant markers was higher for ‘IBS-M’

(Table 1, 72 on average in the real data set) than for ‘IBD-M×F’ (4).
One reason to explain the higher number of significant SNPs in ‘IBS-
M’ is clustering of SNPs in major QTL regions. However, if we look at
Figure 2 and Figure S4, we see that additional genomic regions of
significant SNPs are present in ‘IBS-M’. On one side, a substantial part
of them might be false positive associations, a fact that has also been
pointed out in our simulation studies. According to the results
obtained therein, up to 83% of associated SNPs were false positives.

This is a known issue if the number of available markers exceeds the
number of phenotypes to explain, leading to overfitting of the model.
However, this problem in defining true associations can be overcome
by cross-validation of the results and counting the number of
significances across several runs (Valdar et al., 2009; Würschum
et al., 2012). If we look at the detection rates across 100 runs, we
clearly observe the highest peaks at the positions of true QTLs, both in
the real data set (Figure 2) and the simulation studies (Supplementary
Figure S4). Besides false positive associations, however, some regions
in the real data set might correspond to known QTLs as, for example,
the known flowering time gene HvELF3 at 128 cM on 1H (Figure 2).
For this locus the weakest effect out of eight major HEA QTLs was
observed in Maurer et al. (2015). Most likely, ‘IBD-M×F’ is not able
to detect it as smaller subgroups are used for the scan of marker trait
associations when only interaction effects are modelled. Similar
observations were made by Ogut et al. (2015) in the maize NAM
population. The authors observed that for small effect QTL, a joint-
family model was able to detect them more reliably than a single-
family model. Therefore, model ‘IBD-M×F’ seems to be able to detect
predominantly QTLs with strong effects. This makes it suitable to
separate useful and valuable major QTLs, explaining a high amount of
variance, from minor low-impact QTLs. This finding might be of
particular interest for plant breeders.

Prediction abilities
Comparing prediction abilities of the different models enabled us to
gain insight into the reliability of estimated QTL effects. We used QTL
effects of the training population, which consisted of 80% of randomly
chosen lines per family, to predict the phenotypes of the remaining
20% and repeated this procedure 100 times to make it more robust.

Table 2 Cumulation precision (r) of major QTLs located in barley NAM and MAGIC populations

Populationa Trait QTL Cumulation precision (r)b No. of cumulated SNPsc CVd

NAM HEA 2H-23 cM 0.40 4.8 0.25

HEA 2H-57 cM 0.60 3.2 0.40

HEA 3H-107.8 cM 0.26 2.6 0.45

HEA 4H-3.5 cM 0.68 2.7 0.71

HEA 4H-113.4 cM 0.69 3.9 1.41

HEA 5H-125.5 cM 0.90 7.7 0.66

HEA 7H-34.3 cM 0.70 8.1 0.87

TGW 4H-14.9 cM 0.36 2.8 0.75

TGW 6H-49.1 cM 0.58 3.6 0.61

THR 1H-97.9 cM 0.93 10.8 0.32

THR 2H-69.3 cM 0.75 5.3 0.43

GrCol 1H-116.8 cM 0.96 24.1 2.85

Correlation with cumulation precisione 0.69 0.44

MAGIC FT QFT.MAGIC.HA-2H.a 0.81 2 6.35

FT QFT.MAGIC.HA-3H.a 0.26 1 6.14

FT QFT.MAGIC.HA-3H.b 0.51 2 6.51

FT QFT.MAGIC.HA-4H.a 0.37 3 3.11

FT QFT.MAGIC.HA-5H.a 0.42 2 2.99

FT QFT.MAGIC.HA-5H.b 0.89 1 6.82

FT QFT.MAGIC.HA-7H.a 0.98 4 6.38

Correlation with cumulation precision 0.32 0.53

Abbreviations: CV, coefficient of variation; FT, flowering time; GrCol, grain colour; HEA, heading; MAGIC, multiparent advanced generation inter-cross; NAM, nested association mapping; QTL,
quantitative trait locus; SNP, single-nucleotide polymorphism; TGW, thousand grain weight; THR, threshability.
aNAM: barley population HEB-25 (Maurer et al., 2015); MAGIC of barley (Sannemann et al., 2015).
bCorrelation coefficient of QTL effect, obtained from ‘IBD-M×F’ (NAM) and parental allelic means, obtained from the haplotype approach (MAGIC), respectively, versus QTL effect, estimated by
cumulating nearby SNP effects from ‘IBS-M’. Means: 0.67 (NAM); 0.60 (MAGIC).
cNumber of significant SNPs that were cumulated in an interval surrounding the QTL (NAM: 26 cM, MAGIC: 20 cM). For NAM, the mean across 100 cross-validation runs is shown.
dCV of all parent-specific QTL effects obtained from model ‘IBD-M×F’ (NAM) and the haplotype approach (MAGIC), respectively.
ePearson’s correlation coefficient (r) between cumulation precision for NAM and MAGIC population, respectively.
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It appears that models ‘IBS-M’ and ‘IBD-M×F’ possess a similar
power to predict phenotypes of HEA and THR, however there were
substantial differences for TGW and GrCol (Table 1). Prediction
abilities of polygenic traits like HEA and TGW showed no increase if a
parent-specific effect was modelled. Most likely, the reason for this

observation is that wild donor-specific QTL effects for HEA are
predominantly pointing to the same direction compared with the elite
allele of the reference parent Barke (Supplementary Table S4), as a
consequence of domestication (Cockram et al., 2011). In particular, it
was shown that in the HEB-25 population at the Ppd-H1 gene, which
revealed a major impact on HEA by explaining 36% of genotypic
variance, 24 out of 25 wild donors carry alleles with almost identical
effects (Maurer et al., 2015). Therefore, modelling M×F effects might
not be able to substantially improve the model fit. For TGW, we
observed a clearly reduced R2val for ‘IBD-M×F’. This might illustrate
that with increasing trait complexity and, thus, decreasing heritability,
the modelling of parent-specific marker effects impedes detection of
relevant QTLs and diminishes reliable effect estimation. This is
confirmed by our simulation study where QTL detection power and
prediction ability decreased in scenarios with higher trait complexity,
represented by more simulated QTLs and higher amount of noise. In
contrast, oligo- or monogenic traits like THR and GrCol benefitted
from modelling of parent-specific marker effects. This was most
prominent for the trait GrCol, a trait that is only segregating in three
families (F-06, F-16, F-24) and no more than 46 lines in total are
showing the dark-grained phenotype. Under this circumstance, model
‘IBS-M’ was able to reach a prediction ability of 0.71, whereas model
‘IBD-M×F’ reached a prediction ability of 0.85. This outlines the
potential to increase prediction ability when parent-specific effects are
modelled. Interestingly, although ‘IBS-M’ only assumes marker main
effects and no causative SNP for grain colour is available in our
marker set, a remarkable prediction ability of 0.71 was observed. This
led to the hypothesis that multiple IBS markers can account for
parent-specific effects.

Cumulation method enables realistic modelling of parent-specific
effects
To check whether linked SNP markers are suited to reflect parent-
specific QTL effects, we cumulated SNP effects surrounding the peak
marker of each QTL. Thereby, we focussed on strong QTLs that were
detected by ‘IBD-M×F’ and compared the estimated M×F effects
with the parent-specific effects derived by cumulation of ‘IBS-M’

estimates. We used a window of 26 cM, with the peak marker in its
centre, to scan for significant IBS markers. This window size turned

Figure 3 Scatter plots of the cumulated SNP effects from model ‘IBS-M’ against the M×F effects obtained from model ‘IBD-M×F’ for 12 major QTLs in the
barley NAM population. Each dot represents the estimated QTL effect of one exotic HEB donor. A linear regression line (in orange) and Pearson’s correlation
coefficients (r), indicating the cumulation precision, are given for each QTL. Axis values represent the absolute difference between exotic and cultivated (that
is, Barke) QTL alleles.

Table 3 Quality parameters of IBS-M and IBD-M×F in different

simulation scenarios

No noise Medium noise High noise

IBS-M QTL detection powera 1 QTL 1.00 0.48 0.01

3 QTLs 0.99 0.78 0.37

8 QTLs 0.91 0.74 0.45

Mean 0.94 0.72 0.39

False positivesb 1 QTL 0.63 0.75 0.83

3 QTLs 0.54 0.57 0.73

8 QTLs 0.46 0.48 0.55

Mean 0.55 0.60 0.70

Prediction abilityc 1 QTL 0.65 0.13 0.03

3 QTLs 0.64 0.26 0.08

8 QTLs 0.55 0.28 0.08

Mean 0.61 0.22 0.07

IBD-M×F QTL detection power 1 QTL 1.00 1.00 0.07

3 QTLs 1.00 1.00 0.34

8 QTLs 1.00 0.96 0.00

Mean 1.00 0.98 0.09

False positives 1 QTL 0.31 0.00 0.00

3 QTLs 0.22 0.00 0.00

8 QTLs 0.07 0.00 n/a

Mean 0.20 0.00 0.00

Prediction ability 1 QTL 0.97 0.35 0.00

3 QTLs 0.96 0.54 0.13

8 QTLs 0.95 0.68 0.00

Mean 0.96 0.52 0.04

Abbreviations: IBD-M×F, identical-by-descent marker-by-family effects; IBS-M, identical-by-
state marker main effects; QTL, quantitative trait locus.
All values are averaged across 100 simulated cross-validation runs.
aQTL detection power is defined as the model’s ability to precisely detect the simulated QTL
within a 5 cM window surrounding the true position.
bFalse positive associations are all detected significant associations that were outside the
interval of cumulated single-nucleotide polymorphisms (SNPs; 26 cM) surrounding a QTL.
cPrediction ability represents the correlation coefficient of predicted phenotypes (based on SNP
effects obtained in the training set) and observed phenotypes in the test set.
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out to be reasonable to capture enough SNPs to maximise the
prediction ability of parent-specific QTL effects in simulation studies
(Supplementary Figure S5). This window size also reflects the mean
introgression size in the HEB-25 population. Thus, markers in this
window are often inherited together. The idea behind cumulating their
effects is that they are estimated at the same time in the final model
and each of the corresponding IBS markers segregates in different
families. Therefore, if a marker is not segregating in a particular family
(that is, genotype score= 0=Barke), its effect does not contribute to
the cumulated effect (that is, 0 × SNP effect= 0), whereas others do
(that is, 2 × SNP effect ≠ 0). Consequently, by combining all markers
surrounding a QTL, a specific effect for each parent is estimable, based
on the combination of differently segregating significant SNPs. This
way, we estimated the parent-specific effects for 12 major QTLs.
Giraud et al. (2014) followed a similar approach when comparing

QTL effects derived from models assuming ancestral haplotypes with
QTL effects gathered from cumulating closely linked single-marker
effects. In their case the cumulated effects of two markers already
reflected the effect of the respective haplotypes at two different QTLs
with high precision.
To estimate how reliable the cumulation of ‘IBS-M’-derived SNP

effects is able to predict the parent-specific QTL effect, we correlated
the cumulated estimates with the M×F effect obtained from model
‘IBD-M×F’. We chose this comparison as these M×F effect estimates
are very robust and presumably give the best insight into the true
parent effect. We observed high positive correlation coefficients for
most of the QTLs, ranging from 0.26 (HEA, 3H-107.8 cM) to 0.96
(GrCol, 1H-116.8 cM) with a mean of 0.65 (Figure 3). This shows that
cumulating SNP main effects within a QTL region is suitable to
estimate a parent-specific effect. Especially for oligo- or monogenic
traits (THR, GrCol), we observed extremely high cumulation preci-
sion, indicating that the method is of special appropriateness if
background noise from other QTLs is low.
The presence of parent-specific QTL effects in HEB-25 was first

indicated in Maurer et al. (2015), where resequencing of Ppd-H1
clearly revealed the presence of different haplotypes and consequential
parent-specific effects. This resulted in one specific haplotype,
originating from HEB family F-24, that showed no difference in
HEA as compared with the Barke haplotype. In our study, this could
also be observed when looking at the ‘IBD-M×F’ estimate of this QTL
for F-24. However, the method of cumulating SNP effect estimates
from model ‘IBS-M’ failed to detect this fact. We raised the question of
why in this obvious case the method seems to fail. One reason could
be that in this QTL region there are no F-24-specific SNPs available
that could account for the allelic effect. However, in close proximity to
the Ppd-H1 gene (BK_12-BK_16, 23.0 cM), there are three tightly
linked SNPs available that solely segregate in F-24 (BOPA1_5880_2547
at 23.2 cM, SCRI_RS_182270 at 24.9 cM and SCRI_RS_115892 at
25.4 cM). When checking their linkage in more detail we recognised
that there is recombination between them and Ppd-H1 in seven cases,
whereas only in four cases they are inherited together (Additional File
S1). Estimating a compensating effect for one of these SNPs that could
fine-tune the Ppd-H1 effect will therefore not work. Thus, the GWAS
procedure is not able to take any of the F-24-specific SNPs into
account to optimise the model. We ran ‘IBS-M’ again on the whole
data set and excluded those seven lines that showed recombination. As
expected, BOPA1_5880_2547 now became significant and, conse-
quently, the cumulation method allowed obtaining a more realistic
parent-specific effect estimate (Supplementary Table S5).
In addition, for other flowering QTLs, which were described in

HEB-25, we could corroborate the presence of parent-specific effects.

For instance, the three vernalisation genes Vrn-H1, Vrn-H2 and Vrn-
H3 were supposed to show a parent-specific effect pattern (Maurer
et al., 2015, 2016). In this study, we were also able to estimate the
parent-specific effects of these QTLs by cumulating SNP effects. We
could show that there is plenty of diversification for these vernalisation
loci available, depending on the origin of the respective donor. For
instance, we observed extremely different parent-specific HEA effects
of +8.5 days in F-09 and +1.3 days in family F-19 at Vrn-H1 locus
(Supplementary Table S4).
As we do not know the true QTL effects in our real data set, the

correlation of the cumulated effects with the IBD-M×F effects might
not really represent an adequate measure of appropriateness of
the method. Therefore, we also applied the cumulation method to
the simulated data set, where we determined exact parent-specific
effects. As a result we obtained a high cumulation precision of 0.94 for
the case where one QTL was simulated and no noise was modelled
(Supplementary Figure S5). Even for eight simulated QTLs with high
noise, a cumulation precision of 0.54 was obtained. At the same time,
the mean difference of the cumulated effect and the truly simulated
parent-specific effects was low (0.6), indicating the appropriateness of
the method. This is in particular remarkable as the simulated parent-
specific QTL effects were randomly assigned to donors, that is, closely
related donors could have opposing effects and vice versa.

Applying the cumulation method to a barley MAGIC population
Besides the general suitability of the cumulation method in a NAM
population, we checked whether this also works for MAGIC popula-
tions. Therefore, we took raw data on flowering time from an eight-
way barley MAGIC population (Sannemann et al., 2015) and applied
model ‘IBS-M’. Compared with both GWAS approaches presented in
Sannemann et al. (2015), model ‘IBS-M’ detected more QTLs, while
keeping all QTLs detected before (Supplementary Table S6). Further-
more, total R2 increased to 74.8%. When using the effect estimates of
all significant SNPs to predict the phenotypes of the eight parents,
we obtained high accordance (r= 0.85, Figure 4 and Supplementary
Table S6), indicating the model’s general suitability. Then, we applied
the cumulation method and compared our estimates with the
estimates obtained from the haplotype approach, published in
Sannemann et al. (2015), that is based on founder haplotype

Figure 4 Correlation of observed and predicted flowering time of the eight
MAGIC founders. Observed phenotypes are presented in Sannemann et al.
(2015), and predicted phenotypes are based on the effect estimates of all
significant SNPs obtained in model ‘IBS-M’. Founder lines are abbreviated:
AB, Ack. Bavaria; AD, Ack. Danubia; B, Barke; C, Criewener 403; HF, Heils
Franken; HH, Heines Hanna; PI, Pflugs Intensiv; R, Ragusa.
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probabilities calculated with R/mpMap (Huang and George, 2011). On
average, we observed a correlation of 0.60 between our estimates and
those obtained from the haplotype approach (Table 2). For QFT.
MAGIC.HA-7H.a, which explains 28.5% of the variance for heading
in the MAGIC population, we reached a correlation of 0.98. By using
our method it was also possible to estimate a QTL effect for the
MAGIC parent ‘Pflugs Intensiv’/‘Criewener 403’, where the haplotype
approach used in Sannemann et al. (2015) failed. The given results
demonstrate the potential of applying our cumulation method to
MAGIC populations to estimate parent-specific QTL effects without
the need of haplotype or IBD information.

Prerequisites and characteristics of the cumulation method
The method’s success depends on two major prerequisites. First, map
positions of all investigated markers must be known. The more
accurate the map is, the higher is the chance to differentiate effects
reliably. Second, there must be LD present in the population. The fact
that SNPs are inherited together because of genetic linkage enables
merging these SNP effects to define a parent-specific effect. LD in a
multiparental population can be seen as a function of the LD that is
present among the parents and the specific population design. In the
NAM population HEB-25, there is low LD present among the parents
(Maurer et al., 2015) and F1 plants were backcrossed to the recurrent
parent Barke. Because of reduced recombination after backcrossing,
the introgressed wild barley segments are relatively large, allowing
many SNPs to be included in a QTL-surrounding window. However,
with an increasing number of differentially segregating SNPs we expect
that a smaller window may be sufficient for cumulation of QTL effects.
Using model ‘IBS-M’ and deriving the parent-specific effect estimate

out of it instead of modelling IBD or haplotype effects has several
benefits that should be highlighted. (1) More QTLs are detectable
compared with a model containing only M×F effects modelled as
IBD. This is easily visible in Figure 2 and Supplementary Figure S4,
where we see multiple additional SNP peaks for model ‘IBS-M’
compared with model ‘IBD-M×F’. This is most likely because of the
fact that in ‘IBD-M×F’ smaller subgroups are used for the scan of
marker trait associations that impede detection of minor QTLs. (2)
The grouping of SNP effects is not restricted to 25 families as in
models assuming a M×F effect in a NAM population. Because of the
different segregation patterns of SNPs, much more information can be
gathered by specific combinations of these SNPs. This results in the
definition of phenotypic clusters rather than parent-specific haplo-
types. Especially, if IBD cannot clearly be derived from pedigree
information, as it is for instance the case in MAGIC populations, this
method represents an excellent way to model allelic effects originating
from different parents independent of IBD information. (3) Haplo-
types are not defined a priori based on SNP profiles of parental lines
like, for example, in clusthaplo (Leroux et al., 2014) or R/mpMap
(Huang and George, 2011). Instead, our method represents a more
functional approach that is not solely based on ancestral relationships.
This enables to track down beneficial genetic variation in a more
practical manner.
Besides the above-mentioned beneficial aspects, there are also some

limitations that one has to take into account when applying the
cumulation method. First, the method is not able to separate effects
from tightly linked QTLs, at least not within the selected genetic
interval of SNPs being cumulated. Another fact is that the method’s
success seems to decrease with increasing trait complexity. Strong
QTLs with ample allelic variation are still reliably represented by the
cumulation method, but one has to be cautious in interpreting parent-
specific effects defined for minor QTLs. Furthermore, the effects

estimated by the cumulation method are in general less extreme and
show lower variation across parents than IBD-based methods do.
Another critical point is the high number of false positive associations
detected by the model. Probably, they cause the low prediction ability
of IBS-M when background noise increased. However, the parent-
specific effects obtained via the cumulation method nevertheless
turned out to be clearly correlated to the true QTL effects in the
simulations. Therefore, we strongly recommend running several cross-
validation runs to identify the most reliable QTL positions before
cumulation.
To sum up, the comparison of a family-based method (IBD-M×F)

with a method assuming general SNP effects (IBS-M) revealed a slight
advantage in prediction ability of IBD-M×F, especially for highly
heritable traits. However, IBS-M turned out to be superior for traits
with lower heritabilities. The idea of cumulating genetically linked
SNP effects from model ‘IBS-M’ provided a novel approach to
reconstruct parent-specific QTL effects. This method proved to be
applicable to NAM and MAGIC types of multiparental populations
even if no IBD information is available. At present, there seems to be
the tendency that both haplotype-based linkage models and single-
marker association models should be used in a complementary way
for QTL detection in multiparental populations (Lorenz et al., 2010;
Kump et al., 2011; Tian et al., 2011; Bardol et al., 2013). Our method
represents an intermediate path, combining a high QTL detection rate
with the possibility to predict parental QTL effects under a reduced
computational load. In future, we assume that the cumulation method
will benefit from a massive increase in available SNP genotype data
that can enhance the precision of this method, for instance by utilising
SNP information from exome capture sequencing (Mascher et al.,
2013) or increased sizes of SNP chips.

Data archiving
All relevant data are available as supplementary files at Heredity’s
website or are taken from published articles (Maurer et al., 2015;
Sannemann et al., 2015). Additional files containing genotype and
phenotype data used as input as well as the obtained GWAS results are
available from the Dryad Digital Repository http://dx.doi.org/10.5061/
dryad.36rm1.
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