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Abstract: Mitochondrial respiratory chain complexes play important roles in energy production via
oxidative phosphorylation (OXPHOS) to drive various biochemical processes in eukaryotic cells.
These processes require coordination with other cell organelles, especially the nucleus. Factors encoded
by both nuclear and mitochondrial DNA are involved in the formation of active respiratory chain
complexes and ‘supercomplexes’, the higher-order structures comprising several respiratory chain
complexes. Various nuclear hormone receptors are involved in the regulation of OXPHOS-related
genes. In this article, we review the roles of nuclear steroid receptors (NR3 class nuclear receptors),
including estrogen receptors (ERs), estrogen-related receptors (ERRs), glucocorticoid receptors (GRs),
mineralocorticoid receptors (MRs), progesterone receptors (PRs), and androgen receptors (ARs), in the
regulatory mechanisms of mitochondrial respiratory chain complex and supercomplex formation.

Keywords: mitochondria; respiratory chain complex; respiratory chain supercomplex; oxidative
phosphorylation (OXPHOS); nuclear receptor; NR3 class nuclear receptor; nuclear steroid receptor

1. Introduction

In eukaryotic cells, mitochondria are involved in a wide variety of biological processes. One of
the important roles of mitochondria is to supply energy to the cell via oxidative phosphorylation
(OXPHOS). The mitochondrial OXPHOS consists of a series of five molecular complexes with enzymatic
activities, namely, complex I (NADH ubiquinone oxidoreductase/NADH dehydrogenase), complex II
(succinate ubiquinone oxidoreductase/succinate dehydrogenase), complex III (ubiquinol cytochrome c
oxidoreductase/cytochrome bc1 complex), complex IV (cytochrome c oxidase), and complex V (ATP
synthase). These OXPHOS complexes are composed of protein subunits that are encoded by either
nuclear DNA or mitochondrial DNA (mtDNA) [1]. Genetic defects of OXPHOS-related genes that
cause human diseases of mitochondrial energy metabolism are detected in every component of
respiratory chain complexes [2], indicating that the function of each complex affects the output of whole
OXPHOS process. It is also shown that the absence of complex III prevents the assembly of complex
I and IV [3], which also indicates the cooperative regulation of OXPHOS complexes. In addition,
some of the respiratory chain complexes form higher-order structures called ‘supercomplexes’ [4]
(Figure 1). A supercomplex typically composed of one complex I, two complex IIIs, and one
complex IV, is called ‘respirasome’. The biological significance of the mitochondrial respiratory chain
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supercomplex formation is efficient energy production [5–7], reduction in reactive oxygen species
(ROS) generation [8,9], and/or stabilization of complex I [10].
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FADH2 to molecular oxygen. In the process, protons (H+) translocate across the inner mitochondrial 

membrane from the mitochondrial matrix to the intermembrane space. The established proton 

gradient is essential for ATP generation by complex V. The movement of protons is indicated by red 

arrows. A certain portion of the mitochondrial respiratory chain complexes form a higher-order 

structure called a ‘supercomplex’. The supercomplex formed by one CI, two CIIIs, and one CIV is 

called ‘respirasome’. 
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Figure 1. Mitochondrial OXPHOS complexes and a respiratory chain supercomplex. OXPHOS is
carried out by five molecular complexes in the inner mitochondrial membrane, namely complex I
(NADH ubiquinone oxidoreductase/NADH dehydrogenase; CI), complex II (succinate ubiquinone
oxidoreductase/succinate dehydrogenase; CII), complex III (ubiquinol cytochrome c oxidoreductase/

cytochrome bc1 complex; CIII), complex IV (cytochrome c oxidase; CIV), and complex V (ATP synthase;
CV). Complexes I–IV are responsible for transferring electrons from NADH or FADH2 to molecular
oxygen. In the process, protons (H+) translocate across the inner mitochondrial membrane from the
mitochondrial matrix to the intermembrane space. The established proton gradient is essential for ATP
generation by complex V. The movement of protons is indicated by red arrows. A certain portion of
the mitochondrial respiratory chain complexes form a higher-order structure called a ‘supercomplex’.
The supercomplex formed by one CI, two CIIIs, and one CIV is called ‘respirasome’.

The nuclear receptor superfamily consists of multiple transcription factors with a similar domain
structure. Nuclear receptors were initially considered ligand-regulated transcription factors that
mediate the actions of several hormones. With time, several transcription factors without known
ligands, called ‘orphan’ receptors, were also characterized, and included in the nuclear receptor
superfamily based on their structural properties. To date, 48 members of the nuclear receptor
superfamily have been identified in humans [11].

In this review, we summarize the functional roles of nuclear steroid receptors (NR3 class nuclear
receptors), including estrogen receptors (ERs), estrogen-related receptors (ERRs), glucocorticoid
receptors (GRs), mineralocorticoid receptor (MR), progesterone receptors (PRs), and androgen receptor
(AR), in the formation of mitochondrial OXPHOS complexes and respiratory chain supercomplexes in
mammalian cells. Among them, ERs, PRs, and AR are the receptors for gonadal steroids, while GRs
and MR are the receptors for corticosteroids. ERRs are orphan receptors whose physiological ligands
do not exist or have not been identified. Gonadal steroids and corticosteroids are circulating hormones
that affect multiple tissues or organs where nuclear steroid receptors are expressed.

From a phylogenetic point of view, nuclear receptors first originated in the metazoans [12].
This is supported by the fact that nuclear receptors are absent in fungi and plants. According to
the endosymbiotic theory, mitochondria are the descendants of formerly free-living prokaryotes,
which happened to live together within one cell in eukaryotes. Thus, the evolution of nuclear receptors,
and their control of mitochondrial respiratory chains, highlights the cooperative interactions between
the nucleus and mitochondria, which supply energy to the cell in a coordinated manner in response to
the cellular environment.
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2. Regulatory Mechanisms of Nuclear Receptors Affecting Mitochondrial Respiratory
Chain Complexes

Nuclear receptors share a common structure and are classified into six classes according to the
phylogenetic tree based on sequence alignment [12]. In this review, we focus on the NR3 class of
nuclear receptors, also known as ‘nuclear steroid receptors’ [13]. Except for estrogen-related receptors,
all members of NR3 class nuclear receptors bind to steroid hormones as physiological ligands (Figure 2).
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Figure 2. NR3 class of nuclear receptors. NR3 class of nuclear receptors and their corresponding
ligands are shown. NR3 class of nuclear receptors are known as ‘nuclear steroid receptor’ because all
the physiological ligands for them have a steroid backbone in their structural formula. Estrogen-related
receptors (ERRs), for which physiological ligands do not exist or have not been identified, are referred
to as orphan receptors. ER (estrogen receptor) subtypes (ERα and ERβ) and ERR subtypes
(ERRα, ERRβ, and ERRγ) are coded in different genes. GR (glucocorticoid receptor) isoforms
(GRα and GRβ) are splicing variants coded by the same gene. PR (progesterone receptor) isoforms
(PR-A, PR-B, and PR-M) are derived from the same gene with distinctive transcription initiation
sites. PR-M (mitochondrial progesterone receptor) contains a unique N-terminal amino acid sequence
suggestive of a transmembrane domain (green). NTD; N-terminal domain (red), DBD; DNA-binding
domain (orange), H; hinge region (purple), LBD; ligand-binding domain (blue), a.a.; amino acids.
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Nuclear receptors typically function as ligand-dependent transcription factors that regulate the
expression of primary target genes. When the corresponding ligand binds to a nuclear receptor,
the receptor binds to the regulatory DNA sequences (promotors or enhancers) of the primary target
genes. In some cases, the interaction with the DNA sequences involves direct binding to short,
distinctive sequences called hormone response elements (HREs). Alternatively, the interaction can be
indirect tethering on other transcription factors. When nuclear receptors bind to the DNA sequence,
they often form a homodimer (with the same nuclear receptor) or heterodimer (with another nuclear
receptor). By binding regulatory DNA sequences, nuclear receptors interact with cofactors such as
coactivators and corepressors, and subsequently affect the transcription of primary target genes. If the
primary target gene happens to be another transcription factor, it affects the transcription of secondary
target genes.

A different mode of nuclear receptor action is known, which is not mediated by transcriptional
regulation. Nuclear receptors can interact with some signal transducing molecules in the cytosol,
often in a ligand-dependent manner. Since the transcription of genomic DNA is not involved, this mode
of action is called a nongenomic action [14], in contrast to the genomic action in which the nuclear
receptor acts as a transcription factor. The characteristic feature of the nongenomic action is the
rapid alteration of signal transducing molecules, which differs from the genomic action involving
transcriptional and subsequent translational changes.

In terms of mitochondrial regulation, some nuclear receptors are reported to bind to mtDNA
and regulate mitochondrial genes, as explained later. This mode of action can be regarded as a
special type of ‘genomic’ action. Additionally, a special type of nongenomic action involves physical
interactions of some nuclear receptors with mitochondrial proteins, primarily in the context of apoptosis
regulation [15].

In the genomic regulation of OXPHOS, several transcription factors are regulated in common
by different nuclear receptors (Figure 3). One such transcription factor is the nuclear respiratory
factor 1 (NRF1). Regulatory regions of the NRF1 gene are reported to have HRE for some nuclear
receptors, including estrogen response element (ERE) [16], ERR response element (ERRE) [17],
and peroxisome proliferator response element (PPRE) [18]; therefore, this gene can be the primary
target for these nuclear receptors. NRF1 stimulates the transcription of nuclear-encoded components
of mitochondrial respiratory chain proteins. Another commonly regulated transcription factor is the
mitochondrial transcription factor A (TFAM). TFAM is one of the genes up-regulated by NRF1 [19];
thus, this transcription factor can be a secondary target gene for some nuclear receptors, such as ERRs,
GRs, PRs, and AR. TFAM translocates to the mitochondria and binds to the mitochondrial genome
in a sequence-independent manner [20]. It has been reported that TFAM protects mtDNA, increases
the amount of mtDNA, and induces the transcription of mtDNA-encoded OXPHOS proteins [21].
Moreover, peroxisome proliferator-activated receptor γ coactivator -1α (PGC-1α) and peroxisome
proliferator-activated receptor γ coactivator -1β (PGC-1β) are other transcription factors commonly
regulated by nuclear receptors. Peroxisome proliferator-activated receptor gamma (PPARγ) and
ERRα are shown to induce transcription of PGC-1α directly by binding their response elements in
the promoter region of PGC-1α [22,23]. Other members of nuclear steroid receptors, such as ERs,
MR, and AR, also regulate expression of PGC-1α or PGC-1β directly or indirectly as described later.
PGC-1α and PGC-1β activate transcriptional factors such as PPARγ, ERRα, and NRF1 by physical
association with them [24,25]. Thus, PGC-1α and PGC-1β promote expression of OXPHOS-related
proteins by positively regulating NRF1-mediated transcription. In addition, they also form a positive
autoregulatory loop; their own transcription is induced by activation of PPARγ or ERRα.
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Figure 3. Transcription factors regulating OXPHOS. Nuclear respiratory factor 1 (NRF1),
mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator
-1α (PGC-1α), and peroxisome proliferator-activated receptor γ coactivator -1β (PGC-1β) are
transcription factors which often mediate the effects of steroid hormones on OXPHOS. The NRF1 gene
possesses hormone response elements for some nuclear receptors in its promoter region and can be
directly regulated by steroid hormones. TFAM is a secondary induced factor that exerts its effects on
mtDNA. PGC-1α and PGC-1β are co-regulators that positively regulate NRF1-mediated transcription.
MRC stands for mitochondrial respiratory chain.

3. ERs in the Regulation of Mitochondrial OXPHOS Complexes

Estrogen is a sex steroid hormone involved in a plethora of biological functions related to female
reproductive tissues. It also affects several nonreproductive tissues in both sexes, where ERs are
expressed. In addition, estrogen is a promoting factor for ER-positive breast cancer. Two subtypes
of estrogen receptors are known, namely, estrogen receptor alpha (ERα; NR3A1) and estrogen
receptor beta (ERβ; NR3A2), which are coded by different genes. Both of them belong to the nuclear
receptor superfamily.

Estrogen affects the expression of genes involved in mitochondrial respiratory chain complexes
and OXPHOS [26]. These effects are mainly mediated by the genomic action of ERs in the nucleus.
A previous study showed that NRF1 is a direct target of ERs, and a functional estrogen response
element (ERE) exists in the NRF1 promoter region, whereby both ERα and ERβ can bind [16]. In this
study, NRF1 protein was induced by estrogen stimulation in MCF-7 human breast cancer cells and
H1797 human lung cancer cells. As a consequence, TFAM and two mtDNA-encoded genes, cytochrome
c oxidase subunit I (Cox1) and NADH dehydrogenase subunit I (NDI), were induced by estrogen [14].
Additionally, estrogen has been shown to induce PGC-1β in rat brain, mouse liver, and human
hepatocellular carcinoma HepG2 cells [27,28]. This is accompanied by increased protein levels of
mitochondrial OXPHOS complexes I, III, and V in the rat brain, and up-regulation of Cox1 expression
with enhanced ATP production in HepG2 cells. Another example of the primary ER target affecting
mitochondrial respiratory chain is COX7RP (cytochrome c oxidase subunit 7a-related polypeptide,
also known as COX7A2L/SCAF1). COX7RP, which possesses a perfect palindromic ERE in the intron
1, was identified as an estrogen responsive gene in MCF-7 cells by genomic-binding site cloning [29].
Later, it was found to function as a mitochondrial respiratory chain supercomplex assembly-promoting
factor in murine skeletal muscles [5] as well as in MCF-7 cells [30]. In the latter study, estrogen was
shown to induce cytochrome c oxidase (COX) activity and mitochondrial ATP content, which was
attenuated by knocking down of COX7RP [30].
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Notably, nuclear receptors do not always up-regulate their target genes; suppressive modes of
regulation also exist. One of the examples of down-regulated ERα target genes related to OXPHOS
is uncoupling protein 3 (Ucp3). UCP3 is a member of uncoupling proteins which localize to the
mitochondrial inner membrane and uncouple OXPHOS via proton leakage, leading to energy
dissipation. It was observed that ovariectomy in female mice increased the expression of Ucp3,
which was suppressed by estrogen treatment [31]. Overexpression of constitutively active ERα
(caERα) suppressed Ucp3 expression, whereas treatment with ICI182,780, an ER antagonist, induced
Ucp3 expression in C2C12 myoblastic cells, indicating that this regulation was mediated by ERα.
Alternatively, the effect of ER-mediated transcriptional regulation of OXPHOS can be explained by the
induction of another nuclear receptor, NR4A1 [32]. Overexpression of caERα up-regulated NR4A1
expression and ATP content in C2C12 cells. It was shown that knockdown of NR4A1 in pancreatic
β-cells resulted in a significant decrease in mitochondrial respiration, accompanied with decreased
expression and protein levels of SDHB, a subunit of mitochondrial respiratory chain complex II [33].
It could be inferred that OXPHOS’ promoting effect of NR4A1 in skeletal muscle is also mediated by
SDHB induction.

Direct transcriptional regulation of mtDNA-encoded genes by ERs is also proposed. This possibility
is based on the detection of ERs in mitochondria [34]. The existence of ERs in mitochondria was
reported by multiple methods, including mass spectrometric analysis of human heart mitochondria [35],
fluorescence microscopic analysis of human tumor cells [36], immunoprecipitation of mtDNA and
western blotting using MCF-7 cells [37], and electron microscopic analysis using human fetal brown
adipose tissue (BAT) [38]. However, it remains to be elucidated whether they are functional ERs.

The nongenomic actions of ERs have been implicated in many physiological and pathological
processes [14]. However, information on the direct link between the nongenomic action of ERs and
OXPHOS is limited. In human endometrial cells, estrogen induced rapid phosphorylation of p38
MAPK (mitogen-activated protein kinase) could be suppressed by ICI182,780 [39], indicating that ER
mediates this reaction. On the contrary, macrophages of MAPK phosphatase-1 (MKP-1, also known as
DUSP1) deficient mice exhibited higher expression of NRF1, TFAM, and PGC-1α [40]. Considering
that MKP-1 preferentially dephosphorylates p38 MAPK [41], there may be a link between OXPHOS
and MAPK signaling regulated by nongenomic action of ER.

The significance of ER-mediated estrogen signaling in OXPHOS has been demonstrated in various
studies involving knocking out or knocking down of ERs. For example, CD4+ T cell-specific knockout
of ERα led to impaired OXPHOS [42]. Muscle-specific ERα knockout mice displayed impaired ATP
production [43]. Furthermore, knocking down of ERβ in endometrial cells resulted in decreased
expression of NRF1, TFAM, mtDNA-encoded COX1, and mtDNA-encoded ATP6 [44]. However, not all
effects of estrogen on OXPHOS seem to be mediated via ERs. The involvement of G-protein coupled
estrogen receptor (GPER, also known as GPR30) [45] and the direct effect of estrogen molecules on
mitochondrial membrane viscosity [46] have been reported as ER-independent mechanisms of estrogen
actions on mitochondrial respiratory chain. Thus, the regulation of OXPHOS by estrogen is potentially
mediated by various pathways (Figure 4).

The effects of estrogen on OXPHOS explained above may have implications in human diseases such
as neurodegenerative disorders, sarcopenia, and breast cancer. By the proteomic analysis of the white
matter of elderly people with Alzheimer’s disease with cerebrovascular disease, sexual dimorphism of
mitochondrial proteome was observed, where several OXPHOS-related proteins were down-regulated
in postmenopausal women [47]. This may explain the beneficial effect of estrogen replacement therapy
in several observational studies [48]. Estrogen replacement is suggested to have a beneficial effect also on
sarcopenia. According to the meta-analysis of estrogen-based hormonal therapy for post-menopausal
women, estrogen affected beneficially on muscle strength [49]. In the animal experiment, estrogen
treatment was shown to recover exercise endurance impaired by ovariectomy [31]. Improved OXPHOS
by estrogen explained above may be one of the mechanisms underlying the beneficial effect of estrogen
on muscular tissue. In relation with breast cancer, shorter disease-free survival was observed in the
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patients of breast cancer with higher expression of COX7RP [30], suggesting that induction of COX7RP
and increased OXPHOS by estrogen in the breast cancer tissue may partly explain the tumor promoting
function of estrogen.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 17 
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Figure 4. Regulation of OXPHOS by estrogen. Estrogen can regulate OXPHOS in several different
manners. First, estrogen receptor (ER)-mediated classical genomic action regulates several nuclear
DNA-encoded OXPHOS-related genes. Second, estrogen receptors found on mtDNA may regulate
mtDNA-encoded OXPHOS-related genes, which can also be regarded as a kind of genomic action.
Third, estrogen can affect OXPHOS through nongenomic action. This mode of action is mediated
either by a small portion of ER (as a nuclear receptor) localizing at the plasma membrane or by a
different membrane receptor called GPER (G-protein coupled estrogen receptor), also known as GPR30.
Lastly, a receptor-independent mechanism is reported. In this mechanism, estrogen incorporated in the
mitochondrial membrane alters its microviscosity, eventually affecting the activities of mitochondrial
respiratory chain (MRC) complexes.

4. ERRs in the Regulation of Mitochondrial OXPHOS Complexes

ERRs comprise the NR3B subfamily, consisting of ERRα (NR3B1), ERRβ (NR3B2), and ERRγ
(NR3B3), which are coded in different genes. ERRs were discovered in a screen designed to identify
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novel steroid hormone receptors related to ERα; hence, they were called ERR. Until now, they are
recognized as orphan nuclear receptors since no natural ligands have been discovered. Among them,
ERRβ and ERRγ are known to have synthetic ligands. GSK4716 and GSK9089 act as agonists for ERRβ
and ERRγ [50], while diethylstilbestrol and 4-hydroxytamoxifen are reported to function as inverse
agonists for ERRγ [51]. ERRs are transcriptionally active even without an agonistic ligand [52], and their
transcriptional regulation is dependent on coregulators such as PGC-1α [53], mammalian target of
rapamycin (mTOR) [54], growth arrest and DNA-damage-inducible protein 45γ (GADD45γ) [55],
prospero-related homeobox 1 (PROX1) [56], and nuclear receptor corepressor 1 (NCoR1) [57].

Chromatin immunoprecipitation (ChIP)-sequencing analyses with gene expression analyses in
the mouse skeletal muscle and liver revealed that ERRα up-regulated multiple OXPHOS-related genes
in cooperation with PGC-1α or mTOR [53,54]. Interestingly, ERRα occupied regulatory regions of
more than 70 kinds of OXPHOS-related genes [54], suggesting its significant influence on OXPHOS.

Genome-wide analyses of ERRα and ERRγ revealed their direct and overlapping binding
in promoter regions of a large number of PGC-1α targets, including nuclear DNA-encoded
OXPHOS-related genes [58]. In a study involving ERRα single knockout mice, ERRγ single knockout
mice, and ERRα-ERRγ double knockout mice, expression of DNA-encoded OXPHOS-related genes
were significantly down-regulated in the heart muscle of ERRα-ERRγ double knockout mice [59],
indicating the compensatory mechanism of these two ERRs and their importance in the regulation of
OXPHOS. This compensatory mechanism was also demonstrated using adipose tissue-specific ERRα
and ERRγ knockout mice. In BAT derived from mice lacking both ERRα and ERRγ, expression of
representative components of mitochondrial OXPHOS complexes I, II, III, and IV decreased dramatically,
while modest but significant reductions were observed in components of complexes I, IV, and V from
mice lacking only ERRα [60]. Similar results showing the compensatory function of ERRs were
obtained using BAT lacking all subtypes of ERRs, namely, ERRα, ERRβ, and ERRγ [61]. In that report,
reduced expression of ERRβ in BAT was observed, making it difficult to assess the contribution of
ERRβ in OXPHOS regulation.

5. GRs in the Regulation of Mitochondrial OXPHOS Complexes

Glucocorticoid is one of the steroids secreted by adrenal glands in response to several types of
stress. Low-dose glucocorticoid treatment causes a short-term increase in mitochondrial oxidation [62],
which reflects increased energy demand during an acute stress response. Conversely, high-dose
treatment or chronic treatment has a suppressive effect on mitochondrial oxidation [63]. The major
molecules of GRs are GRα and its splicing variant, GRβ; both of them belong to nuclear receptor
superfamily and are collectively classified as NR3C1. GRβ has a dominant-negative effect due to the
truncated LBD [64]. Since effects of glucocorticoid on OXPHOS are observed in BAT cells, leukocytes,
and neuronal cells, it is suggested that GRs are involved in the stress response within these cells.

One of the suggested mechanisms through which glucocorticoids affect OXPHOS is the
genomic regulation of GR-targeted nuclear-encoded genes. It was shown that expression levels of
nuclear-encoded genes including Nrf1, Tfam, and genes coding a few components of respiratory chain
complex IV were elevated in primary BAT cells derived from mice lacking 11β-HSD1, which converts
inactive 11-dehydrocorticosterone to active corticosterone in rodents (and cortisone to cortisol in
human), compared with the expression in BAT cells from wild-type mice [64]. In another study
involving BAT-specific GR knockout mice, expression of Tfam was elevated in BAT derived from
BAT-specific GR knockout mice, as demonstrated by microarray analysis; however, expression of
Ppargc1a (coding PGC-1α) and Nrf1 remained unchanged [65]. These results reflect the suppression
of BAT function, such as thermogenesis, by chronic glucocorticoid exposure. In contrast, microarray
analysis following low-dose corticosterone treatment of primary rat cardiomyocytes for 24 h revealed
that OXPHOS-related genes were not regulated by the treatment [66]. This may indicate that the
genomic action of GR on nuclear-encoded OXPHOS-related genes is dependent on the cell type or
species. Another example of GR-mediated genomic action on nuclear-encoded OXPHOS genes is
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the induction of glucocorticoid-induced leucine zipper (GILZ). GILZ is a glucocorticoid-induced
transcription factor expressed in T-lymphocytes and is encoded in nuclear DNA with glucocorticoid
response elements (GREs) in its promoter region [67]. In mouse leukemia cells, overexpression
of GILZ caused enhanced oxygen consumption and higher cellular ATP level [68], indicating the
OXPHOS-promoting effect of this protein.

Evidence from multiple studies suggests that GR affects OXPHOS via ‘genomic’ action on mtDNA.
It was pointed out that human and rat mtDNAs contain multiple sequences similar to that of the nuclear
glucocorticoid response element (GRE) [63]. In the rat hippocampus, acute immobilization stress led to
decreased expression of several mtDNA-encoded genes, which was not observed in adrenalectomized
rats [69]. This study reported GR binding to the D-loop region of mtDNA, a noncoding regulatory
region on mtDNA, by a chromatin immunoprecipitation (ChIP) experiment [69].

Little is known about the nongenomic effects of glucocorticoid on OXPHOS. One report suggested
that OXPHOS is controlled by G-protein-coupled receptor (GPCR) rather than membrane localized
classical GR (which can also mediate genomic action in the nucleus). In HepG2, 10 min dexamethasone
treatment affects the enzymatic activities of mitochondrial respiratory chain complexes I, II, and III [70].
This rapid effect could be blocked by GDPbS, an antagonist of Ga protein, suggesting GPCR dependence.
Moreover, 8 h treatment of dexamethasone coupled with bovine serum albumin (dexa-BSA) significantly
increased the respiration rates in HepG2 cells, which is in line with the involvement of either GPCR or
membrane-localizing GR.

6. MR in the Regulation of Mitochondrial OXPHOS Complexes

Aldosterone is a steroid hormone that plays a central role in the maintenance of sodium homeostasis
in kidneys. Life-threatening salt loss is caused by compromised action of aldosterone in human and by
knockout of its receptor MR (NR3C2/Nr3c2) in mice [71]. Besides the regulation of sodium absorption
in kidneys, aldosterone appears to play a vital role in the pathogenesis of heart failure. In several
clinical studies, mineralocorticoid antagonists are shown to improve survival among patients with
chronic heart failure and heart failure after myocardial infarction [72–74].

MR forms homodimer or heterodimer with GR and binds to DNA with HRE almost identical to
GRE [75]. However, ChIP-seq experiments revealed that the majority of MR-binding sites on DNA do
not possess typical GRE-like HRE [76,77]. Nongenomic actions mediated by MR are also reported [78].

The direct effects of MR signaling on OXPHOS are yet to be elucidated. However, several studies
on aldosterone functions in the heart suggested implication of MR in OXPHOS regulation. For instance,
the expression of MR was increased, while that of PGC-1α was decreased in the aging rat heart.
Furthermore, in an aged heart muscle cell model using H9C2 rat cardiomyocytes treated with H2O2,
pretreatment of eplerenone, an antagonist for MR, attenuated the decreased PGC-1α expression [79],
which suggests the negative effect of aldosterone on OXPHOS during aging. In a study involving
sheep model of atrial fibrillation induced by a pacemaker, protein expression of several components of
mitochondrial respiratory chain I, II, III, and IV in the left atrial appendage was decreased, as shown
by mass spectrometric analyses. Pretreatment with eplerenone attenuated the decreased expression
of OXPHOS-related proteins caused by atrial fibrillation pacing [80]. In another study, the effect of
aldosterone on human cardiac fibroblasts was evaluated. Aldosterone treatment of human cardiac
fibroblasts decreased the expression of A-kinase anchor protein 12 (AKAP-12) [81], which was formerly
identified by proteomic analysis as a protein negatively regulated by aldosterone [82]. Aldosterone
treatment also suppresses the expression of PGC-1α. Overexpression of AKAP-12 increased PGC-1α
expression in aldosterone-treated human cardiac fibroblasts [81], indicating the role of AKAP-12 in
aldosterone function. In that report, prohibitin (PHB) was identified as another target of AKAP-12
mediated suppression by aldosterone. Since PHB is known as one of the mitochondrial respiratory
chain supercomplex assembly-promoting factors [83], these results suggest that MR signaling affects
respiratory chain supercomplex formation.
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7. PRs in the Regulation of Mitochondrial OXPHOS Complexes

Progesterone is a steroid hormone involved in the regulation of female reproductive processes.
Elevated circulatory levels of progesterone are detected in the luteal phase of the menstruation cycle
and during pregnancy. Two isoforms of nuclear receptors have been identified for progesterone,
namely PR-A and PR-B, which are coded by the same gene and collectively classified as NR3C3.
Unlike the longer PR-B form, PR-A lacks a 164 amino acid sequence in the N-terminus region as a
result of distinctive transcription initiation; however, transcription of both isoforms is induced by
estrogen [84]. PR-A and PR-B form homodimers or heterodimers [85], and PR-A exerts dominant
negative effects on PR-B mediated transcription [86]. ChIP-seq analyses of human endometrium [87]
and mouse uterus and ovary [88] revealed that PRs exert genomic action by binding progesterone
response elements (PREs) or other transcription factor binding motifs. Nongenomic effects of PRs are
also reported, which are mediated by the interaction of a proline-rich sequence motif within PRs and
SRC homology 3 (SH3) domain in Src family tyrosine kinases leading to the activation of Src family
tyrosine kinases [89].

Relatively high body temperature during the luteal phase is associated with the effects of
progesterone on BAT mitochondria. Indeed, progesterone up-regulates the expression of norepinephrine
induced uncoupling protein 1 (UCP1) [90], which is responsible for thermogenesis in BAT. It has
been reported that Tfam, one of the nuclear-coded genes, is up-regulated in BAT by progesterone [91].
These results indicate the role of genomic action of progesterone in OXPHOS regulation.

Regarding the effects of progesterone in mitochondria, one isoform of PR called mitochondrial
progesterone receptor (PR-M) is reported to localize in the outer mitochondrial membrane. PR-M lacks
NTD and DBD of PR-A and PR-B. Instead, this isoform comprises a unique 16 amino acid sequence
at N-terminus, followed by C-terminal side of other PRs, including hinge region and LBD [92]
(Figure 2). The N-terminal amino acid sequence unique to PR-M mainly consists of hydrophobic
amino acids, which is suggestive of a transmembrane domain, similar to the N-terminal sequence
of other mitochondrial outer membrane proteins. Mitochondrial localization is shown by multiple
methods, including fluorescence microscopic analysis, Western blot analysis, and electron microscopic
analysis using human heart tissue or Cos-1 monkey kidney cells [93]. In MCF-10A breast epithelial
cells where PR-M is expressed, but other PRs are not expressed, progesterone increased mitochondrial
membrane potential and ATP production [94], indicating that ligand-dependent action of PR-M may
exist. The biological significance of PR-M is pursued in several cell types, including a recent report on
oocytes and embryo [95].

8. AR in the Regulation of Mitochondrial OXPHOS Complexes

Androgen is another sex steroid hormone playing vital roles in male reproductive tissues.
In addition, androgen is a promoting factor for prostate cancer. It is also shown that androgen affects
mitochondrial functions in tissues where AR (NR3C4), a member of nuclear receptor superfamily,
is expressed.

There are several reports on the effect of testosterone (a typical androgen) deficiency or testosterone
supplementation on the mitochondrial OXPHOS. For example, castration decreased ATP production
in a rat model of myocardial infarction, which was ameliorated by testosterone replacement [96].
In male rat brains, castration resulted in reduced expression of NRF1, TFAM, PGC-1α, and components
of respiratory chain complexes I, III, and IV [97]. Besides, testosterone replacement in castrated
rats or aged male rats increased the expression of mtDNA-encoded component of complex I and
plural subunits of complex V [98]. However, these studies do not precisely reflect functions of AR,
because testosterone can be converted to estrogen by aromatase. Therefore, the results of testosterone
replacement potentially include effects mediated by ERs unless aromatase inhibitor is used at the
same time.

The importance of AR in OXPHOS regulation was demonstrated in a study utilizing AR knockout
or mutant cells. In a study, induced pluripotent stem cells (iPSCs) were established from fibroblasts of
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a patient suffering from spinal and bulbar muscular atrophy (SBMA), which is caused by the expansion
of a polyglutamine-coding CAG repeat in the first exon of AR gene. AR knockout iPSCs were also
established. With chromatin immunoprecipitation (ChIP) assay using iPSCs derived motor neuron-like
cells, dysregulated histone acetylation accompanied by reduced mitochondrial ATP production was
observed in SBMA patient-derived cells and AR knockout cells [99]. This result suggested that
genomic action of AR with proper epigenetic modifications has a promotive role for OXPHOS in
motor neuron cells. The role of AR in female fertility is also emphasized. A previous study reported
reduced fertility in granulosa cell (in ovary)-specific AR knockout mice [100]. Granulosa cells from
systemic AR knockout mice were observed to have reduced ATP content compared to those from
control mice [101]. Intriguingly, AR is shown to have suppressive effects on OXPHOS in prostate
cancer cells. In AR knockout LNCaP cells (human prostate cancer cells), expression of TFAM and
several nuclear DNA-encoded or mtDNA-encoded subunits of respiratory chain complexes were
increased. In addition, mitochondrial respiratory chain supercomplex formation was also increased in
AR knockout LNCaP cells [102].

9. Conclusions

In the present review, we described multiple nuclear receptors involved in mitochondrial
respiratory chain complexes and supercomplexes through several pathways. Clarifying the mechanisms
of nuclear receptors regulating mitochondrial respiratory chain complexes and supercomplexes
will help identify therapeutic targets for various diseases, such as heart failure and sarcopenia,
where OXPHOS is deeply involved. Discoveries of direct pathways of hormones and nuclear
receptors, or identification of entirely new nuclear receptors affecting complex and supercomplex
assembly factors and related molecules, are expected in future studies. Some nuclear receptors
mentioned in the present review can be the targets for innovative treatment or prophylactic agents for
OXPHOS-related conditions. Despite various clinical trials and moderate therapeutic use of agonists
and antagonists of nuclear receptors, most of them have not yet been introduced in clinical practice.
Further research on nuclear receptors and regulating pathways toward mitochondrial respiratory chain
complexes and supercomplexes would be required for the discovery of novel therapeutic approaches
for OXPHOS-related diseases.
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