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Associative learning of pure tones is known to cause tonotopic map expansion in
the auditory cortex (ACx), but the function this plasticity sub-serves is unclear. We
developed an automated training platform called the “Educage,” which was used to train
mice on a go/no-go auditory discrimination task to their perceptual limits, for difficult
discriminations among pure tones or natural sounds. Spiking responses of excitatory
and inhibitory parvalbumin (PV+) L2/3 neurons in mouse ACx revealed learning-induced
overrepresentation of the learned frequencies, as expected from previous literature.
The coordinated plasticity of excitatory and inhibitory neurons supports a role for PV+

neurons in homeostatic maintenance of excitation–inhibition balance within the circuit.
Using a novel computational model to study auditory tuning curves, we show that
overrepresentation of the learned tones does not necessarily improve discrimination
performance of the network to these tones. In a separate set of experiments, we trained
mice to discriminate among natural sounds. Perceptual learning of natural sounds
induced “sparsening” and decorrelation of the neural response, consequently improving
discrimination of these complex sounds. This signature of plasticity in A1 highlights its
role in coding natural sounds.

Keywords: auditory, mice, automated training, interneurons, perceptual learning

INTRODUCTION

Learning is accompanied by plastic changes in brain circuits. This plasticity is often viewed
as substrate for improving computations that sub-serve learning and behavior. A well-
studied example of learning-induced plasticity is following perceptual learning where cortical
representations change toward the learned stimuli (Gilbert et al., 2001; Roelfsema and Holtmaat,
2018). Whether such changes improve discrimination has not been causally tested and remains
debated, and the mechanisms of change are still largely unknown.

Perceptual learning is an implicit form of lifelong learning during which perceptual performance
improves with practice (Gibson, 1969). Extensive psychophysical research on perceptual learning
tasks led to a general agreement on some attributes of this type of learning (Hawkey et al.,
2004). For example, perceptual learning has been shown to be task specific and poorly generalized
to other senses or tasks. It is also largely agreed upon that gradual training is essential for
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improvement (Lawrence, 1952; Ramachandran and Braddick,
1973; Ball and Sekuler, 1987; Berardi and Fiorentini, 1987; Karni
and Sagi, 1991; Irvine et al., 2000; Wright and Fitzgerald, 2001;
Ahissar and Hochstein, 2004; Ericsson, 2006; Kurt and Ehret,
2010). Given the specificity observed at the behavioral level,
functional correlates of perceptual learning are thought to involve
neural circuits as early as primary sensory regions (Gilbert et al.,
2001; Schoups et al., 2001). In auditory learning paradigms,
changes are already observed at the level of primary auditory
cortex (Weinberger, 2004). Learning to discriminate among tones
results in tonotopic map plasticity toward the trained stimulus
(Recanzone et al., 1993; Rutkowski and Weinberger, 2005;
Polley et al., 2006; Bieszczad and Weinberger, 2010; reviewed in
Irvine, 2017). Notably, however, not all studies could replicate
the learning-induced changes in the tonotopic map (Brown
et al., 2004). Furthermore, artificially induced map plasticity was
shown to be unnecessary for better discrimination performances
per se (Talwar and Gerstein, 2001; Reed et al., 2011). Our
understanding of the mechanisms underlying auditory cortex
plasticity remains rudimentary, let alone for more natural stimuli
beyond pure tones.

To gain understanding of learning-induced plasticity at single
neuron resolution, animal models have proven very useful. Mice,
for example, offer the advantage of a rich genetic experimental
toolkit to study neurons and circuits with high efficiency and
specificity (Luo et al., 2018). Historically, the weak aspect of using
mice as a model was its limited behavioral repertoire to learn
difficult tasks. However, in the past decade, technical difficulties
to train mice to their limits have been steadily improving with
increasing number of software and hardware tools to probe
mouse behavior in high resolution (de Hoz and Nelken, 2014;
Egnor and Branson, 2016; Murphy et al., 2016; Aoki et al.,
2017; Francis and Kanold, 2017; Krakauer et al., 2017; Cruces-
Solis et al., 2018; Erskine et al., 2018). Here, we developed
our own experimental system for training groups of mice on
an auditory perceptual task—an automatic system called the
“Educage.” The Educage is a simple affordable system that allows
efficient training of several mice simultaneously. Here, we used
the system to train mice to discriminate among pure tones
or complex sounds.

A1 is well known for its tonotopic map plasticity following
simple forms of learning in other animal models (Irvine,
2017). An additional interest in primary auditory cortex
is its increasing recognition as a brain region involved in
coding complex sounds (Bizley and Cohen, 2013; Kuchibhotla
and Bathellier, 2018). We thus asked what are the changes
single neurons undergo following training to discriminate
pure tones or natural stimuli. We describe distinct changes
in the long-term stimulus representations by L2/3 neurons
of mice following perceptual learning and assess how these
contribute to information processing by local circuits. Using
two-photon targeted electrophysiology, we also describe how
L2/3 parvalbumin-positive neurons change with respect
to their excitatory counterparts. Our work provides a
behavioral, physiological, and computational foundation to
questions of auditory-driven plasticity in mice, from pure tones
to natural sounds.

MATERIALS AND METHODS

Animals
A total of n = 88, 10- to 11-week-old female mice were used in this
work as follows. Forty-four mice were C57BL/6 mice and 44 mice
were a crossbreed of PV-Cre mice and tdTomato reporter mice
(PV × Ai9; Hippenmeyer et al., 2005; Madisen et al., 2010). All
experiments were approved by the Hebrew University’s IACUC.

Behavioral Setup
The “Educage” is a small chamber (10 × 10 × 10 cm),
opening on one end into a standard animal home cage where
mice can enter and exit freely (Figure 1A and Supplementary
Figure 1a). On the other end, the chamber contains the
hardware that drives the system, hardware for identifying mice
and measuring behavioral performance. Specifically, at the port
entrance there is a coil radio antenna (ANTC40 which connected
to LID665 stationary decoder; Dorset) followed by infrared
diodes used to identify mice individually and monitor their
presence in the port. This port is the only access to water
for the mice. Water is delivered via a solenoid valve (VDW;
SMC) allowing precise control of the water volume provided
on each visit. Water is delivered via a water spout, which
is also a lickometer (based on 1 microampere current). An
additional solenoid valve is positioned next to the water spout
in order to deliver a mild air puff as a negative reinforcement,
if necessary. For sound stimulation, we positioned a speaker
(ES1; TDT), at the center of the top wall of the chamber. Sound
was delivered to the speaker at 125 kHz sampling rate via a
driver and a programmable attenuator (ED1, PA5; TDT). For
high-speed data acquisition, reliable control, on-board sound
delivery, and future flexibility, the system was designed via
a field programmable gate array (FPGA) module and a real-
time operating system (RTOS) module (CompactRIO controller;
National Instruments). A custom-made A/D converter was
connected to the CompactRIO controller, mediated signal from
infrared diodes and lickometer and controlled the valves.
A custom code was written in Labview to allow an executable
user-friendly interface with numerous options for user-input
and flexibility for designing custom protocols. All software and
hardware design are freely available for download at https://
github.com/MizrahiTeam/Educage.

Training Paradigm
Prior to the training, each mouse was implanted, under light
and very short period of isoflurane anesthesia, with a radio
frequency identification (RFID; Trovan) chip under its scruff.
RFID chips allow identification of mice individually, which is
then used by the system to control the precise stimulus delivery
and track behavioral performance, on a per-mouse basis. Food
and water were provided ad libitum. While access to water
was only in the Educage, mice could engage the water port
without restriction. Thus, mice were never deprived of food or
water. At the beginning of each experiment, RFID-tagged mice
were placed in a large home cage that was connected to the
Educage. Before training, we removed the standard water bottle
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FIGURE 1 | Perceptual learning in the “Educage.” (A) Left: Schematic design of the “Educage” system and its components. Colored ovals on the back of each
mouse represent the different radio frequency identification (RFID) chip implanted prior to the experiment, which allows identification of mice individually. For
high-speed data acquisition, system control, on-board sound delivery, and future flexibility, the system was designed via a field programmable gate array (FPGA)
module and a real-time operating system (RTOS) module. Right: Schematic representation of the go/no-go auditory discrimination task. CR, correct rejection; FA,
false alarm. (B) d′ values of three representative mice and the population average ± s.e.m. for the first stage of discrimination. Learning criterion is represented as
dashed line (d′ = 1). (C) Lick responses to the target tone (solid line) and non-target tone (dashed line) of one representative mouse along different discrimination
stages. Proportions of lick responses were calculated over 100 trials/bin. This mouse improved his discrimination (hit rate went up and FA rate went down) within a
stage but his discrimination deteriorated as task became more difficult. (D) Population average d′ values for the different discrimination stages. N = 39 mice
(mean ± s.e.m.). Shades denote the level of difficulty (from 49% to 4–10% octave apart). (E) Individual d′ values at the end of each level as a function of d′ in the
beginning of that level. Shades denote the level of difficulty. Learning criterion represented as dashed lines (d′ = 1). (F) Normalized psychometric curves of five mice
calculated from the first (light curves) and the second (dark curves) 14%/octave session. Light and dark arrows indicate average decision boundaries in the first and
second sessions respectively (Mann–Whitney U-test on criteria: p = 0.03). (G) d′ values in easy (49%/octave) and more difficult (10% /octave) discrimination stages
of individual mice from the “Easy only” group (filled circles) and from the perceptual learning group (blank circles). d′ values are significantly different between groups
only for the hard discrimination level (Mann–Whitney U test: ***p < 0.001).
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from the home cage. Mice were free to explore the Educage
and drink the water at the behavioral port. Every time a mouse
entered the behavioral port, it was identified individually by
the antenna and the infrared beam and a trial was initiated.
Before learning, any entry to the port immediately resulted in
a drop of water, but no sound was played. Following 24 h of
exploration and drinking, mice were introduced for the first
time to the “target” stimulus—a series of six 10-kHz pure tones
(100 ms duration, 300 ms interval; 3 ms on and off linear ramps;
62 dB SPL) played every time the mouse crossed the IR beam.
To be rewarded with water, mice were now required to lick
the spout during the 900-ms response window. This stage of
operant conditioning lasted for 2–3 days until mice performed
at >70% hit rates.

We then switched the system to the first level of discrimination
when mice learned to identify a non-target stimulus (a 7.1 kHz
pure tone series at 62 dB SPL) from the already known target
stimulus (i.e., tones separated by 49%/octave). Thus, on each
trial, one of two possible stimuli were played for 2.1 s—either
a target tone or a non-target tone. Mice were free to lick the
water spout anytime, but for the purpose of evaluating mouse
decisions, we defined a response window and counted the licking
responses only within 900 ms after the sound terminated. Target
tones were played at 70% probability and non-target tones were
played at 30% probability, in a pseudorandom sequence. A “lick”
response to a target was rewarded with a water drop (15 µl)
and considered as a “Hit” trial. A “no lick” response to a
target sound was considered as a “Miss” trial. A lick response
to the non-target was considered a “False Alarm” (FA) trial,
which was negatively reinforced by a mild air puff (60 PSI;
600 ms) followed by a 9-s “timeout.” A “no lick” response
to the non-target was considered a correct rejection (CR) and
was not rewarded.

Once mice learned the easy discrimination (reached
70% correct ratio), we switched the system to the second
discrimination stage. Here, we increased task difficulty by
changing the non-target tone to 8.333 kHz, thus decreasing the
inter tone distance to 26%/octave. In each training stage, only
one pair of stimuli was presented. Then, at the following stage,
the inter tone distance was further decreased to 14%/octave and
then down to 6%/octave. This last transition was often done
in a gradual manner (»12%/octave » 10%/octave » 8%/octave »
6%/octave). In some of the animals (n = 25), we trained mice to
their just noticeable difference (JND) and then changed the task
back to an easier level. In order to extract psychometric curves,
for some of the mice (n = 5), we played “catch trials” during
the first and second sessions of the 14%/octave discrimination
stages. In catch trials, different tones spanning the frequency
range of the whole training (7–10 kHz) were presented to the
animals in low probability (6% of the total number of sounds),
and were neither negatively nor positively reinforced. We
have recorded from 21 mice that underwent the behavioral
training. Their discriminability indexes in the 49, 26, and 14%
octave discrimination levels were: 2.4 ± 0.8, 1.9 ± 0.6, and
1.4± 0.5, respectively.

For the vocalizations task, we used playback of pups’ wriggling
calls (WC) as the target stimulus. These vocalizations were

recorded with a one-quarter-inch microphone (Brüel and Kjær)
from P4–P5 PV × Ai9 pups (n = 3), sampled at 500 kHz,
and identified offline (Digidata 1322A; Molecular Devices). As
the non-target stimulus, we used manipulations of the WC.
During the first stage of the operant learning, mice learned to
discriminate between WC and a fully reversed version of this
call. Then, the second manipulation on the non-target stimulus
was a gradual change of the frequency modulation (FM) of
all but the last syllable in the call while leaving the temporal
structure of the full call intact. To manipulate the syllable FM,
we used a dynamic linear FM ramp. This operation multiplies
each sampling interval within the syllable by a dynamic speeding
factor, which changed according to the relative distance from
the start and end of the syllable, and generated a new waveform
by interpolation from the original waveform. For example, for
a 0.6 speeding factor, the beginning of each syllable was slower
by a factor of 0.4 while the end of each syllable accelerated by
a factor of 0.4. The range of sound modulation used here was
0.66–0.9. A value of 0.66 is away from the WC; 0.9, similar to
the WC; and 1, exactly the same as the WC. The basic task
design for the non-target sound was as follows: Reverse » 0.66 »
0.81 » 0.9.

Surgical Procedure
Mice were anesthetized with an intraperitoneal injection
of ketamine and medetomidine (0.80 and 0.65 mg/kg,
respectively) and a subcutaneous injection of Carprofen
(0.004 mg/g). Additionally, dextrose–saline was injected to
prevent dehydration. Experiments lasted up to 8 h. The depth
of anesthesia was assessed by monitoring the pinch withdrawal
reflex, and ketamine/medetomidine was added to maintain it.
The animal’s rectal temperature was monitored continuously and
maintained at 36 ± 1◦C. For imaging and recording, a custom-
made metal pin was glued to the skull using dental cement and
connected to a custom stage to allow precise positioning of the
head relative to the speaker (facing the right ear). The muscle
overlying the left auditory cortex was removed, and a craniotomy
(∼2 × 2 mm) was performed over A1 (coordinates, 2.3 mm
posterior and 4.2 mm lateral to bregma) as described previously
(Stiebler et al., 1997; Cohen et al., 2011; Maor et al., 2016).

Imaging and Electrophysiology
Cell-attached recordings were obtained using targeted patch-
clamp recording by a previously described procedure (Margrie
et al., 2003; Cohen and Mizrahi, 2015; Maor et al., 2016). For
visualization, the electrode was filled with a green fluorescent dye
(Alexa Flour-488; 50 µM). Imaging of A1 was performed using
an Ultima two-photon microscope from Prairie Technologies
equipped with a 16 × water-immersion objective lens (0.8
numerical aperture; CF175; Nikon). Two-photon excitation at
wavelength of 930 nm was used in order to visualize both the
electrode, filled with Alexa Flour-488, and PV+ somata, labeled
with tdTomato (DeepSee femtosecond laser; Spectraphysics).
The recording depths of cell somata were restricted to subpial
depths of 180–420 µm, documented by the multiphoton imaging.
Spike waveform analysis was performed on all recorded cells,
verifying that tdTomato+ cells in L2/3 had faster/narrower
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spikes relative to tdTomato-negative (tdTomato-) cells (see also
Cohen and Mizrahi, 2015).

Auditory Stimuli
The auditory protocol comprised 18–24 pure tones (100 ms
duration, 3 ms on and off linear ramps) logarithmically spaced
between 3 and 40 kHz and presented at four sound pressure
levels (72–42 dB SPLs). Each stimulus/intensity combination was
presented 10–12 times at a rate of 1.4 Hz. The vocalizations
protocol comprised the playback of pups’ wriggling calls
(WC) and three additional FM calls, presented at 62 dB SPL
for 16 repetitions.

Behavioral Data Analysis
To evaluate behavioral performance, we calculated, for different
time bins (normally 20 trials), Hit and FA rates, which are
the probability to lick in response to the target and non-target
tones, respectively. In order to compensate for the individual
bias, we used a measure of discriminability from signal detection
theory—d-prime (d′). d′ is defined as the difference between the
normal inverse cumulative distribution of the “Hit” and FA rates,
d′ = z(hit) - z(FA) (Nevin, 1969). d′ for each discrimination
stage was calculated based on trials from the last 33% of the
indicated stage. Psychometric curves were extracted based on
mouse performance in response to the catch trials. By fitting
a sigmoidal function to these curves, we calculated decision
boundaries as the inflection point of each curve. Detection time
was calculated for each mouse individually, by determining the
time in which lick patterns in the correct reject vs. the hit trials
diverged (i.e., the time when significance levels crossed p < 0.001
in a two-sample t-test).

Data Analysis—Electrophysiology
Data analysis and statistics were performed using custom-written
code in MATLAB (MathWorks). Spikes were extracted from raw
voltage traces by thresholding. Spike times were then assigned
to the local peaks of suprathreshold segments and rounded to
the nearest millisecond. For each cell, we obtained peri-stimulus
time histogram (PSTH) and determined the response window as
the 100 ms following stimulus onset that evoked the maximal
response integral. Only neurons that had tone-evoked response
(p < 0.05; two sample t-test) were included in our dataset. Based
on this response window, we extracted the cell’s tuning curve and
frequency-response area (FRA). Evoked firing rate was calculated
as the average response to all frequencies that evoked a significant
response. Firing rate in the training band was calculated as the
response to frequencies inside the training band (7–10 kHz),
averaged across all intensities. Best frequency (BF) of each cell
was determined as the tone frequency that elicited the strongest
responses averaged across all intensities. The selectivity of the
cell is the % of all frequency–intensity combinations that evoked
significant response (determined by a two-sample t-test followed
by Bonferroni correction). Pairwise signal correlations (rsc) were
calculated as Pearson correlation between FRA’s matrices of
neighboring cells (<250 µm apart; Maor et al., 2016). The
spontaneous firing rate of the cell was calculated based on the
100 ms preceding each stimulus presentation. Response latency

is the time point after stimulus onset at which the average spike
count reached maximum.

Statistical Model Based on the
Independent Basis Functions (IBF)
Method
Since the measured responses before and after learning are
not from the same cells, we cannot estimate the changes of
individual tuning curves due to learning. Instead, we must
rely on estimated learning-induced changes in the ensemble
of single-neuron responses. Our goal, therefore, was to build
a statistical model of single-neuron tuning curves before and
after learning. The models were based on the statistics of each
experimental group separately and used to estimate the learning-
induced changes in the population of responses in each condition.
Furthermore, we used this model as a generative model that
allowed us to generate a large number of “model neurons” with
statistically similar response properties as the measured ones.

In principle, one could use a parametric model, by fitting
each observed tuning curve to a specific shape of functions (e.g.,
Gaussian tuning curves). However, since the tuning curves of
neurons to tone frequencies do not have symmetric “Gaussian”
shapes, and some are bimodal, fitting them to a parametric model
has not been successful. Instead, we chose to model each single
neuron response as a weighted sum of a small set of orthogonal
basis functions.

ri
(
f
)
=

K∑
l=1

ailgl
(
f
)

(1)

Here, ri
(
f
)

is the firing rate (i.e., the trial-averaged spike
count) of the ith neuron in response to the stimulus with
frequency f ; K is the number of orthogonal basis functions
denoted by gl(f ) (dependencies in f are in log scale). In order
to determine the basis functions and the coefficients, ail , we
performed singular value decomposition (SVD) of the matrix
of the measured neuronal firing rates for the 18 values of f.
Our model (1) uses a subset of the K modes with the largest
singular values (the determination of K is described below).
The SVD yields the coefficients ail, data for the N observed
neurons and (2) smoothes the resultant SVD f -dependent vectors
using a simple “moving average” technique to generate the
basis functions, gl(f ). (3) Importantly, to use the SVD as a
generative model, for each l, we compute the histogram of the N
ail, data coefficients. To generate “new neurons,” we sample each
coefficient independently from the corresponding histogram.
In other words, we approximate the joint distribution of the
coefficients by a factorized distribution. This allowed us to
explore the effect of changing the number of neurons that
downstream decoders use in order to perform the perceptual task.

Model (1) describes the variability of the population responses
to the stimulus, in terms of tuning curves of the trial averages
firing rates. Additional variability in the data is the single trial
spike count. We model these as independent Poisson random
variables with means given by ri

(
f
)
. Since neurons are not

simultaneously recorded, we do not include noise correlations
in the model. We performed this procedure for the naïve
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and expert measured responses separately, so that both the
basis functions and the coefficient histograms are evaluated
for the two conditions separately. Note that we do not make
Gaussian assumptions about the coefficient histograms. In fact,
the observed histograms are in general far from Gaussian.

The Choice of Number of Basis
Functions
Due to a limited number of trials that we sampled for each
neuron, taking a large value of K can result in overfitting the
model to the noise caused by the finite number of trials. To
estimate the optimal number of basis functions, we evaluated the
percentage of response firing rate variability of the population
(i.e., the fraction of the sum of the squared SVD eigenvalues) as
a function of K. We also evaluated the parameters of model (1)
based on a subset of trials and checked how well it accounts for
the observed tuning curves that are calculated from the test trials.
We took K that produces the smallest test error and saturated the
fractional variance.

We used model (1) with the above choice of K in order
to evaluate the discrimination ability of the population of A1
neurons, by creating an ensemble of single-neuron responses for
the naïve and expert conditions. To generate the model neurons,
we sampled the coefficients of the basis function independently
from the corresponding histogram of the measured neurons and
used these neurons for the calculations depicted below.

Fisher Information
We calculated the Fisher Information (FI) for each condition
(naïve vs. expert) using our model (1). FI measure bounds
the mean squared error of an (unbiased) estimator of the
stimulus from the noisy single trial neuronal responses. When the
neuronal population is large (and they are noise- independent) FI
also determines the discriminability d′ of a maximum likelihood
discriminator between two nearby values of the stimulus (Seung
and Sompolinsky, 1993). Under the above Poisson assumption,

the FI for the ith neuron is equal to Ii =
r
′

i (f )
2

ri(f )
, where r

′

i(f ) is the
derivative of the firing rate with respect to the stimulus value f.
The total FI is the sum of the FIs of individual neurons (Seung and
Sompolinsky, 1993). This has been evaluated in both naïve and
expert conditions. Note that the FI are functions of the stimulus
value f, around which the discrimination task is performed.

Discrimination by Linear Readout
We applied a linear decoder to assess the ability to discriminate
between nearby stimuli on the basis of the neuronal population
responses. We trained a support vector machine (SVM) with
a linear kernel, which finds an “optimal” linear classifier that
discriminates between two nearby frequencies on the basis of
single-trial vectors of spike counts generated with our generative
model (1) and Poisson variability. We then evaluated the
probability of classification errors to test trials, in both naïve
and expert conditions. Since our training set is not linearly
separable, we used SVM with slack variables (Vapnik, 1998),
which incorporates a “soft” cost for classification errors. Each
classification was iterated a maximum 500 times (or until

converged). In each iteration, 16 trials were used for training the
classifier and four trials were used to test the decoder accuracy.
Classification performance of the decoder was tested separately
for discrimination between nearby frequencies which lay inside
the training band or near the training band (0.4396 octave apart).

Data Analysis—Vocalization Responses
Similarity of response to different vocalizations was calculated
as Pearson correlation between the PSTHs of the different
stimuli. To quantify lifetime sparseness, we used the following
measure: S = (1 - [(6ri/n)2/6(ri2/n)])/[1 - (1/n)], where ri is the
response to the ith syllable in the original vocalization (averaged
across trials) and n is the number of syllables. Values of S near
0% indicate a dense code, and values near 100% indicate a
sparse code (Vinje and Gallant, 2000). Population sparseness was
calculated as 100—the percent of cells that evoked a significant
response to each syllable in the call (Willmore and Tolhurst,
2001). Classification of vocalization identity based on population
activity was determined using the SVM decoder with a linear
kernel and slack variables. The decoder was tested for its accuracy
to differentiate between responses to two different vocalizations.
The input to the SVM consisted of the spike count of each
neuron in the syllable response window. The same number of
neurons (37) was used in both groups to avoid biases. We
then evaluated the probability of classification errors to test
trials, using leave-one-out cross-validation. Each classification
was iterated 1000 times. In each iteration, 15 trials were used
for training the classifier and one trial was used to test decoder
accuracy. The number of syllables utilized in the decoder was
increased cumulatively.

Statistical Analysis
All statistical analysis was performed with MATLAB
(Mathworks). Rank-sum test was used for comparison unless
otherwise noted. In cases where the same data sample was
used for multiple comparisons, we used the Holm-Bonferroni
correction to adjust for the increased probability of Type I error.
Statistical significance was defined as p < 0.05.

Code Accessibility
All software and hardware design for the Educage system
are available for download at https://github.com/MizrahiTeam/
Educage.

Codes used for data analysis are available from the
corresponding author upon request.

RESULTS

Behavior—Discrimination of Pure Tones
To study perceptual learning in mice, we developed a behavioral
platform named the “Educage” (all software and hardware
design are freely available for download at https://github.com/
MizrahiTeam/Educage). The Educage is an automated home-
cage training apparatus designed to be used simultaneously with
several mice (up to 8 animals). One advantage of the Educage
over other procedures is that human interference is brought
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FIGURE 2 | Learning induces over representation of the learned stimuli.
(A) Schematic representation of the experimental setup and a sample of the
loose patch recording showing a representative cell from naïve (left) and
expert (right) mice (gray markers indicate tone stimuli). (B) Raster plots and
peri-stimulus time histograms (PSTH) in response to pure tones of the cells
shown. Gray bars indicate the time of stimulus presentation (100 ms). Color
bars and arrows indicate the training frequency band (7.1–10 kHz) and BF,
respectively. (C) Population average of normalized response tuning curves of
105 neurons from naïve mice (red) and 107 neurons from expert mice (blue;
mean ± s.e.m.). Gray area indicates the training frequency band. Asterisks
correspond to frequencies with significant response difference (Mann–Whitney
U test: ∗p < 0.05). (D) Best frequency (BF) of individual neurons from naïve

(Continued)

FIGURE 2 | Continued
mice (red markers) and expert mice (blue markers; Mann–Whitney U test:
∗∗p < 0.01). Arrows indicate the neurons shown in (B). (E) Pairwise signal
correlations (rsc) values between all neighboring neuronal pairs in naïve (red)
and expert (blue) mice. Neurons in expert mice have higher rsc

(Mann–Whitney U test: ∗∗∗p < 0.001). (F) Cumulative distribution of response
selectivity in naïve (red) and expert (blue) mice. Response selectivity was
determined as the % of all frequency–intensity combinations that evoked a
significant response. Distributions are not significantly different
(Kolmogorov–Smirnov test; p = 0.69). (G) Mean BF of the neurons recorded in
each mouse and its behavioral d′ (during the 14% octave discrimination)
shows no clear pattern of change with respect to mouse performance
(mean ± std across trials; r2 = -0.05, p = 0.7).

to minimum and training efficiency increases. The “Educage”
is a small modular chamber (10 × 10 × 10 cm), opening
on one end into a standard animal home cage where mice
can enter and exit freely (Figure 1A). On its other end, the
chamber contains the hardware that drives the system, hardware
for identifying mice and measuring behavioral performance
(Figure 1A and Supplementary Figure 1, see section “Materials
and Methods”). Mice were free to engage the behavioral port
at their own will, where they consume all of their water intake.
Following habituation, mice were trained on a go/no-go auditory
discrimination task to lick in response to a target tone (a series
of 10 kHz pure tones) and withhold licking in response to the
non-target tone. A “lick” response to a target was rewarded with
a water drop (15 µl) and considered as a “Hit” trial. A “no
lick” response to a target sound was considered as a “Miss”
trial. A lick response to the non-target was considered a “False
Alarm” (FA) trial, which was negatively reinforced by a mild air
puff (60 PSI; 600 ms) followed by a 9-s “timeout.” A “no lick”
response to the non-target was considered a correct rejection
(CR) and was not rewarded (Figure 1A). On average, mice
performed 327 ± 71 trials per day, mainly during dark hours
(Supplementary Figure 1b).

The initial level of learning was to identify a non-target
stimulus (a series of 7.1 kHz pure tones) from the 10 kHz target
stimulus (Figure 1A right and Supplementary Movie 1). These
stimuli are separated by 49% of an octave and are perceptually
easily separated by mice. Discrimination performances were
evaluated using d′—a measure that is invariant to individual
bias (Nevin, 1969). Despite the simplicity of the task, behavioral
performance varied widely between mice (Figure 1B and
Supplementary Figure 1c). On average, it took mice 54 ± 38
trials to cross our criterion of learning, which was set arbitrarily
at d′ = 1 (Figure 1B; dotted line), and gradually increased
to plateau at d′ = 2.35 ± 0.64 (Figure 1D). To extend the
task to more challenging levels, we gradually increased task
difficulty by changing the non-target tone closer to the target
tone. The target tone remained constant at 10 kHz throughout
the experiment and only the non-target stimulus changed.
The lowest distance used between target and non-target was
3%/octave (9.6 kHz vs. 10 kHz). A representative example from
one mouse’s performance in the Educage throughout a complete
experiment is shown in Figure 1C. The JND for each mouse was
determined when mice could no longer discriminate (e.g., the
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JND of the mouse shown in Figure 1C was determined between
6 and 10%/octave). The range of JNDs was 3–14%/octave and
averaged 8.6 ± 4.7%/octave. These values of JND are typical
for frequency discrimination in mice (Ehret, 1975; de Hoz and
Nelken, 2014). Most mice improved their performance with
training (Figures 1E,F), showing improved perceptual abilities
along the task. The duration to reach JND varied as well,
ranging 3069 ± 1099 trials (14 ± 3 days). Detection times,
defined as the time in which lick patterns in the correct reject
trials diverged from the lick patterns of the hit trials, increased
monotonically by ∼177 ms for each step of task difficulty,
demonstrating the increased perceptual load during the harder
tasks (Supplementary Figure 1d).

To show that gradual training is necessary for perceptual
learning (Ahissar and Hochstein, 2004; Ericsson, 2006; Kurt and
Ehret, 2010), we trained groups of littermate mice on different
protocols simultaneously. In one group of mice, we used a
standard protocol and the animals were trained on the gradually
increasing task difficulty described above. Simultaneously, in
the second group of mice—termed “easy only”—animals were
trained continuously on the easy task. Although both groups
of mice trained together, only the mice that underwent gradual
training were able to perform the hard task (Figure 1G). Taking
together, these data demonstrate the efficiency of the Educage to
train groups of mice to become experts in discriminating between
a narrowband of frequencies in a relatively short time and with
minimal human intervention.

Representation of Pure Tones in L2/3
Neurons Following Perceptual Learning
To evaluate cortical plasticity following perceptual learning, we
compared how pure tones are represented in A1 of expert mice,
trained to discriminate between narrowband frequencies, and
age-matched naive mice who were never introduced to these
sounds. We used in vivo loose patch recording of L2/3 neurons
in anesthetized mice to record tone-evoked spiking activity in
response to 3–40 kHz pure tones (Figures 2A,B and Table 1).
We targeted our recording electrode to the center of A1 based
on previously validated stereotactic coordinates (Maor et al.,
2016). Response latencies further support that our recordings
are from primary auditory cortex (range of minimal latencies:
20–44 ms; mean± sd: 30± 6 ms). Loose patch recording enables
superb spatial resolution, is not biased to specific cell types, and
has high signal-to-noise ratio for spike detection. However, one

caveat of this technique is a potential bias of recording sites
along the tonotopic axis. In order to overcome it, we measured
from neurons in a large number of animals, such that possible
biases are likely averaged out. In naïve mice, responses were
highly heterogeneous, with best frequencies covering a significant
frequency range, as expected from the heterogeneous functional
microarchitecture of L 2/3 neurons in A1 (Figures 2C,D; n = 105
neurons, n = 22 mice, red). In expert mice, best frequencies
of tuning curves were biased toward the frequencies that were
presented during learning (Figures 2C,D; n = 107 neurons,
n = 20 mice, blue). These data show, as expected from previous
literature, that learned frequencies in A1 become overrepresented
at least as measured by the neuron’s best frequency (BF). We next
showed that this overrepresentation was specific to the learned
tone by training mice on 4 kHz as the target tone and recording
neurons in a similar manner to the abovementioned experiment.
Indeed, L2/3 neurons in A1 of mice training on 4 kHz showed
BF shifts toward 4 kHz (Supplementary Figure 2a). These
results are largely consistent with previous studies in monkeys,
cats, rats, and gerbils (reviewed in Irvine, 2017), extending this
phenomenon of learning-induced changes in tuning curves to the
mouse, to L2/3 neurons and to local circuits.

To study neuronal changes further, we analyzed response
dynamics. Temporal responses to the trained frequencies were
only slightly different between naive and expert mice. Specifically,
average spiking responses were slightly but significantly faster
and stronger in experts (Supplementary Figure 2b and
Table 1). In addition, we recorded the responses to pure
tones at different intensities and constructed frequency response
areas (Supplementary Figure 2c). The average pairwise signal
correlation of neighboring neurons, calculated from these
frequency response areas, was high in naïve mice (0.2 ± 0.28)
but even higher in experts (0.3 ± 0.24; Figure 2E). Notably,
the increased signal correlation was not an artifact of differences
in response properties between naïve and expert group
(Supplementary Figure 2d) but reflected true similarity in
receptive fields (Supplementary Figure 2e). Thus, the basal
level of functional heterogeneity in A1 (Bandyopadhyay et al.,
2010; Rothschild et al., 2010; Maor et al., 2016) is reduced
following learning. This learning-induced increase in functional
homogeneity of the local circuit, emphasizes the kind of shift that
local circuits undergo. Since neurons in expert mice did not have
wider response areas (Figure 2F and Table 1), our data suggests
that neurons shifted their response properties toward the learned
tones at the expense of frequencies outside the training band.

TABLE 1 | Learning-induced physiological changes.

Group Animals
(n)

Cells
(n)

BF
(kHz)

Spontaneous
spike rate (Hz)

Evoked firing
rate in BF (Hz)

FR in T.B.
(Hz)

Response
latency (ms)

Selectivity (%
of all stimuli)

“Lifetime
sparseness”

(%)

Naïve 22 105 11.3± 8.4 0.45 ± 0.58 15.5 ± 5.3 3.4 ± 5 35.2 ± 8.7 9.7 ± 13.9 88 ± 1

Expert 20 107 8.6 ± 4 0.59 ± 0.65 13.2 ± 3.4 4.2 ± 4 32.6 ± 9.7 8.5 ± 9.9 88 ± 1

Rank-sum test 0.004 0.06 0.01 0.02 0.007 0.58 0.35

A summary table of the complete dataset of recordings from excitatory neurons in naïve and expert mice after perceptual learning of pure tones. Columns show different
parameters of the dataset or property tested. The third row shows the statistical p-value between naïve and experts using a Mann–Whitney U test. T.B., Training Band.
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Finally, the representation of sounds by the neuronal population
was not clearly related to behavioral performance of individual
mice (Figure 2G), raising the possibility that changes in BF
are not necessarily related to better performance. Alternatively,
the full breadth of the tuning curve is not faithfully reflected
in the BF alone and a more detailed analysis of the tuning
curves is necessary.

A Generative Model of A1 Population
Responses to Pure Tones
To what extent does overrepresentation of a learned stimulus
sub-serve better discrimination by the neural population? To
answer this question, we built a statistical model of tuning curves
of neurons in A1 using six basis functions (Supplementary
Figures 3a–f) that correspond to the six largest SVD vectors of
the population responses (IBF method; see section Materials and
Methods). In Figure 3A, we show two representative examples of
tuning curves and their reconstruction by our model. In contrast
to Gaussian fits used previously (Vapnik, 1998; Briguglio et al.,
2018), our model captures the salient features of the shape of
the auditory tuning curves (asymmetry, multimodality), yet also
smoothed the raw response vectors to reduce overfitting due to
finite sampling.

In order to choose the appropriate number of basis functions,
we determined the minimal number of basis functions that
achieves good performance in reconstructing test single trial
responses. In Figure 3B, we show the fraction of explained
variance as a function of the number of basis functions, K. For
both the naïve and expert groups, the explained variance reaches
above 96% after five basis functions. Figure 3C shows the mean
square error (MSE) on the unseen trials as a function of K in
data from both the naïve and expert animals. The MSE exhibits a
broad minimum for K in a range between 6 and 13. Interestingly,
both naïve and experts achieve roughly the same MSE values,
although for experts, the MSE values at both low and large values
of K are considerably larger than that of the naïve. Taken together,
we conclude that for these conditions, six basis functions are the
appropriate number and we used this value for our calculations.

Based on the IBF method described above, we generated a
population of tuning curves (500 “new neurons”) and estimated
their total FI (see section Materials and Methods). Figure 3D
shows the FI as a function of the stimulus f for both the naïve
and expert conditions. Surprisingly, the FI of the neurons from
expert animals was enhanced relative to the naïve group, but only
for stimuli at both flanks of the training band. Importantly, the FI
within the band of the trained frequencies remained unchanged
(Figure 3D, within the black lines). The same result holds true
for a performance of a SVM classifier. Using SVM to separate
any two frequencies that are 0.2198 octave apart, discriminability
(d′) values derived from the classifier’s error show similar results
to the FI (Figure 3E; Seung and Sompolinsky, 1993). The value
of d′ is larger in the expert groups as compared to the naïve
but only outside the training band, whereas within the band,
discriminability is not improved (or even slightly compromised).

The results shown in Figure 3 do not change qualitatively if
we use our SVD model for the recorded neurons, as opposed

to newly modeled neurons, nor if we compute discriminability
index directly from the neuronal firing rates (Supplementary
Figure 3g). One advantage of having a generative model for
the population responses is that we can generate an unlimited
number of trials and tuning curves. We took advantage of this
to explore whether the results of the FI and SVM change with
population size. To answer this question, we evaluated the mean
discrimination performance (over test neurons) as a function of
the number of sampled cells, N, which increases as expected.
Consistent with the results of the SVM, the performances in the
naïve and expert groups are similar with slight tendency for a
higher accuracy in the naive population at large Ns (Figure 3F).
In contrast, for frequencies near the training band, the accuracy
is substantially larger in the expert than in the naïve group for
virtually all N (Figure 3G). Thus, it seems that learning-induced
changes in tuning curves do not improve discriminability of the
learned stimuli.

Perceptual Learning of Natural Sounds
Natural sounds are characterized by rich spectro-temporal
structures with frequency and amplitude modulations over time
(Mizrahi et al., 2014). Discrimination of such complex stimuli
could be different from that of pure tones. Thus, we next designed
a task similar to that with the pure tones but using mouse
vocalizations as the training stimuli. We used playback of pups’
wriggling calls (WC) as the target stimulus (Figure 4A, top).
As the non-target stimuli, we used frequency modulations of
the WC, a manipulation that allowed us to morph one stimulus
to another by a continuous metric (Figure 4A). The range
of sound modulation used here was indexed as a “speeding
factor” (see section “Materials and Methods” for details). In
short, a modulation factor of 0.66 affected the original WC
more than a modulation factor of 0.9 did, and is therefore
easier to discriminate (Figure 4B). To reach perceptual limits,
we trained mice gradually, starting with an easy version of the
task (WC vs. a temporally reversed version of the WC) and
then gradually to modulated calls starting at 0.66 modulation.
Once mice reached > 80% hit rates, we changed the non-target
stimulus to more difficult stimuli until mice could no longer
discriminate (Figure 4C). Mice (n = 9) learned the easy task, i.e.,
discriminating WC from a 0.66 modulated call, with average d′
values of 2.5 ± 0.4 (Figure 4D). On average, mice could only
barely discriminate between a WC and its 0.9 modulation (d′ at
0.9 was 1 ± 0.8; Figure 4D). While these discrimination values
were comparable to the performance of pure tones, detection
times were substantially slower (Supplementary Figure 4a).
For similar d′ values, discriminating between the vocalizations
took 300–1000 ms longer as compared to the pure tone tasks
(Figure 4E). In addition, learning curves were slower for the
vocalization task as compared to the pure tones task. The
average number of trials to reach d′ = 1 for vocalizations
was 195 trials, more than three times longer as compared
with pure tones (compare Supplementary Figure 4b and
Figure 1B, respectively). These differences may arise from the
difference in the delay, inter-syllable interval, and temporal
modulation of each stimulus type, which we did not further
explore. Taken together, these behavioral results demonstrate a
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FIGURE 3 | Plasticity in A1 does not improve the discrimination of the learned tones. (A) Two representative examples of tuning curves of neurons recorded in A1.
Average spike rates and the SVD approximation of the particular curves are shown in dashed and solid lines respectively. Note that although the SVD approximation
is smooth, it captures the irregular dynamics (i.e., non-Gaussian) of the tuning curves. (B,C) The explained variance and error as a measure of the number of SVD
vectors used in the model. (D) Fisher Information calculated from the tuning curves of both populations along the frequency dimension. Note the increased FI for the
expert neurons in the flanks of the training band but not within it (gray band). (E) Discriminability (d′) of SVM decoder along the range of frequencies. Pairwise
comparison along the continuum is performed for frequencies 0.2198 octave apart. In accordance with d′, the decoder does not perform better in the training band
(gray shade). (F,G) Classification performance of the decoder as a function of the number of neurons in the model. In the training band (F), the performance is similar
for both naïve and expert mice. Outside the training band (0.4396 octave apart; (G) performance improved rapidly in the expert mice.
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FIGURE 4 | Perceptual learning of vocalizations. (A) Spectrograms of the wriggling call (WC, “target” stimulus, top panel) and the manipulated WC’s (“non-target”
stimuli, bottom panels). (B) Enlargement of the spectrogram’s 4th syllable of the target WC and the manipulated calls. Top, a large manipulation (speeding factor,
0.66), which is perceptually easy to discriminate from the WC. Bottom, a minor manipulation (speeding factor, 0.9), which is perceptually closer to the WC. (C) Lick
responses to the target tone (solid line) and non-target tone (dashed line), binned over 50 trials, of one representative mouse along the different discrimination
stages. The task of the first stage was to discriminate between WC vs. reversed playback of the call (“Reverse”). The following stages are different degrees of call
modulation. Titles correspond to the speeding factors used for the non-target stimulus. (D) Population average d′ values for the different discrimination levels. N = 9
mice (mean ± s.e.m). Shades denote the level of difficulty. (E) Comparison between detection times during the easy and difficult stages of pure tone (blank circles)
and vocalizations (filled circles) discrimination tasks. Detection times are significantly different between all groups (Mann–Whitney U test: *p < 0.05, **p < 0.01,
***p < 0.001).

gradual increase in perceptual difficulty using a manipulation of
a natural sound.

Sparser Response in L2/3 Neurons
Following Perceptual Learning of Natural
Sounds
To study the neural correlates in A1 that follow natural sound
discrimination, we recorded L2/3 neurons in response to the
learned stimuli (Figure 5A), expecting increased representation
of these particular stimuli (e.g., that more neurons will respond
to the calls or that firing rates will increase). Surprisingly,
we did not find an increase in the representation of the

learned stimuli. The fraction of cells responding to the trained
vocalization remained constant (Supplementary Figure 5a) as
well as the evoked firing rate for the preferred vocalization
or the preferred syllable within a vocalization (Table 2).
Instead, representation in expert mice became sparser. Here,
we measured the “lifetime sparseness” (Vinje and Gallant,
2000; Willmore and Tolhurst, 2001) of each neuron to
determine how selective its responses is to a given syllable.
Sparse representation can be a result of having a smaller
fraction of neurons responding to a given stimulus and/or
a decrease responsiveness in the call. We found that the
population of neurons in expert mice were sparser (Figure 5B;
Naïve: 45% ± 20%; Expert: 64% ± 15%; p < 0.001), even
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FIGURE 5 | Learning complex sounds induces “sparsening.” (A) Representative examples of raster plots in response to 4 modulated wriggling calls from naïve (top)
and expert (bottom) mice. Red lines indicate spikes in response windows that are significantly above baseline. The stimulus power spectrum shown in light pink in
the background. (B) Top: Scatter plot of “lifetime sparseness” (along the vocalization, see methods) and evoked firing rate for individual neurons from naïve (red
circles) and expert (blue circles) mice. Sparseness is significantly higher in the expert group (Mann–Whitney U test; ∗∗∗p < 0.001). The middle range of firing rate
distribution (0.5 SD bellow and above the median) is indicated as a blue rectangle. Bottom: Lifetime sparseness for all cells from the middle range of the distribution
shows significant difference between the groups (Mann–Whitney U test; ∗∗p = 0.001). (C) Average normalized PSTHs calculated from all neurons in response to the
original WC. Data are shown overlaid for naïve (red) and expert (blue) mice. In expert mice, only syllables 1, 7, and 11 evoked significantly weaker responses as
compared to naïve mice (dark gray bars, Mann–Whitney U test followed by Bonferroni correction; p = 0.03, 0.001, 0.03). (D) Population sparseness (% of cells that
evoked a significant evoked response to a given syllable) of all neurons in naïve (red) and expert (blue) for the different syllables in the call.

regardless of their evoked firing rate (Figure 5B; Naïve:
47%± 14%; Expert: 63%± 15%; p = 0.001). Increased sparseness
was not apparent following pure tone learning (Table 1).
Sparseness was also evident from the average population

response to the vocalization (Figure 5C). Nearly all syllables
had weaker responses, three of which were statistically weaker
(Figure 5C, dark gray bars). Moreover, the population sparseness
(Willmore and Tolhurst, 2001), derived from the fraction of
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TABLE 2 | Vocalization learning-induced physiological changes.

Group Animals
(n)

Cells (n) Spontaneous
firing rate (Hz)

Evoked firing
rate (Hz)

Response
latency (ms)

Response selectivity
(% of evoked stimuli)

Fano-
Factor

Naïve 8 41 1.8 ± 2.9 7.7 ± 5.9 36 ± 11 25.5 ± 21.6 1 ± 0.45

Expert 6 37 0.78 ± 0.74 6.7 ± 3.6 43 ± 13 15.4 ± 11 1.1 ± 0.35

Rank-sum test p = 0.1 p = 0.6 p = 0.02 p = 0.05 p = 0.12

A summary table of the complete dataset of recordings from excitatory neurons in naïve and expert mice after perceptual learning of vocalizations. Columns show different
parameters of the dataset or property tested. The third row shows the statistical p-value between naïve and experts using a Mann–Whitney U test.

active neurons at any time, was higher in expert animals for
almost all syllables in the call (Figure 5D; Naïve: 55 ± 16%;
Expert: 70 ± 15%; p = 0.026). Notably, the smaller fraction
of responses was not just an apparent sparseness due to
increase in trial-to-trial variability, as reliability of responses by
neurons in the expert group remained similar to reliability of
responses in the naïve group (Table 2). Thus, “sparsening” of
A1 responses is a main feature of plasticity following learning to
discriminate complex sounds.

We next asked whether the “sparsening” described above
bears more information to the learned stimulus. We analyzed
population responses by including all neurons from all mice
as if they are a single population (naïve: n = 41 neurons from
8 mice; expert: n = 37 neurons from 6 mice). We calculated
the Pearson correlation of the population response to all
responses in a pairwise manner (Figure 6A and Supplementary
Figure 5b). As compared to naïve mice, the absolute levels
of correlations in expert mice were significantly lower for
nearly all pairs of comparisons (Figure 6A, asterisks). As
expected, weaker modulations of the call and, hence, high
similarity among stimuli, were expressed as higher correlations
in the neuronal responses (Figure 6B). The pairs of stimuli
that mice successfully discriminated in the behavior (0.66
vs. the original WC and 0.81 vs. the original WC) had
significantly lower correlation in the expert mice (Figure 6B,
rank sum test, p < 0.05). Responses to the more similar
stimuli that were near perceptual thresholds (i.e., 0.9 vs. the
original WC) were lower in expert mice, but not significantly
(Figure 6B, rank sum test, p > 0.05). This reduced correlation
suggested that plasticity in A1 supports better discrimination
among the learned natural stimuli. Indeed, a SVM decoder
performed consistently better in expert mice, discriminating
more accurately the original WC from the manipulated
ones (Figure 6C). As expected, the decoder performance
monotonically increased when utilizing the responses to more
syllables in the call. However, in the expert mice, performances
reached a plateau already halfway through the call, suggesting
that neuronal responses to the late part of the call carried
no additional information useful for discrimination. Similarly,
the correlation of the population responses along the call
shows that responses were separated already following the first
syllable, but that the lowest level of the correlation was in
the 5th to 7th syllable range, which then rapidly recovered
by the end of the call (Supplementary Figure 5c). These
findings are also consistent with the behavioral performance
of the mice as decisions are made within the first 1.5 s of
the trial (corresponding to the first seven syllables of the call).

Specifically, the head of the mouse is often retracted by the
time the late syllables are played (Figure 4E). Taken together,
“sparser” responses improve neural discrimination of learned
natural sounds.

Learning-Induced Plasticity of
Parvalbumin Neurons
The mechanisms responsible for the learning-induced changes
are currently unknown. We used mouse genetics and two-
photon targeted patch to ask whether local inhibitory neurons
could contribute to the observed plasticity we describe above.
To this end, we focused only on parvalbumin inhibitory (PV+)
interneurons as they are the most abundant inhibitory cell type
with the strongest direct silencing effect on pyramidal cells
(Avermann et al., 2012; Hu et al., 2014). In addition, recent
evidence points to their role in a variety of learning-related
plasticity processes (Letzkus et al., 2011; Wolff et al., 2014;
Kaplan et al., 2016; Lagler et al., 2016; Goel et al., 2017; Lee
et al., 2017). Here, we probe the role of inhibition in perceptual
learning by measuring learning-induced plasticity in the response
properties of the PV+ neurons. We trained PV+-Cre x Ai9
mice (i.e., mice with PV+ neurons expressing tdTomato) in the
Educage and then patched single neurons under visual guidance
(Figure 7A; Cohen and Mizrahi, 2015; Maor et al., 2016). In
order to increase the sample of PV+ neurons, we used targeted
patch and often patched both PV+ and PV− neurons in the
same mice. PV− neurons were used as proxy for excitatory
neurons (these neurons were also included in the analysis shown
in Figures 2–6). All the TdTomato+ neurons that we patched
were also verified as having a fast spike shape (Figure 7A),
a well-established electrophysiological signature of PV+ cells,
while PV− neurons verified as having regular spike shape. PV+
neurons had response properties different from PV− neurons
in accordance with our previous work (Maor et al., 2016). For
example, PV+ neuron responses were stronger and faster to both
pure tones and natural sounds (Figures 7B,C and Table 3; see
also Maor et al., 2016).

Following pure tone learning, PV+ neurons also changed their
response profile. On average, the BF of PV+ neurons shifted
toward the learned frequencies, similar to what we described for
PV− neurons (Figures 8A,B). This result is consistent with recent
evidence from the visual cortex showing increased selectivity of
PV+ to trained stimuli following learning (Khan et al., 2018). The
shift in tuning curves of PV+ neurons was also accompanied by
a significant widening of their receptive fields, unlike the PV−
population (Supplementary Figure 6a). When we compared the
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FIGURE 6 | Decorrelation improves coding. (A) Matrices describing the average response similarity of individual neurons between all combinations of stimuli in naïve
(left) and expert (right) mice. Each pixel indicates the average Pearson correlation value calculated from all syllables’ evoked spike rate from all neurons to two
different calls. Neurons from expert mice have lower correlation between responses to different modulated calls (asterisks indicate significant differences between
naïve and expert groups; Mann–Whitney U test followed by Bonferroni correction: ∗p < 0.05). (B) Pearson correlation between responses to modulated WCs and
responses to the original WC in naïve (red) and expert (blue) mice (mean ± s.e.m.). Correlations are significantly different in the 0.66 and 0.81 modulation
(Mann–Whitney U test: ∗p < 0.05). (C) Classification performance of a support vector machine (SVM) decoder. The decoder was tested for its accuracy to
differentiate between the modulated WC stimuli against the original WC. The performance of the decoder is shown for neurons from the naïve (red) and expert (blue)
groups. Decoder performance is plotted separately for the three different pairs of stimuli. Each point in each graph shows the number of syllables the decoder was
trained on and allowed to use. Error bars are SEM for 1000 repetitions of leave-one-out cross-validation.

BFs of PV− and PV+ neurons within the same brain (within 250
microns of each other), we found that excitatory and inhibitory
neurons became more functionally homogeneous as compared
to naïve mice (Figure 8C). As both neuronal groups show
similar trends in the shift of their preferred frequencies, we rule
out a simple scenario whereas parvalbumin neurons increase
their responses in the sidebands of the learning frequency. In
other words, plasticity does not seem to be induced by lateral
inhibition via parvalbumin neurons, but rather maintains a
strict balance between excitation and inhibition, regardless of
whether they are naïves or experts (Wehr and Zador, 2003;
Zhou et al., 2014). Note that the peak of the PV+ population
response and their BF distribution was on the outskirts of the
training band, rather than within it (compare Figures 8A,B with
Figures 2C,D), and concomitantly, the slope of the population
responses at the trained frequency band increased due to learning
(Figure 8A). To assess the computational effect of the plasticity
in the inhibitory neurons’ responses, we have applied on their
responses the same d′ and FI calculated for the PV− neurons

(Figures 8D,E). Overall, the discrimination performance of the
two cell populations (when equalized in size) is similar. However,
the PV+ population shows a significant learning related increase
in tone discrimination performance by these cells within the
training band (Figures 8D,E) in contrast to the results for
PV− neurons (Figures 3D,E). This result is consistent with
the abovementioned increase in their response slopes in the
trained frequency.

Following natural sound learning, we found no significant
changes in basic response properties of the PV+ neurons
(Table 3), or in the degree of sparseness of their representation
of the learned vocalizations (Supplementary Figure 6b). The
relationship between the responses of PV+ and their PV−
neighbors remained constant as reflected in the similar slopes
of the functions describing PV− firing versus PV+ firing
(Supplementary Figure 6c). This result suggests that the
excitation–inhibition balance, as reflected in the responses of
PV− versus PV+, remains. In PV+ neurons, the temporal
correlation along the call as well as the decoding performance
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FIGURE 7 | Response properties of PV+ neurons. (A) Left: Schematic representation of the experimental setup for two-photon targeted patch and average spike
waveform of 203 PV+ neurons. Right: Representative two-photon micrograph (projection image of 120 microns) of tdTomato+ cells (red) and the recording electrode
(Alexa Fluor-488, green). (B) Raster plots and peri-stimulus time histograms (PSTH) in response to pure tones of a representative PV+ neuron from naïve (left) and
expert (right) mice. Gray bars indicate the time of stimulus presentation (100 ms). Color bars and arrows indicate the training frequency band (7.1–10 kHz) and BF,
respectively. (C) Representative examples of raster plots from PV+ neurons in response to four modulated wriggling calls from naïve (left) and expert (right) mice. Red
lines indicate spikes in response windows that are significantly above baseline. Stimulus power spectrum shown in light pink in the background.

Frontiers in Neural Circuits | www.frontiersin.org 15 January 2020 | Volume 13 | Article 82

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00082 January 25, 2020 Time: 17:18 # 16

Maor et al. Plasticity in A1 Following Perceptual Learning

TABLE 3 | Physiological changes in PV+ neurons.

Group Animals
(n)

Cells
(n)

BF
(kHz)

Spontaneous
firing rate (Hz)

Evoked firing rate
in BF (Hz)

FR in training
band (Hz)

Response
latency (ms)

Response
selectivity (% of
evoked stimuli)

Naïve FS PT 21 120 16.2± 10.4 2.2 ± 2.1 21 ± 9 9.2 ± 9 31.1 ± 6.7 17 ± 17

Expert FS PT 18 83 11.8± 8.1 1.7 ± 1.8 22 ± 10 11.9 ± 10 33.2 ± 9.3 25 ± 18

Rank-sum test 0.006 0.05 0.7 0.02 0.2 <0.001

Naïve FS vocalizations 6 17 4 ± 3.7 14.3 ± 10.8 31.5 ± 8.6 27 ± 14.9

Expert FS vocalizations 5 18 3.4 ± 3.9 14.9 ± 12.9 32 ± 8 25.6 ± 15.6

Rank-sum test 0.4 0.97 1 0.72

A summary table of the complete dataset of recordings from PV neurons in naïve and expert mice after perceptual learning of pure tones (rows 1 and 2) and vocalizations
(rows 4 and 5). Columns show different parameters of the dataset or property tested. The white color row shows the statistical p value between naïve and experts using
a Mann–Whitney U test for each group separately.

from these neurons showed changes that are qualitatively similar
to their PV− counterparts, but the data across the population
were noisier (Figures 8F,G and Supplementary Figure 6d)
perhaps due to the smaller sample of the PV+ dataset.

DISCUSSION

Plasticity in Frequency Tuning Following
Perceptual Learning
Shifts in the average stimulus representation toward the learned
stimuli are not a new phenomenon. Similar findings were
observed in numerous studies, multiple brain areas, animal
models, and sensory systems, including in auditory cortex (Karni
and Sagi, 1991; Buonomano and Merzenich, 1998; Weinberger,
2004). In fact, the model of learning-induced plasticity in A1,
also known as tonotopic map expansion, is an exemplar in
neuroscience (Bakin and Weinberger, 1990; Recanzone et al.,
1993; Rutkowski and Weinberger, 2005; but see Crist et al.,
2001; Ghose et al., 2002; Kato et al., 2015). Although we did not
measure tonotopic maps, our results support the observations of
others that tuning curves are plastic in primary sensory cortex.
Specifically, we show here an average shift in the tuning of L2/3
neurons in A1 in mice.

Since we sampled only a small number of neurons, our
observations cannot be inferred as direct evidence for tonotopic
map expansion. Rather, our data emphasize that plastic shifts
occur in local circuits (Figure 2E). Given that neurons in A1
are functionally heterogeneous within local circuits (Maor et al.,
2016), any area in A1 that represents a range of frequencies prior
to learning could become more frequency-tuned once learned.
Such a mechanism allows a wide range of modifications within
local circuits to enable increased representation of the learned
stimuli without necessarily perturbing gross tonotopic order. One
advantage of local circuit heterogeneity is that it allows circuits
to maintain a dynamic balance between plasticity and stability
(Mermillod et al., 2013).

It is often assumed that the learning-induced changes
in tuning properties improve the accuracy of coding of
the trained stimuli. In particular, perceptual learning
theory predicts that sharpening the slope of the tuning
curves improves the discriminability of the relevant stimuli

(Seung and Sompolinsky, 1993). However, the observed
increased representation of the BFs toward the training
band in expert mice may not increase over all tuning slopes and
may even decrease them, especially since the slopes tend to be
small at the BFs. A closer look at the tuning curves in A1 shows
that they are often irregular with multiple slopes and peaks (i.e.,
not having simple unimodal Gaussian shapes). Furthermore,
the learning-induced changes in the ensemble of tuning curves
are not limited to shifting the BF; hence, a more quantitative
approach was required to assess the consequences of the observed
learning-induced plasticity on discrimination accuracy. Our new,
SVD-based, generative model (Figure 3) allowed us to assess the
combined effects of changes in BFs as well as other changes in
the shapes of the tuning curves. Surprisingly, both FI analysis
and estimated classification errors of an optimal linear classifier
show that learning-induced changes in tuning curves do not
improve tone discriminability at trained values. This conclusion
is consistent with previous work on the effect of exposure to
tones during development that has been argued to decrease tone
discriminability for similar reasons (Han et al., 2007). However,
in that work, the functional effect of tuning curve changes was
consistent with an observed impaired behavioral performance,
suggesting that plasticity in A1 sub-serves discrimination
behavior. In contrast, the stable (or even reduced) accuracy in the
coding of the trained frequency we observed occurs despite the
improved behavioral performance after training. To test whether
behavioral performances of individual mice are correlated with
coding accuracy, we plotted neuronal d′ with behavioral d′ on
a mouse by mouse basis. Although we recorded high d′ values
in the few mice that performed particularly well, we did not
find a significant correlation between these two measures across
mice (Supplementary Figure 7a). Mice with similar neuronal
d′ values often differed as much as twofold in their behavioral
performance (Supplementary Figures 7a,b).

One possibility for the observed changes in the tuning
of pure tones in A1 are the result of unsupervised Hebbian
learning induced by overexposure to the trained tones during
the training period, similar to the reported results in early
overexposure (Han et al., 2007). Unsupervised learning signals
are not driven by task-related reward and punishment per se
and may increase representation rather than discriminability.
Increased representation of trained stimuli may lead to improved
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FIGURE 8 | Plasticity of PV+ neurons after learning. (A) Population average of normalized response tuning curves of n = 120 PV+ neurons from naïve mice (red) and
83 PV+ neurons from expert mice (blue; mean ± s.e.m). Gray area indicates the training frequency band. Asterisks correspond to frequencies with significant
response difference (Mann–Whitney U test: ∗p < 0.05). (B) Best frequency (BF) of individual PV+ neurons from naïve mice (red) and expert mice (blue;
Mann–Whitney U test: ∗∗p < 0.01). (C) Average distance in BF between PV- and PV+ neurons from the same penetration sites. Distances were significantly smaller
in expert mice (Mann–Whitney U test: ∗∗∗p < 0.001). (D) Fisher Information calculated from the tuning curves of PV+ neurons (E) Discriminability (d′) of SVM
decoder along the range of frequencies. (F) Matrices describing the average response similarity of individual PV+ neurons between all combinations of different
stimuli in naïve (left) and expert (middle) mice. Each pixel indicates the average Pearson correlation value calculated from all syllables evoked spike rate from all
neurons to two different calls. There was no significant difference between correlations of responses to different modulated calls in naïve and expert mice
(Mann–Whitney U test, p > 0.05). (G) Pearson correlation between responses to modulated WCs versus the responses to the original WCs in naïve (red) and expert
(blue) mice (mean ± s.e.m). Correlations are not significantly different for all comparisons (Mann–Whitney U test: p = 0.4, 0.5, 0.5).

discriminability to untrained tones, as observed experimentally.
Both reward and punishment can drive associative learning
and do so via non-overlapping neuronal pathways (Cohen
and Blum, 2002; Seymour et al., 2007). Here, we used both
reward and punishment to drive mice to their perceptual

limits. Fear conditioning has been shown to induce receptive
field plasticity along the auditory pathway (Diamond and
Weinberger, 1986; Kim and Cho, 2017), but so did positive
reinforcement (Rutkowski and Weinberger, 2005). More
recently, David et al. (2012) showed that positive and negative
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reinforcements drive cortical plasticity in opposite directions—
negative reinforcement boosts but positive reinforcement
reduces responses of the target frequency (David et al., 2012).
Notably, if both mechanisms act simultaneously, as it is in
our case, it would be difficult to tease out their individual
contribution to discrimination. In our data, the FI of expert
mice peaked near 7 kHz (Figure 3D), leading us to speculate
that aversion effects may have predominated. Indeed, the effects
of the negative reinforcement on mouse behavior were strong.
Specifically, following non-target stimuli (both FA and CR trials),
mice returned back to the home cage and initiated their next
trial only > 100 s later (Supplementary Figure 7c). Thus, we
speculate that both unsupervised learning and the negative
reinforcement may have affected cortical responses to pure tones.

Our protocol to push mice to their limits thus involves several
processes acting simultaneously. The relative contribution of
each—unsupervised learning or supervised learning (positive or
negative)—utilized to drive the behavior and its resultant neural
correlate remains to be elucidated.

Plasticity Following Natural Sounds
Learning
Unlike pure tones, learning-induced changes in A1 improved the
discriminability of learned natural sounds. Although auditory
cortex is organized tonotopically, it may not be critical for
processing simple sounds, as these stimuli are accurately
represented in earlier stages in the auditory hierarchy (Nelken,
2004; Mizrahi et al., 2014). While the causal relationships between
A1 and pure tones discrimination are still debatable (Ohl et al.,
1999; LeDoux, 2000; Weible et al., 2014; O’Sullivan et al., 2019),
the role of A1 in processing and decoding complex sounds
is becoming increasingly more evident (Letzkus et al., 2011;
Ceballo et al., 2019).

Neurons in A1 respond to sounds in a non-linear fashion
(Bathellier et al., 2012; Harper et al., 2016; Angeloni and Geffen,
2018). These can be selective to harmonic content that are
prevalent in vocalizations (Feng and Wang, 2017). Other neurons
show strong correlations to global stimulus statistics (Theunissen
and Elie, 2014). Furthermore, A1 neurons are sensitive to the
fine-grained spectrotemporal environments of sounds, expressed
as strong gain modulation to local sound statistics (Williamson
et al., 2016), as well as to sound contrast and noise (Rabinowitz
et al., 2011, 2013). These features (harmonics, globally and locally
rich statistics, and noise), as well as other unique attributes
such as frequency range, amplitude modulations, frequency
modulations, inter syllable interval and duration variability, are
well represented in the WCs. Importantly, WCs have been
shown to drive strong responses in mouse A1 (Maor et al.,
2016; Tasaka et al., 2018). Which of these particular sensitivities
changes after perceptual learning and what is the contribution
of the different attributes to the plasticity observed following
vocalization learning is not yet known. However, one expression
of this plasticity can be the increased sparse sound representation
we found here (Figure 5). Sparseness can take different forms
(Barth and Poulet, 2012). Here, sparseness was expressed as
reduced number of neurons in the network that respond to any of

the 12 syllables played (Figures 5B–D). Such increase could arise
from disparate mechanisms, and changes in the structure of local
inhibition was one suspect that we tested (Froemke, 2015).

Inhibitory Plasticity Follows Excitatory
Plasticity
Cortical inhibitory neurons are central players in many forms of
learning (Kullmann et al., 2012; Hennequin et al., 2017; Sprekeler,
2017). Inhibitory interneurons have been implicated as important
for experience-dependent plasticity in the developing auditory
system (Hensch, 2005), during fear learning in adulthood
(Letzkus et al., 2011; Courtin et al., 2014), and following
injury (Resnik and Polley, 2017). Surprisingly, however, and
despite the numerous studies on parvalbumin neurons, we
could not find any references in the literature of recordings
from parvalbumin neurons after auditory perceptual learning.
Two simple (non-mutually exclusive) hypotheses are naively
expected. One is that plasticity in inhibitory neurons is a
negative mirror of the plasticity in excitatory neurons. This
would predict that inhibitory neurons would increase their
responses to the stimuli for which responses of excitatory neurons
are downregulated, as found in the plasticity of somatostatin
expressing (SOM) neurons following passive sound exposure
(Kato et al., 2015), or in multisensory plasticity in mothers
(Cohen and Mizrahi, 2015). The second is that inhibitory neurons
enhance their response to “lateral” stimuli, thus enhancing
selectivity to the trained stimulus, as suggested by the pattern
of maternal-related plasticity to pup calls (Galindo-Leon et al.,
2009). Our study provides a first test of these hypotheses in
the context of perceptual learning. We found no evidence
for these scenarios. Instead, a common motif in the local
circuit was that parvalbumin neurons changed in a similar
manner to their excitatory counterparts. These results are in
line with the observation that PV neurons in V1 following
visual discrimination task become as selective as their pyramidal
neighbors (Khan et al., 2018).

The cortex hosts several types of inhibitory cells (Hattori
et al., 2017; Zeng and Sanes, 2017), presumably serving distinct
roles. While PV neurons are considered a rather homogeneous
pool of neurons based on molecular signature, their role
in coding sounds is not (Seybold et al., 2015; Phillips and
Hasenstaub, 2016). In the visual cortex, PV+ cells’ activity (and
presumably its plasticity) was correlated with stimulus-specific
response potentiation but not in ocular dominance plasticity
(Kaplan et al., 2016), again suggesting that PV+ neurons are
not necessarily involved in all forms of experience-dependent
plasticity. Inhibitory neurons have been suggested to play a
key role in enhancing the detection of behaviorally significant
vocalization by lateral inhibition (Galindo-Leon et al., 2009).
But recent imaging data argue that somatostatin interneurons
rather than PV+ interneurons govern lateral inhibition in A1
(Kato et al., 2017). Our results are also consistent with the
observation that in contrast to the SOM neurons, the changes
in responses following sound exposure are similar in PV+
and pyramidal neurons (Kato et al., 2015; Khan et al., 2018).
To what extent somatostatin or other interneurons subtypes
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contribute to excitatory plasticity after auditory perceptual
learning remains to be studied.
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