
INTRODUCTION

A wide range of pathologic insults to the brain induce
depolarization of the neuronal cell membrane, and release
neurotransmitters leading to the activation of aberrant cel-
lular signaling pathways. Such insults include traumatic
brain injury, ischemia, and seizures. Activation of voltage-
sensitive ion channels and/or the N-methyl-D-aspartate
(NMDA) subtype of glutamate receptor increase cellular
calcium (Ca2+), which plays a major role in the development
of neuronal injury (1-3). Increased intracellular calcium
activates many calcium-dependent enzymes, including pro-
tein kinase C (PKC), calmodulin kinase II (CaMKII, also
often referred to as Ca2+/calmodulin kinase II or Ca2+/cal-
modulin-dependent protein kinase II), phosphorylase A2,
nitric oxide synthase (NOS), and various proteases and
endonucleases. These may have direct effects on structural
proteins, and may modify the function of enzymes, recep-
tors or ion channels by altering phosphorylation. They may
also produce toxic free radicals via various cascade mecha-
nisms. Both PKC and CaMKII phosphorylate and activate
the serum responsive factor (SRF) and Ca2+/cAMP response
element binding protein (CREB), respectively (4). CREB
can also be phosphorylated by cAMP-dependent kinase
(protein kinase A, PKA). The increase in cellular levels of

phosphorylated SRF and/or CREB results in the induction
of immediate early genes (IEGs) (4). Neuronal exposure to
excitotoxic levels of glutamate cause either acute toxicity
(osmotic lysis) or delayed Ca2+-dependent neuronal death
(5-7).

CaMKII is a major calcium messenger component that
regulates many calcium-dependent processes in neurons.
CaMKII phosphorylates and regulates receptor-gated ion
channels (8, 9), neuroskeletal elements (10) and calcium-
dependent ion channels (6). It is also involved in neuro-
transmission (11). CaMKII constitutes 1% of total forebrain
protein and up to 2% of total hippocampal protein (12). In
addition, CaMKII is predominantly expressed in neurons
rather than glial cells (13). The -subunit is homologous to
the major postsynaptic density (PSD) protein which consti-
tutes up to 50% of the total PSD protein (14). The high sy-
naptic expression of CaMKII suggests that this enzyme may
be important for normal synaptic function. Since CaMKII is
a neuronally enriched enzyme that regulates many important
cellular functions, it is easily speculated that the inhibition
of this enzyme have important effects on neuronal function.

Significant inhibition of CaMKII activity has been obser-
ved in many models of delayed neuronal cell death including
animal models of ischemia (15) and glutamate excitotoxicity
in neuronal cultures (16). Transient forebrain ischemia results
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Calcium/Calmodulin Kinase II Activity of Hippocampus in 
Kainate-Induced Epilepsy

This study investigated calcium/calmodulin kinase II (CaMKII) activity related to
long-standing neuronal injury of the hippocampus in kainate (KA)-induced
experimental temporal lobe epilepsy. Epileptic seizure was induced by injection of
KA (1 g/ L) dissolved in phosphate buffer (0.1 M, pH 7.4) into the left amyg-
dala. Clinical seizures, histopathologic changes and CaMKII activity of the hip-
pocampus were evaluated. Characteristic early limbic and late seizures were
developed. Hippocampal CaMKII activity increased significantly 4 and 8 weeks
after intra-amygdaloid injection of KA, when late seizures developed. The
histopathologic changes of the hippocampus included swelling of neuronal cyto-
plasm with nuclear pyknosis and loss of neurons in CA3 during this period. The
increased activity of CaMKII may correlate with appearance of distant damage
in the hippocampus. The above results indicate that intra-amygdaloid injection
of KA produces excitatory signals for ipsilateral CA3 neurons in the hippocam-
pus and that subsequently increased levels of CaMKII in postsynaptic neurons
induce neuronal injury via phosphorylation of N-methyl-D-aspartate type gluta-
mate receptor.
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in more than 50% inhibition of CaMKII activity in the hip-
pocampus and cortex (17). The decrease in CaMKII activity
observed after ischemia is an early (within 10 sec) and long-
lasting phenomenon that precedes the development of de-
layed neuronal cell death (17). This inhibition of CaMKII
activity has been implicated in the delayed neuronal cell
death (15). Understanding the cellular mechanisms regulat-
ing the inhibition of CaMKII will provide an insight into
the molecular mechanism of excitotoxicity-induced changes
in neuronal transducing systems.

Kainate (KA) administration, an experimental model for
human temporal lobe epilepsy (18), is known to engender
abnormal excitation/inhibition in the limbic system (19),
characteristic neuronal injury in the hippocampus, and
spontaneous recurrent seizures (20). This study investigates
CaMKII activity relative to long-standing neuronal injury
in the hippocampus in KA-induced experimental temporal
lobe epilepsy.

MATERIALS AND METHODS

Experimental model for temporal lobe epilepsy

Adult male Wistar rats, 250-300 g, were divided into two
groups; KA injection for biochemical and histopathologic
studies (75 rats), and sham operated control (6 rats). The
experimental rats were anesthetized with pentobarbital
sodium (Nembutal, Abbott, Osaka, Japan, 50 mg/kg i.p.)
fixed on a stereotactic frame (David-Kopf, USA), and
stereotactic operations were performed. A stainless steel
cannula with internal stylet for KA (Nacalai tesque, Kyoto,
Japan) microinjection, 0.03 mm in internal diameter, was
implanted in the left amygdala using sterile techniques.
Coordinates for the implantation target were: AP +5 mm,
ML +5 mm and DV +2 mm with respect to the interaural
zero point (20).  The cannula was fixed with dental cement.
The experimental animals were left free for 7 days to recover
from the operation.

KA was prepared immediately before each injection. KA
crystals were dissolved in a 0.2 M phosphate-buffered solu-
tion (pH 7.4) at a concentration of 1 mg/mL and sterilized
through a 0.45 m microfilter. The injection was delivered
while the animals were awake and resting under aseptic
conditions. Removing the inner guide wire from the cannu-
la, an injection needle was inserted. Following the injection
of KA (1 g/ L) into the left amygdala, successful adminis-
tration was determined by the induction of clinical seizures.
During the first hour after KA injection, animals exhibited
“staring spells”followed by repetitive head nodding and
“wet dog shakes”. During the next 2 hr, progressive motor

seizures developed, including masticatory and facial move-
ments, tremors of the forepaws, and rearing and loss of pos-
tural control. Finally, animals suffered from limbic status

epilepticus with continuous convulsions, lasting 1 to 2 days.
The seizures disappeared spontaneously 3 days after KA
injection, and motor seizures developed again at about 4
weeks after the injection. During the initial postictal peri-
od, animals demonstrated reduced motor activity, but were
otherwise normal. Each of ten rats, which developed clinical
seizures successfully, were sacrificed by decapitation at 1, 2,
4, 8, and 16 weeks after the injection. Five whole brains
were taken immediately and fixed in 10% neutral buffered
formalin for histopathologic study, and the other five brains
and six brains of sham operated control rats were kept frozen
in liquid nitrogen for CaMKII assay.

Histopathologic examination

Routine paraffin blocks were made from both hippocampi
and observed histopathologic features in the H&E and cre-
syl violet stained slides. The right side of the brain was used
as control.

Calcium/calmodulin kinase II (CaMKII) assay

CaMKII activity from the hippocampal tissue was mea-
sured using a modification of Soderling’s method (21).
Frozen hippocampus, 100 mg, was washed and suspended
with 1 mL ice-cold homogenization buffer comprised of 30
mM HEPES (pH 7.4), 1 mM ethylenediaminetetraacetic
acid (EDTA), 27 TIU aprotinin, 0.1 mM [ethylene-bis-
(oxyethylenenitrilo)]tetraacetic acid (EGTA), 1 mM phenyl-
methylsulfonyl fluoride (PMSF) and 1 mM ATP. The sus-
pension was transferred into a glass homogenizer (Kontes,
Vineland, NJ) and was disrupted (16). Homogenates were
normalized for protein and were studied for endogenous
protein phosphorylation.

Standard phosphorylation reaction solutions for kinase
assay contained 3 g protein, 30 mM HEPES (pH 7.4), 1
mM dithiothreitol, 10 mM magnesium acetate, 3.3 M
syntide II and 1 mM [ -32P]ATP. Final reaction volume was
100 L. Standard reactions were performed in a shaking
water bath at 30℃. To measure calcium-dependent activi-
ty, reactions were initiated by the addition of 2 mM CaCl2

and 1.2 mM calmodulin; whereas, for calcium-independent
activity, 2 mM EGTA was added instead of CaCl2 and cal-
modulin. The reactions continued for 1 min, and were ter-
minated by the addition of 11 L of stop solution contain-
ing 25 mM Tris, 10 mM Na+-pyrophosphate, and 10 mM

-glycerophosphate. Aliquots (80 L) were spotted on pho-
sphocellulose paper (Whatman p81). After washing the
paper, the radioactivity of free, nonphosphorylated [ -32P]
ATP was quantified by liquid scintillation counter. CaMKII
activity (cpm/ g protein/min, mean±SD) was measured
three times from each tissue sample and the average value
was calculated. The data were analyzed by Student t-test.
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RESULTS

Histopathologic features

The control hippocampus disclosed well defined, palisad-
ing neuronal arrangements, consisting of cornu ammonis 1
(CA1), CA2, CA3, CA4, and dentate gyrus. A few neurons
were pyknotic, but no neuronal swelling or partial loss was

noted. There were no identifiable histopathologic changes
on the control side of the hippocampus until 16 weeks after
the injection of KA (Fig. 1A and 2A).

The experimental hippocampus from the KA injection
revealed no significant histopathologic change within the
first week. Mild swelling of neuronal cytoplasm with a few
pyknotic nuclei in CA3 was observed at 2 weeks after the
injection. The changes progressed with time. A severe

A B

Fig. 1. Coronal section of the brain examined by Nissl stain, 16 weeks after KA injection into the left amygdala, reveals relatively intact
hippocampal neurons on the right side (A,×25) and selective, significant loss of CA3 neurons in the left hippocampus (B,×25).  

A B

Fig. 2. Coronal section of the brain, at 8 weeks after KA injection, examined by H&E stain revealed relatively intact CA2 and CA3 neu-
rons of the right hippocampus (A,×40), and moderate loss of CA3 neurons in the left hippocampus (B,×80). 
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swelling of neuronal cytoplasm was observed at 4 weeks
(Fig. 2B) and a decrease in the number of neurons in CA3
at 8 weeks (Fig. 2B) after the injection. The neuronal loss in
CA3 persisted up to 16 weeks after KA injection into the
amygdala (Fig. 1B).

Calcium/calmodulin kinase II (CaMKII) activity

The CaMKII values (cpm/ g protein/min) on the control
side of the hippocampus ranged from 39,725 to 48,173
regardless of the experimental period. Mean values were
42,107 at 1 week; 44,934 at 2 weeks; 45,505 at 4 weeks;
43,432 at 8 weeks; and 41,363 at 16 weeks after KA injec-
tion. There were no statistically significant differences of
CaMKII values in the hippocampus between the sham oper-
ated and the control side of the KA-injected rats.

Mean CaMKII values on the experimental side of the hip-
pocampus were 42,556 at 1 week; 46,037 at 2 weeks; 63,666
at 4 weeks; 65,448 at 8 weeks; and 50,050 at 16 weeks
after KA injection. There was no significant difference in
CaMKII activity between the control and lesional sides of
the hippocampus at 1, 2 and 16 weeks after the KA injec-
tion. However, significantly increased CaMKII activity was
noted at 4 and 8 weeks (p<0.001) on the left (KA-injected)
side of the hippocampus. CaMKII activity is summarized in
Fig. 3.

DISCUSSION

Intra-amygdaloid injection of KA produces initial limbic

motor seizures lasting 2 or 3 days with staring, head nod-
ding, wet-dog shakes, salivation, chewing, forepaw tremors,
and rearing and loss of postural control (22). Continuous
convulsions lasting over 30 sec are frequently seen. The
seizures spontaneously disappear 3 days after KA injection.
These are more complex seizures, involving initial lip and
facial movements, barrel rotation, and circling movements
indicating the secondary involvement of extra-amygdaloid
structures. A significant loss of CA3 neurons in the ipsilat-
eral hippocampus was noted after intra-amygdaloid injec-
tion of KA in this study, supporting results found in the lit-
erature (20, 23).

A simple hypothesis to explain the distant lesions would
be that KA diffuses from the amygdala either directly or
through the cerebrospinal fluid (CSF), and that sufficient
concentrations of KA directly damage vulnerable neurons,
such as the CA3 neurons of the hippocampus. However,
sufficient doses of diazepam administration blocked distant
damage in the CA3 even in the presence of direct damage
to the amygdala by KA injection (24). Therefore, the results
suggest that KA-induced hippocampal damage following
intra-amygdaloid injection stems from two sources-local
damage due to the direct toxic action of KA and distant
injury mediated by the paroxysmal discharge accompanying
convulsions. Other electrophysiologic, autoradiographic and
histopathologic studies support the hypothesis that distant
damage in the hippocampus is mediated by paroxysmal
epileptiform discharge (25-27). Collectively, these findings
strongly suggest that paroxysmal discharge after intra-
amygdaloid injection of KA is generated in the entorhinal
cortex, where the amygdala heavily projects (28). This dis-
charge may deliver a powerful excitatory action on CA3
neurons primarily via the granule cells with their mossy
fibers, and the perforating pathways from the entorhinal
cortex to granule cells (18). The early and late expression of
c-FOS, c-JUN and heat shock protein (HSP) 72 in the
entorhinal cortex and hippocampus also indicate indirect
damage of the hippocampus (29).

It is well known that glutamate synapses are subject to
various forms of prolonged enhancement (30), including
long-term potentiation (LTP). The activation of subtypes of
glutamate receptors plays a major role in the induction of
LTP, and such changes contribute to the induction of epi-
leptic seizures. A number of postsynaptic kinases, PKC,
CaMKII, tyrosine kinase (PKT) and PKA, are believed to
be important for the induction of LTP (31, 32). Long-term
alterations in these protein kinases have also been reported
in kindling models for epilepsy (33). Among these kinases,
PKA appears to contribute significantly to the induction of
the most persistent and long-lasting components of LTP in
the hippocampus (32).

In the present study, CaMKII activity in the hippocampus
increased significantly 4 and 8 weeks after an intra-amyg-
daloid injection of KA, when late seizures developed clini-
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Fig. 3. Graphic presentation of calcium/calmodulin kinase II
(CaMKII) activity (cpm/ g protein/min) in the hippocampus after
microinjection of kainic acid (KA, 1 g/ L) into the left amygdala
(n=5 rats in each week). Bar: means+SD. *, statistically significant
(p<0.001).
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cally. Among the histopathologic changes of the hippocam-
pus, swelling of neuronal cytoplasm with nuclear pyknosis
and loss of neurons developed in these periods. Increased
CaMKII activity may be correlated with the appearance of
distant damage in the hippocampus. But, it remains uncer-
tain why CaMKII activity in the hippocampus became nor-
malized 16 weeks after the KA injection. Possible explana-
tions are that the decreased frequency of seizure attacks, from
two to four times a day, and marked loss of hippocampal
neurons might play a role. Therefore, the activity of CaMKII
in the hippocampus after the intra-amygdaloid injection of
KA may increase during the periods of active neuronal da-
mage mediated by excitotoxic transmitters.

These findings were supported in part by other studies in
which CaMKII appears to induce the phosphorylation of
the NMDA-receptor channel domain in the PSD through
excitatory transmitters in fetal rat cortical cultures (34).
This can then cause an enhancement of calcium influx
through the channel (35). A specific cell-permeable inhibitor
of CaMKII, KN-62 (1-[N,O-bis-(5-isoquinoline sulfonyl)-
N-methyl-L-tyrosyl]-4-phenylpiperazine) protects the neu-
rons from NMDA toxicity and hypoxia/hypoglycemia-
induced neuronal injury (36). Therefore, the intra-amyg-
daloid injection of KA sends excitatory signals to ipsilateral
CA3 neurons in the hippocampus, and subsequently in-
creases levels of CaMKII in the PSD. It reacts with subtypes
of the glutamate receptor and enhances calcium influx, thus
inducing neuronal injury.
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