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ABSTRACT Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to
considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is
poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to
the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two
resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary
metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight
distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly
due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which
may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the
list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in
response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-
protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially
to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed
significantly to the overall defense response.
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Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) is one of the
most important food cropsworldwide, providing approximately 20% of
the daily human calorie consumption (Brenchley et al. 2012). Increas-
ing nutritional demands by a growing world population and environ-
mental stresses present major challenges for wheat research and
breeders. One of the most prevalent diseases on wheat and other small
grain cereals is Fusarium head blight (FHB). The disease is mainly
caused by the hemibiotrophic fungus Fusarium graminearum, which
thrives under humid and temperate conditions, leading to large eco-
nomic losses (McMullen et al. 2008; Pirgozliev et al. 2003). The most
severe effect of FHB is the contamination of grains with mycotoxins
such as deoxynivalenol (DON), which remain in the food chain and
constitute a threat to the health of animals and humans (Pestka 2010).

DON is a potent inhibitor of protein biosynthesis and, although its
presence is not required to establish the infection site, it is essential
for the pathogen to breach the barrier from the initially infected spikelet
and its spread into the surrounding tissue (Jansen et al. 2005).

The wheat defense response includes a plethora of well-described
mechanisms, including the biosynthesis of phenolics, polyamines, and
other secondary metabolites, cell wall fortification, as well as counter-
measures to reduce oxidative stress and to inactivate DON (reviewed in
Kazan et al. 2012; Walter et al. 2010). Little is known on how the
adaptations in the primary metabolism contribute to resistance against
F. graminearum. Schwachtje and Baldwin (2008) discussed roles for the
primarymetabolism that surpass its function in nutrient acquisition for
the costly defense response. These may act in defense signaling,
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contribute to defense by themselves, or work toward shifting re-
courses between infected/noninfected tissues to increase tolerance.
In particular, the production of secondary metabolites is strongly
linked to the expression of genes providing carbon, nitrogen, and
sulfur equivalents (Aharoni and Galili 2011). Therefore, changes in
the primary and secondary metabolisms need to be equally consid-
ered when observing plant/pathogen interactions.

Although bread wheat is considered susceptible to FHB, a diverse
collection of resistant germplasm has been identified. More than 100
quantitative trait loci (QTL)havebeendescribed tocontribute invarying
extents to resistance against FHB (Buerstmayr et al. 2009). Yet, none of
the underlying molecular mechanisms has been resolved to date. Two
major and reproducible QTL derive from the Chinese spring wheat
cultivar Sumai-3: Fhb1, located on the short arm of chromosome 3B,
confers high resistance against spreading of the disease (type II)
(Anderson et al. 2001; Buerstmayr et al. 2002), whereas Qfhs.ifa-5A,
on 5AS, mainly confers resistance against initial infection (type I)
(Buerstmayr et al. 2003).

A small number of studies investigated the differential transcrip-
tional response to the pathogen in lines differing in the presence ofQfhs.
ifa-5A (Kugler et al. 2013; Schweiger et al. 2013). In contrast, Fhb1 has
been investigated widely and was introduced successfully into US elite
breeding material (Jin et al. 2013). Fhb1-containing lines exhibited
an improved ability to transformDON into the nontoxicDON-3-glucoside
(Lemmens et al. 2005). Still, several transcriptomic and metabolomic
studies that compared lines segregating for Fhb1 did not lead to the
identification of a causal gene responsive for this mechanism (Gunnaiah
et al. 2012; Jia et al. 2009; Kugler et al. 2013; Schweiger et al. 2013; Walter
et al. 2008; Warth et al. 2015; Xiao et al. 2013; Zhuang et al. 2013)

A comparison of results between all these studies is challenging
because they show little overlap due to the different investigated
germplasms, sampling/inoculation procedures, and statistical methods
used.Moreover, transcriptomic studies, including our own (Kugler et al.
2013; Schweiger et al. 2013), were long impeded by incomplete and
frequently changing reference gene sets and incomplete gene annota-
tions for bread wheat. All these factors have made it difficult to gain a
complete picture of the transcriptomic response to the pathogen and to
make a comparison between different studies. Recently, a comprehen-
sive wheat survey sequence gene set has become available by the In-
ternational Wheat Genome Sequencing Consortium (IWGSC) (Mayer
et al. 2014). This reference provides a nearly complete mapping
resource for transcriptomic studies. It comprises about 99,000 high-

confidence genes allocated to the corresponding subgenomes and chro-
mosome arms in version 2.2 of the annotation. To a large extent, genes
were also linearly ordered (Mayer et al. 2009).

We have used the corresponding newly available gene models to
revisit the data from Kugler et al. (2013), which describe the transcrip-
tional response to F. graminearum in four near-isogenic lines (NILs)
segregating for Fhb1 andQfhs.ifa-5A. In this study we combined a gene
coexpression network with differential gene expression analysis and
metabolomics measurements, which were obtained from a time-course
series. We identified QTL and treatment specific network components,
which aided in the reconstruction of alterations in the bread wheat
primary metabolism in response to the pathogen and identified
pathway components showing distinct changes for lines harboring
Qfhs.ifa-5A. Likely candidate genes for either QTL emerged from the
analysis of QTL-specificmodules in our network.With the bread wheat
genome sequence at hand, it is now possible to also address the
subgenome-specific contributions in the pathogen response on a
genome-wide scale, which highlights a prominent role of the D
subgenome.

MATERIALS AND METHODS

Plant experiments
The procedures to capture the metabolomics data (Warth et al. 2015)
and the transcriptomics data (Kugler et al. 2013) used similar plant
material, growth conditions, and inoculation and sampling procedures
with F. graminearum spore suspensions or DON (metabolomics data-
set only), which also were described in the respective references. The
metabolomics data set generated from F. graminearum2inoculated
plants comprises novel data generated similarly as described in Warth
et al. (2015) for the DON-treated samples. The employed BC5F2
NILs have the susceptible German spring wheat cultivar Remus as
the recurrent parent. They harbor both (NIL1), either (NIL2: Fhb1,
NIL3: Qfhs.ifa-5A), or neither of the two resistance QTL, which were
introgressed from CM-82036, a Mexican spring wheat line. Meta-
bolomics samples were taken at time points 0, 12, 24, 48, and 96 hours
past infection/inoculation (hpi). Transcriptomics samples were taken
at 30 and 50 hpi (Figure 1).

The metabolomics experiments have been conducted in a light- and
temperature-controlled greenhouse in spring 2012 in full compliance
with the Metabolomics Standards Initiative (Sumner et al. 2007). The
transcriptomics experiment was conducted under comparable con-
trolled light and climatic conditions in a growth chamber because of
limited greenhouse space in Fall 2011. In the transcriptomics experi-
ment 12 florets per head (the two basal florets of six central spikelets)
were inoculated at anthesis with 10 mL of a F. graminearum conidia
spore suspension (strain IFA65, concentration 50,000 conidia/mL) or
mock by cautiously inserting a droplet onto the generative part of each
floret. Similarly, for the metabolomics experiment 20 florets per head
(from 10 central spikeles) were inoculated to yield sufficient tissue for
analysis with either 10 mL of a F. graminearum conidia spore suspen-
sion (10,000 macroconidia/mL), DON (5 g/L in water), or mock. The
treated heads were moistened and covered in plastic bags for 24 hr to
provide humid conditions for the pathogen. Only palea and lemma of
the inoculated florets were sampled, including the respective part of the
rachis at the indicated time points and shock frozen in liquid nitrogen.

Metabolite analysis
Aftermilling, extraction, and evaporation of the samples, an online two-
step derivatization procedure was performed with the use of methoxy-
amine hydrochloride and N-methyl-N-trimethylsilyl trifluoroacetamide.
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Analytes were separated and detected on an Agilent 7890A gas chro-
matograph coupled to a 5975C inert XL MSD detector (Agilent,
Waldbronn, Germany). Raw data were processed with the Metabolite-
Detector software (Hiller et al. 2009). Gas chromatography with electron
impact mass spectrometry spectra and retention indices of recognized
features were compared with an in-house library, which was established
with commercially available reference standards. Hence, most metabo-
lites reported herein can be regarded as “level 1 – identified compounds”
(Sumner et al. 2007). Chromatography and mass spectrometry features
for the 59 identified metabolites as well as information on the identifi-
cation level can be found in supporting information, Table S1. Data
normalization was performed before statistical analysis with wheat ag-
gregate QC samples and the internal standard nonadecanoic acid meth-
ylester. Missing value imputation and outlier testing was performed by
tailored in-house R scripts (Warth et al. 2015). A multivariate evaluation
of the DON-treated and mock samples (Warth et al. 2015) and the
corresponding metadata is publically available via the MetaboLights
metabolomics data repository (Salek et al. 2013) (accession number
MTBLS112). The metadata for F. graminearum infected samples also
is provided through the MetaboLights database (accession number
MTBLS153). In Stegle et al. (2010) a Gaussian process (GP) based on
two conditions test (GP2S) was introduced for detecting differential
expression between two conditions. We applied GP2S tests on the me-
tabolite time series data for a pair-wise comparison of treatment effects.
The GP2S test compares two models: The first model assumes that the
time series measurement in both conditions control and treatment are
samples drawn from a shared distribution. The alternative model de-
scribes the time series in both conditions as sampled from two indepen-
dent distributions. We marked scores larger than log(3)=1.099 as
indications for substantial differences in treatments.

Gene expression analysis
Extracted RNA from sampled tissues was sequenced on an Illumina
HiSeq2000 by an external sequencing provider (GATC, Konstanz,
Germany). A detailed description of the generation of the RNA-seq
data are given in Kugler et al. (2013). The corresponding data can be
downloaded from Arrayexpress database under accession number
E-MTAB-1729 (Kolesnikov et al. 2014).

A total of 1800 million single-end reads were mapped against the
IWGSC bread wheat reference assembly. One replicate was removed
after quality control (NIL2, M50, replicate 3). Reads were mapped
against the reference by the use of TopHat (Trapnell et al. 2012) and
Bowtie (Langmead and Salzberg 2012) with default parameters and
keeping only unambiguously matched reads (Table S2). Mapped reads
were transformed to FPKM values and normalized using Cufflinks
(Trapnell et al. 2012). To test for differential expression [false-discovery
rate (FDR)-adjusted P, 0.1, absolute log2 fold change.1], we applied
the edgeR package in R (Robinson et al. 2010) on the raw counts as
extracted with HTSeq (Anders et al. 2015) for the IWGSC high confi-
dence genes.We tested mock-treated samples against F. graminearum-
inoculated samples for all four NILs at both time points (Table S3) and
for differences betweenNIL4 and the other NILs (Table S4). Deviations
from the expected A, B, and D subgenome distribution (Mayer et al.
2014) were assessed with x2 goodness-of-fit tests against 10,000 ran-
dommultinomial distributions. A gene coexpression network compris-
ing 18,948 genes was constructed using the weighted correlation
network analysis (WGCNA) method (Langfelder and Horvath 2008),
after a pseudocount transformation l2FPKM=(log2(FPKM+1)), a co-
efficient of variation filter (CV. 0.4), and keeping genes that surpassed
a minimum expression level defined by the 5% percentile of all
expressed genes Themodel was fit to a power law distribution (network
type unsigned; power = 11), and the data clustered based on the Topo-
logical OverlapMatrix (Langfelder et al. 2008) using the cutreeDynamic
method (minClusterSize = 50; deepSplit = 2; pamRespectsDendro =
FALSE, merging close modules at 0.9; Figure S1). Intramodular hub
genes were defined by the top 10% percentile of the intramodular con-
nectivity. Eigengenes were calculated using the WGCNA package
(Langfelder and Horvath 2008).

Enrichment of Gene Ontology (GO) terms was assessed with the
Bioconductor package GOstats using conditional hypergeometric tests
(Falcon and Gentleman 2007). Key enzymes were extracted by using
their A. thaliana counterparts (Table S5) and sequence homology
searches based on blastp (Altschul et al. 1990) with at least 60% se-
quence coverage. The 8605 gene triplets were based on a reciprocal best
hit criterion in pairwise subgenome matches similar to the approaches
in Pfeifer et al. (2014) and Mayer et al. (2014) and applying an identity

Figure 1 Source material, experimental conditions, and analyses. Each near-isogenic line (blue: NIL1, green: NIL2, purple: NIL3, orange: NIL4)
contains either the resistant or susceptible alleles of Fhb1 (AA, aa) and Qfhs.ifa-5A (BB, bb). Plants were either inoculated with F. graminearum
spore suspensions, DON, or water as control. Samples were collected at different time points as indicated by gray, dashed boxes and subjected
to RNA-sequencing (transcriptomics) or gas chromatography-mass spectrometry analysis (metabolomics). Transcriptomics data were characterized
by the use of a coexpression network approach and differential expression analysis. Metabolomics data were characterized by the calculation of a
Bayes factor score and clustering of these scores.
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threshold of 90%. For the gene triplet expression analysis gene triplets
were concatenated into a triplet matrix as described in Mayer et al.
(2014) and Pfeifer et al. (2014). The triplet coexpression network was
inferred analogical to the overall network (CV threshold 0.7; lower
expression 10% percentile; network type “signed hybrid”, beta = 8;min-
imal module size= 20; no merging of modules; Figure S2). The signif-
icance of differences in the subgenome-wise expression were quantified
with a Kruskal-Wallis test and subsequent pair-wise Mann-Whitney
U tests, as followed by an FDR adjustment of P values.

Data availability
Data availability is as follows: RNA-seq: EBI Arrayexpress
(E-MTAB-1729); gas chromatography–mass spectrometry: Metabo-
Lights (MTBLS112, MTBLS153).

RESULTS

Integrated data analysis of the wheat response against
F. graminearum and DON
The aim of this study was to explore QTL-associated differences in the
response of four bread wheat NILs (NIL124) after inoculation with
F. graminearum or DON by combining gene expression and metabolo-
mics measurements (Figure 1). The investigated four BC5F2 NILs share
the common susceptible genetic background of the recurrent parent
Remus but are different for introgressed resistance QTL Fhb1 and
Qfhs.ifa-5A from the donor line CM-82036, providing them with
distinct resistance levels (Schweiger et al. 2013). To describe differ-
ences in transcript abundances, we used the recent IWGSC bread
wheat genome sequence assembly (Mayer et al. 2014) as a mapping
reference for RNA-seq measurements (Kugler et al. 2013). The RNA-
seq data comprised samples from two time points, 30 and 50 hpi, with
either F. graminearum spore suspensions or mock treatment. To
complement expression profiles with functional output, we integrated
gas chromatography-mass spectrometry2derived metabolite mea-
surements from a dense time course of similar inoculation experi-
ments on these NILs with the fungus and additionally with its major
toxin DON (Warth et al. 2015).

To gain insights into system-wide expression patterns we first used
the WGCNA approach (Langfelder and Horvath 2008) for grouping
genes into sets of similar expression patterns. Genes within these
groups show strongly correlated expression, which indicates common
regulatory mechanisms or concerted actions. The distinct expression
profiles of modules are represented by the module eigengene
(Langfelder and Horvath 2007), which correspond to the first principal
component of the module expressionmatrix and which can be regarded
as a representative for the gene expression in a module. Putative
functional characterizations of modules regarding F. graminearum-
resistance and QTL activity were derived by integration of differential
expression information, GO enrichments, and the corresponding mod-
ule eigengene. Additionally, by quantifying intramodular connec-
tivity, we also extracted hub genes for each module. On the basis of
their expression profiles and their functional characteristics, we se-
lected six network modules to be of special interest for subsequent
investigations (Figure 2). Processed transcriptomic data and analysis
results described in this study are available at the project’s RNASeq-
ExpressionBrowser (Nussbaumer et al. 2014a) Web site (http://pgsb.
helmholtz-muenchen.de/cgi-bin/db2/BOKUnils/index.cgi). The
metabolomic data set for DON-treated NILs (Warth et al. 2015) and
F. graminearum-inoculated NILs comprised 59 metabolites mainly de-
rived from the primary metabolism sampled at 0, 12, 24, 48, and 96 hpi
(Table S6). The differential abundance of metabolites among DON,

F. graminearum, and mock treatment was quantified by the use of a
Gaussian processes-based score, which was calculated for each me-
tabolite reflecting differences between two conditions in metabolite
abundance over time (Stegle et al. 2010). The scoring compares two
alternative models in which the data from the two conditions is either
explained by one single (shared) process or by two independent
processes (one for each condition). The two alternatives (shared or
independent model) can then be compared, with larger scores indicating
more pronounced differences between the conditions (Table S7).

Increased turnover rates in a restructured primary
metabolism fuel a broad defense response
We first investigated the coexpression network for gene functions in
response to the pathogen by looking into functional enrichments and
characteristic expression patterns. The two largest modules of the
coexpression network, module A (2848 genes) and module B (2861
genes), grouped genes with strong general responses to the pathogen.
Both were highly enriched for F. graminearum-responsive genes across
all NILs regardless of individual resistance levels (one-sided Fisher’s
test; FDR-adjusted P, 0.05; Figure 2, A and B and Figure S3). Genes in
module A were differentially expressed in F. graminearum-inoculated
samples at 30 hpi and 50 hpi (Figure 2A), whereas genes in module B
were more specific for 50 hpi (Figure 2B). Although the subgenome
distribution for all genes in these two modules showed no obvious bias,
the distribution of the hub genes showed a slight overrepresentation of
genes from the D subgenome.

OverrepresentedGOterms inmoduleAreflectedabroadresponse to
the pathogen.These comprise functions in signaling, the defense against
oxidative stress, the biosynthesis of tryptophan, and defense-associated
secondary metabolites such as phenylpropanoids. Moreover this group
included chitinases, proteinase inhibitors, and efflux pumps (Table S8).
Several GO terms corresponded to the primary metabolism, which
include a strongly up-regulated sucrose-phosphatase (Traes_1DS_
9AE5A76AC in GO:0009312) and genes involved in the biosynthesis
of thiamin (GO:0009229). Sucrose phosphatases mediate the last step
in the biosynthesis of sucrose, the plants main transport form of car-
bohydrates. We also found elevated sucrose levels in our metabolomics
experiment although only for DON-treated samples (Figure S4 and
Figure S5). Abundant sucrose is broken down to fuel the tricarboxylic
acid cycle (TCA) predominantly via glycolysis. The increased biosyn-
thesis of thiamin relates to key enzymes in glycolysis and the TCA,
pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, which re-
quire thiamine diphosphate as cofactor.

To further expand on these observations we evaluated changes in
transcript and metabolite abundances associated with F. graminearum/
DON treatments in the respiratory chain and in the metabolism of
glutamate. We extracted the expression profiles of all genes encod-
ing for respective protein functions and generated eigengenes for
each group of genes as the representative expression value. The
expression of genes in glycolysis and the TCA cycle was strongly
associated with F. graminearum2inoculated samples (Figure 3 and
Table S9). In addition, the expression of genes encoding key en-
zymes in the pentose-phosphate pathway, glucose-6-phosphate
dehydrogenase, and gluconate-6-phosphate dehydrogenase were
strongly linked to pathogen treatment. The pentose-phosphate path-
way provides an alternative route for the breakdown of hexoses
into glycerinaldehyde-3-phosphate. It also generates nicotinamide
adenine dinucleotide phosphate and erythrose-4-phosphate re-
quired in the shikimate pathway and ultimately for the production
of phenylpropanoids. Despite increased abundances in transcript
levels the corresponding metabolite levels in the glycolysis and
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pentose-phosphate pathway remain mostly unchanged (Figure 3,
Figure S4, and Figure S5).

Differences for Qfhs.ifa-5A in the TCA and the
metabolism of glutamate
The metabolism of glutamate as a means to procure nitrogen for the
biosynthesis of amines includingaminoacidsdependson the availability
of the TCA intermediate 2-oxoglutarate, which serves as a link to the
TCA cycle. Genes of the TCA cycle and the metabolism of glutamate
were in general responsive to the pathogen, yet distinct differences
existed for lines harboring Qfhs.ifa-5A2related differences (Figure 4):
Ammonia assimilation is mediated by glutamine synthetases (GS) and
glutamate synthases (GOGAT), which generate glutamate from
2-oxoglutarate via glutamine. In plants the cytosolic (GS1) and the
chloroplastic (GS2) isoenzymes for GS are regulated differentially with
respect to tissue and external stimuli, assuring timely acquisition of
ammonium from different sources (Miflin and Habash 2002). Three
cytosolic GS1 genes showed increased transcript abundances in re-
sponse to the pathogen and also exhibited by far the greatest expression

rates as compared with 11 remaining wheat GS genes (Figure S6). For
the GOGAT, we found a similar response for five NADH-dependent
isozymes but not for cytosolic ferredoxin-dependent GOGAT (I in
Figure 4). The expression of these genes was more strongly associated
to the earlier infection time point 30 hpi in lines containing Qfhs.ifa-5A.
A closer inspection of interrelated genes showed greater transcript
abundances for many of them at 30 hpi forQfhs.ifa-5A: This included
most of the genes encoding TCA cycle steps as well as glutamate de-
hydrogenases andmalic enzymes (II and III in Figure 4 and Table S9).
Cytosolic malic enzymes provide additional pyruvate to the TCA cycle.
The required malate originates from oxaloacetate, which most likely
stems from the also strongly F. graminearum2responsive phospho-
enolpyruvate carboxylase (Table S6 and Table S9). Yet, the largest
QTL-effects were observed for pyruvate dehydrogenases and malate
dehydrogenases (IV and V in Figure 4), which did not exhibit earlier
expression for the QTL but showed strongly reduced expression levels
at 50 hpi in lines harboring Qfhs.ifa-5A. Abundance pattern of metab-
olite intermediates for these pathways reflected the observed differences
in expression levels: Glutamate and aspartate levels were changed after

Figure 2 Coexpression network modules. RNA-
seq data were clustered into modules by inferring a
weighted coexpression network. (A2F) Selected
modules characterized by a general response to
the fungus or are specific for QTL. The module
eigengene panels (left) summarize the module-wise
expression (Fg: treatment with F. graminearum, M:
mock treatment, 30: 30 hpi, 50: 50 hpi; blue: NIL1,
green: NIL2, purple: NIL3, orange: NIL4). Pie charts
give the ratios of genes contributed by the indi-
vidual subgenomes for the entire module (left)
and for intramodular hub genes (right).
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DON and F. graminearum treatment only for lines without the QTL
(NIL2 and NIL4), whereas glutamine and asparagine levels in these
lines were only changed in response to DON (Figure 3 and Figure 4).
Within the TCA cycle malate levels (in response to DON) and citrate/
isocitrate levels were similarly affected (Figure 4).

Protein ubiquitination, elevated levels of tRNA ligases
and amino acids characterize the specific response to
the ribotoxic effect of DON
Module B was specific for genes expressed 50 hpi with the pathogen
(Figure 2B). Independent studies demonstrated that at this time point
the fungus has switched from the initial biotrophic growth to the for-
mation of infection hyphae (Pritsch et al. 2000) and started to produce
greater levels of DON (Audenaert et al. 2013). DON inhibits protein
biosynthesis by interaction with the ribosomal 60S subunit and induces
apoptosis via a mitogen-activated protein kinase-activated ribotoxic
stress response (Pestka 2010). Accordingly, GO terms in module B
were significantly enriched for terms relating to “oxidation reduction”
(GO:0006979) and “translation” (GO:0006412) (l Table S8). The latter
predominantly included genes encoding ubiquitin-60S ribosomal pro-
tein L40 fusion proteins. These fusion proteins act in ribosomal assem-
bly and free ubiquitin acts in targeting nonfunctional proteins and
unfinished peptide chains to the proteasome (Finley et al. 1989). Both
mechanisms may be an active response to the effects of DON. Highly
enriched genes within this module encoded for translation initia-
tion factors (GO:0006413) and tRNA ligases (i.e., GO:0043039,
GO:0034660), which mediate the transfer of amino acids to the expand-
ing peptide chain in translation. All tRNA ligases showed strong associ-

ations to F. graminearum-inoculated samples with the exception of
glycine tRNA ligases where none of the encoding genes were greater
expressed in response to the pathogen (Table S6 and Table S9). We
recorded high scores for most proteinogenic amino acids in the DON/
mock comparison indicating higher abundances in the DON-inoculated
samples, which has been amajor finding in our previous analysis (Warth
et al. 2015). Several proteinogenic amino acids were also found changed
in F. graminearum-inoculated samples albeit less pronounced (Figure 3,
Figure S4, and Figure S5). These elevated levels derive from increased
biosynthesis as reflected by the increased abundance of transcripts cor-
responding to most key amino acid biosynthesis genes (Figure 3, Table
S6, and Table S9) except for asparagine synthase (asparagine), pyrroline-
5- carboxylate reductase (proline), 3-phosphoserine phosphatase (serine)
and dihydrodipicolinate synthase (lysine).

QTL-specific modules and candidate genes emerging
from the coexpression network
We identified several modules specific for either QTL: Modules C (162
genes,Qfhs.ifa-5A) and D (179 genes, Fhb1) showed significant expres-
sion differences between lines differing in the respective QTL (Figure 2,
C and D). A chromoWIZ analysis showed that both modules were
enriched for genes located on chromosomal regions harboring the re-
spective QTL (Figure S7; Nussbaumer et al. 2014b). Hub genes were
almost entirely located on the A and the B subgenomes harboring the
respective QTL (Figure 2, C and D).

Hub gene expression profiles in module D characterized constitu-
tively expressed genes for Fhb1-containing lines regardless of treat-
ment or time point. Among the greatest expressed genes mapping to

Figure 3 Changes in the primary metabolism in
response to F. graminearum and DON. Metabo-
lites quantified by gas chromatography-mass
spectrometry are set in black, and nonmeasured
and nondetected metabolites are set in gray.
Treatment-responsive metabolites (DON and
F. graminearum (Fg); Table S2) in the individual
lines are indicated by color (blue: NIL1, green:
NIL2, purple: NIL3, orange: NIL4). Levels of me-
tabolites set in red were strongly changed in re-
sponse to DON or F. graminearum (average
score greater than 10). Genes with significantly
changed transcript abundances are indicated by
arrows/lines set in gray, whereas dashed lines
indicate no significantly changed transcript in
any line. �Citrate and �isocitrate could not be
distinguished due to chromatographic coelution.
�Tryptamine levels were at or below the methods
detection limit in most samples and thus could
not be safely quantified.
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chromosome 3B are several protein kinases (Traes_3B_9985A569B,
Traes_3B_ADCF93AE0, Traes_3B_E81A8FACB), a leucine-rich re-
ceptor protein (Traes_3B_CE31EE51C) and beta-fructofuranosidase
(Traes_3B_61E72DF24), and a gene encoding an unknown protein
(Traes_3B_908129DB2). Additionally, Traes_3DS_2BD8DC857, encod-
ing an F-box protein, did not map to chromosome 3B of the FHB
susceptible reference cultivar Chinese Spring (Figure S8).

Several genes in module D also showed differential expression in
response to F. graminearum: Traes_3B_3A70D33A6, a receptor-like
protein kinase, and Traes_3B_6A585354F, a protein kinase, were sig-
nificantly changed in response to the pathogen at 50 hpi and thus
should also be considered likely candidates. Traes_7BS_5A4110BB1, a
highly expressed and Fhb1-specific MATE-efflux pump, maps to chro-
mosome 7B and could be a likely downstream target of Fhb1-activity
(Figure 5A).

A second Fhb1-related module E (87 genes) included genes greater
expressed in Fhb1 lines at 50 hpi after inoculation with the pathogen
(Figure 2E). Most genes within module E exhibited low transcript
abundances, and we found no enrichment for 3B-mapped genes. Po-
tentially, this module includes downstream targets of the QTL activity.
Two genes emerge from this list as they were more abundant in re-
sponse to the pathogen and mapped onto 3BS: Traes_3B_5088D482E
a SINA-like 11 E3 ubiquitin-protein ligase, and Traes_3B_6E28B451A
(unknown protein, Figure 5B). Of these, Traes_3B_5088D482E is the
only gene in our analysis, differentially expressed also for 30 hpi in Fhb1
containing lines. GO enrichments for either module D or module E did
not allow deducing biological functions of Fhb1-related downstream
targets.

Module C includes genes with significant expression differences
between lines differing in Qfhs.ifa-5A (NIL1 and NIL3 compared with
NIL4). In contrast to genes in module D, none of the 162 genes within
module C were also changed for F. graminearum treatment. The set
of 5A-mapped genes therein shows a constitutive expression pattern
for Qfhs.ifa-5A and contains 50 genes (Table S10). Among these
we identified two amino acid permeases (AAP, isoforms 8,
Traes_5AS_073CAB1CC and 6, Traes_5AS_776E1FEE4, Figure 5C).
However, Traes_5AS_776E1FEE4 showed overall low expression levels.

Our network contained no module for genes with pathogen-specific
expression changes for Qfhs.ifa-5A similar to module E for Fhb1, which
matches previous observations suggesting a constitutive mode of action
for the QTL (Kugler et al. 2013; Schweiger et al. 2013). Potentially, QTL-
associated and pathogen-responsive genes also could be too small in
numbers to formamodule by themselves. Consequently, such genes could
have been included in one of the pathogen-responsive modules. Two
genes were significantly changed for Qfhs.ifa-5A and F. graminearum-
treatment: Traes_5AL_5127CEB66module B, flavin-containing monoox-
ygenase) and Traes_5AL_A80AD7FF8 (module A, calmodulin-binding
protein, Figure 5D). Alternatively, a susceptibility factor could be encoded
in non-Qfhs.ifa-5A lines. Such genes and the downstream targets of such
a factor might be included in module F (161 genes), specific for
F. graminearum-inoculatedNIL2 andNIL4 samples at 50 hpi (Figure 2F).

A pronounced role of the D subgenome in the response
to F. graminearum

Twohybridization steps have resulted in three homoealleles formany of
the functional genes in allohexaploid bread wheat (Marcussen et al.

Figure 4 QTL-associated differential transcript and metabolite abundances in the glutamate metabolism. Metabolites quantified by GC-MS are
set in black, and nonmeasured and nondetected metabolites are set in gray. Treatment responsive (DON and F. graminearum (Fg); l Table S2)
metabolites in the individual lines are indicated by color (blue: NIL1, green: NIL2, purple: NIL3, orange: NIL4). Green arrows/lines highlight genes
with increased expression at 30 hpi for Qfhs.ifa-5A, red lines represents decreased expression at 50 hpi for Qfhs.ifa-5A. These expression
differences are visualized for the isogene families by eigengene values (I-V). The individual NILs are distinguished by color. The four bars per
line represent F. graminearum2inoculated samples at 30 and 50 hpi and mock-treated samples at 30 and 50 hpi from left to right.
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2014). The consequent functional plasticity enabled reprogramming
the individual subgenomes contributions to best meet environmental
challenges including the response to pathogens (Feldman and Levy
2012). We hypothesized that redundant functions within homeoalleles
are regulated differentially also in response to pathogen attack. Copies
from single subgenomes may contribute in an additive manner, may
have diverging expression patterns, have either been shut down, giving
rise to expression dominance from one or two subgenomes, or alter-
natively been subjected to subfunctionalization. We observed an un-
balanced genome-wide distribution of F. graminearum2responsive
greater expressed genes. Significantly more genes than expected were
differentially expressed in the D subgenome and fewer in the A sub-
genome (Figure S9).

After these observations, we hypothesized redundant functions
within homeoalleles are regulated differentially. To inspect differential

contributions to a putative similar functionality by subgenomes, we
employed a set of8605homeologousgene triplets (25,815genes).Triplet
genes are genes with a mutual best match to genes in the other two
subgenomes. They have been used previously for characterizing gene
expressionbias in differentwheat organs and the developing endosperm
(Mayer et al. 2014; Pfeifer et al. 2014). In our data 1384 (16%) triplets
had at least one member residing in the coexpression network.
Depending on the genotype, up to 15% of all triplets included at least
one pathogen-responsive differentially expressed gene at 50 hpi. Only
for 25% of these triplets all three copies were differentially expressed
(Figure S10A), suggesting a tight regulation of the resource-
intensive defense response. All subgenomes contributed equally to
the number of differentially expressed genes in triplets with only
one pathogen-responsive member at 30 hpi (Figure S10B). At 50 hpi,
we found a significant deviation from the expected distribution for lines

Figure 5 Gene expression profiles of QTL candidates. (A) Fhb1-associated and F. graminearum2responsive genes in module D; (B) Fhb1-
associated and F. graminearum-responsive genes mapped to chromosome 3B in module E; (C) Qfhs.ifa-5A2associated constitutively expressed
amino acid permeases in module C and (D) Qfhs.ifa-5A2associated, F. graminearum2responsive genes. Means of FPKM values are given for
each tested experimental condition (NIL1-4, F ... F. graminearum2inoculated, M ... mock-treated, 30/50 ... 30/50 hai).
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lacking Qfhs.ifa-5A (NIL 2 and NIL 4). Here the contribution of sub-
genome A dominated over contributions from subgenomes B and D.

To investigate some of the dynamics in the observed gene expression
bias, we inferred a gene coexpression network for triplet genes. Expres-
sionbias between the three subgenomeswas thencapturedbyaweighted
average and nodes were colored according to this average (Figure 6A).
The network contained eight modules with distinct expression patterns
(Figure 6B and Figure S11). Most of the modules were defined by the
expression in one dominant subgenome or by the pair-wise domination
of the AB, BD, or respectively the AD subgenomes. One module of the
triplet network included triplets with strong transcriptional responses
to F. graminearum at 30 hpi and 50 hpi (highlighted in Figure 5, A and
B). For genes within this module, responses were more pronounced for
triplet members in the D subgenome, whereas the A and B subgenome
contributed about equally in expression strength (Figure 6C). With
respect to the D subgenome dominance, no differences between the
four NILs were observed within this module (Figure S12). To investi-
gate whether the more-pronounced reaction of the D genome is also
reflected by the greater expression of pathogenesis-related genes, we
observed expression differences for genes encoding NB-ARC domains
(IPR002182). Although the number of gene family members are dom-
inated by the A and the B subgenome, genes from the D subgenome are
significantly greater expressed than homeoalleles from the A subge-
nome and in many cases also than those from the B subgenome (Figure
S13 and Table S11). Similar observations were made for the NBS-LRR
genes, although the differences were not as pronounced (Figure S14 and
Table S11). Overall, our observations indicate a pronounced role of the
D subgenome in response to F. graminearum.

DISCUSSION

Combined analysis of metabolomics and
transcriptomics data
The recent release of the bread wheat reference genome sequence and
annotation includes an almost-complete wheat gene set sorted into
chromosome-arms (Mayer et al. 2014). Both features, the completeness
of the resource, and the possibility to assign these genes to genomic
regions surpasses by far any previous reference gene sets as a mapping
reference for RNA-seq studies. This significantly improved mapping
reference, combined with metabolomics data after inoculation with
DON (Warth et al. 2015) and novel metabolomics data after inocula-
tion with F. graminearum, was the main motivation for this study and
for revisiting existing data. All of the included experiments used the
same F. graminearum isolate and bread wheat near-isogenic material
(differing in Fhb1 and Qfhs.ifa-5A) and are based on similar protocols
for infection and tissue harvesting. Differences existed in the applied
amount of spores between the transcriptomics experiment (500 conidia
spores/floret) and metabolomics experiment (100 conidia spores/
floret). Both concentrations suffice to successfully establish infection.
In many biological reactions a stress trigger level must be reached to
initiate a process. In complex processes it is often advantageous that
all consecutive steps of a response occur automatically and are more
or less “programmed.” Applying sufficient conidia to initiate the plant
response probably will trigger the whole process. Therefore we do
not expect significant differences in the recorded metabolomics and
transcriptomics data sets (an example for phenylalanine and is given
in Figure S15). Comparable transcriptomics andmetabolomics studies
have used a wide range of concentrations from 200 to 1000 conidia/
floret to elicit a defense response to FHB (Jia et al. 2009; Gottwald et al.
2012; Foroud et al. 2012; Zhuang et al. 2013; Schweiger et al. 2013;
Steiner et al. 2009; Gunnaiah et al. 2012; Diethelm et al. 2012). How-

ever, we cannot fully exclude the possibility that the observed metab-
olite changes, i.e., for amino acids may have been recorded earlier at
greater inoculum concentrations. The Bayes score reporting differences
in metabolite abundances between treatments considers all time points
by comparing differences between models of individual treatments.
Possibly, earlier changes resulting from greater concentrations would
have influenced the time course models resulting in higher scores in-
dicating even larger differences to the control mock models. However
these changes would not alter the reported results here, as difference in
score may also reflects the delay in/of metabolite changes but certainly
highlights the presence of underlying metabolism.

In a previous transcriptomic study (Schweiger et al. 2013) we used
very early and late time points for expression analysis (8, 24, and 72
hpi). Although the early time points provided only few differentially
expressed genes, at 72 hpi a large and general response was detected for
the susceptible lines. Apparently, resistance relevant reactions likely
happen before 72 hpi. In the present study we chose two earlier time
points, 30 and 50 hpi, to better capture the resistant reaction with two
time points that encompass the onset of the production of larger
amounts of DON (Pritsch et al. 2000, Audenaert et al. 2013). Fhb1 is
closely linked to resistance against DON and given the investigated
NILs segregating for Fhb1 these time points are appropriate to inves-
tigate related changes. The present metabolomics data describe five
time points covering a time span of 96 hr and thus embraces both
critical time points captured by RNAseq. Although the individual time
points (0, 12, 24, 48, 96 hpi) do not overlap perfectly with 30 and 50 hpi
measured in the transcriptomics experiment, they allow modeling a
dynamic behavior which can be brought into context with the mea-
sured gene expression data. We approached this by avoiding direct
comparisons between data sets at specific time points, but compare
single time point observations for the RNAseq data with the time
course-derived Bayesian score. As such the scores are time-point in-
dependent and provide a very reliable means to report changes in re-
lation to treatment.

We analyzed the gathered data on different tiers: I. Given that our
metabolomics analysis focused on metabolites derived from the well-
annotated primary metabolism, we were able to integrate genotype-
specific changes in metabolite abundances with differential transcript
abundances of genes involved in the respiratory chain, glutamate me-
tabolism, and amino acid biosynthesis. II. Homeoalleles of hexaploid
bread wheat can be identified in the chromosome-sorted IWGSC gene
set. We made use of these to investigate differences in the subgenome-
wise contributions todefense response. III.Comparedwithour previous
analysis (Kugler et al. 2013), the gene coexpression network here in-
cludes significantly more genes, as a result of the IWGSC bread wheat
reference genome sequence, and allows allocating genes to their corre-
sponding genomes. Therefore, we can provide a more complete and
detailed picture on the genome-wide pathogen response and the cor-
responding dynamics.

In line with our previous observations in Kugler et al. (2013) two
network modules, representing an early and a late response to the
pathogen, were found in the coexpression network. Given the improved
gene annotation, we could now further refine these data and provide
a more comprehensive functional description of the corresponding
genes and the respective pathways, while also taking subgenome con-
tributions into account. For instance, using the current bread wheat
annotation, we identified a pathogen-responsive network module (B)
enriched forWRKY transcription factors (one-sided Fisher’s test based
on the human readable description line; FDR-adjusted P , 0.001). In
our previous study, such enrichment was also observed for such a
generally pathogen responsive network module. Moreover, expanding
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in comparison with the previous approach, we were able to detect
and characterize QTL-specific modules, which were investigated for
F. graminearum-responsive genes mapping to chromosome-arms har-
boring the respective QTL.

Increases in respiration and amino acid biosynthesis as a
response to F. graminearum and DON
The plant defense against pathogens requires the de novo synthesis of a
plethora of secondary metabolites and defense-related proteins as well
as the fortification of cell walls and antagonizing the effects of oxidative
stress (Walter et al. 2010). As such, it is energy intensive and requires
elevated rates in respiration (Bolton 2009). Mounting a successful de-
fense responsemay rely on the efficiency of thesemechanisms to supply
the required substrates, but alterations in the primary metabolism have
also been suggested to contribute to defense by themselves (Schwachtje
and Baldwin 2008). For instance, glucose and hexokinase activity in-
duce PR genes in Arabidopsis thaliana (Xiao et al. 2000), whereas
silencing of the hexokinase 1 inNicotiana benthamiana led to increased
levels of H2O2 and programmed cell death2associated transcripts
(Kim et al. 2006). Also, much evidence has been gathered for similar
mechanisms involving the metabolism of several amino acids as well as
lipids and the photorespiratory chain (Rojas et al. 2014). Our analysis
aimed to reconstruct such activities in the bread wheat respiratory
chain, in glutamate metabolism and in the biosynthesis of amino acids.

We found glycolysis, the pentosephosphate pathway, and the TCA
cycle strongly induced in response to the pathogen, which might be
fueled by the invertase-mediated cleavage of sucrose into glucose and
fructose. The greater turnover rates in these pathways were visible in
increased transcript abundances despite the—in many cases—
unchanged pathway intermediate metabolites. In this respect, the re-
sponse to F. graminearum is similar to the general model of the plant
primary metabolism under pathogen attack (Bolton 2009). Upon car-
bon starvation, plants may procure additional carbon from abundant
amino acids for respiration (Araújo et al. 2011), but this seems not to be
the case in the wheat/F. graminearum interaction. Warth et al. (2015)
have reported increased amino acid abundances in response to DON,
hypothesizing that this may either be due to the increased biosynthesis
of amino acids or that amino acids stem fromdegradation of unfinished
peptide chains as a consequence of the ribotoxic effect of DON. In the

gene expression data, we found strong indications for the increased
biosynthesis of amino acids, likely reflecting the efforts of keeping up
the protein biosynthesis to counteract the effect of DON.

Key biosynthesis genes for all amino acids except proline, lysine,
serine, and asparagineweremore abundant in response to the pathogen.
Although we did not find evidence for the increased biosynthesis of
serine or proline in the transcriptomic data, DON-inoculated samples
showed strong differences in the abundance of serine and proline
compared with mock treatment as indicated by the Bayes score (high-
lighted in red in Figure 4). Levels of both amino acids are strongly
increased after treatment with DON (Warth et al. 2015). In particular,
proline was reported to be more abundant under different stresses
(Sharma and Dietz 2006). Proline accumulated in tissues surrounding
hypersensitive lesions caused by Pseudomonas syringae on Arabidopsis
thaliana, leading to the assumption that it may play a role in quenching
free radicals (Fabro et al. 2004). It also holds a role in nitrogen transport
in the phloem, as its levels are possibly linked to GS1 activity (Brugière
et al. 1999). Other proteinogenic amino acids such as the phenolic
amino acids and amino acids derived from aspartate were also highly
changed in response to DON. Yet, aspartate itself, as well as the func-
tionally linked pools of asparagine, glutamine and glutamate, were
largely unchanged. Glutamate pools remain largely unchanged under
stress conditions (Forde and Lea 2007), andwe speculate that this could
also be true for the closely linked aspartate. Glutamine and asparagine
levels in contrast can be subject to change due to active influx of these
compounds as nitrogen-sources into the sink tissue (Masclaux-
Daubresse et al. 2006). Other amino acids with less pronounced
changes such as serine or alanine may in fact be remobilized into the
respiratory chain as suggested by (Araújo et al. 2011). Concerning the
suggested two alternative models for increased amino acid abundances
(Warth et al. 2015) our combination of transcriptomic and metabolo-
mic data provided clear evidence that a higher tRNA-ligase activity is
supported by increased amino acid biosynthesis - yet not all amino
acids biosynthesis pathways are similarly affected.

Increased activity in the glutamate metabolism: a
possible role for Qfhs.ifa-5A2mediated resistance?
Our previous study (Kugler et al. 2013) found the activity of glutamate
regulated Ca2+ channels associated with Qfhs.ifa-5a. Now using the

Figure 6 Coexpression analysis of homeologous triplet genes. A set of conserved triplet genes, with one copy per subgenome (A, B, and D) was
used to investigate genome-specific expression behavior and dosage effects in a triplet-based coexpression network. (A) Coloring the network nodes
by expression contributions from individual genomes highlighted regions where the combined triplet expression is dominated by a single or two
genomes. (B) The triplet network was split into triplet network modules with specific expression patterns for genome expression bias (Figure S11). (C)
The boxplots show subgenome-wise expression strength of triplet members in a F. graminearum-responsive triplet module (highlighted in A and B)
under the given conditions for NIL1 (Fg: treatment with F. graminearum; M: mock treatment; 30: 30hpi; 50: 50 hpi). Within this module, expression in
response to the fungus was dominated by the D subgenome, which was also observed for NIL2, NIL3, and NIL4 (Figure S12).
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almost complete bread wheat genes, we were able to fully reconstruct
changes in the glutamatemetabolismduring defense. TheF. graminearum-
responsive GS1 and NADPH-dependent GOGAT genes are not part
in metabolizing newly synthesized ammonium from photosynthesis
but facilitate the transport of nitrogen in the form of glutamine
through the phloem into sink/infected tissue (Masclaux-Daubresse
et al. 2010). Seifi et al. (2013) suggested two different roles in pathogen
defense for the metabolism of glutamate, which may either act toward
depleting infected tissue from nitrogen compounds to prevent these
from being scavenged by the pathogen or it may assist the cell to endure
the disease by hauling energy equivalents into the infected tissue. The
latter is characterized by the increased activity of the GOGAT/GS cycle,
the GABA shunt, and glutamate deyhdrogenase genes, whereas aspar-
tate transaminases and asparagine synthases are less active. Our data
suggest the breadwheat defense against F. graminearum aims to endure
the disease by strengthening the TCA cycle and supplying carbon/
nitrogen for the biosynthesis of secondary metabolites: GS1-generated
glutamine enters the infected tissue as an additional carbon and ni-
trogen source. In sink tissue glutamine is metabolized to glutamate
by NADH-dependent GOGAT and then further decomposed into
2-oxoglutarate by the also highly F. graminearum-responsive glutamate
dehydrogenases (GDHs). AlthoughGDH can perform the reverse reac-
tion to additionally assimilate ammonium under given conditions, the
more likely reaction is the deamination of glutamate into 2-oxoglutarate
as an anaplerotic reaction to fuel the TCA cycle (Masclaux-Daubresse
et al. 2006). Abundant ammonium from GDH activity may be reused
by GS1 located in the infected tissue.

Several of these described genes showed differential expression
patterns for lines differing in Qfhs.ifa-5A. Transcript abundances for
NADPH-GOGAT and GDH genes were greater in F. graminearum2
treated samples at 30 hpi for lines harboring Qfhs.ifa-5A. Potentially,
these lines react earlier to the influx of glutamine and provide earlier an
increased amount of 2-oxoglutatare to the TCA cycle (II, III, and V in
Figure 4). Such differences also were observed for several TCA cycle
genes (aconitases, citrate synthases, succinate dehydrogenases) as well
asmalic enzymes, which provide additional pyruvate for the TCA cycle.
Similarly, associated metabolite levels are changed in response to DON
and the fungus only for lines lacking this earlier reaction, which we
observed for the Qfhs.ifa-5A-lines (Figure 4). TCA intermediate sub-
stances are subject to high turnover rates and concentrations tend to be
stable (Sweetlove et al. 2010). The required increased flux in response to
the pathogen seems to be more efficiently met by the earlier action of
Qfhs.ifa-5A-lines. In contrast, the adaptation to F. graminearum in
non-Qfhs.ifa-5A lines leads to the observed changes in pool levels.
However, the large variances in the measurements of metabolites do
not allow a further interpretation of the present data. Not all genes
changed for Qfhs.ifa-5A act earlier in response to the pathogen: Pyru-
vate dehydrogenases and malate dehydrogenases were less strongly
changed at 50 hpi in response to F. graminearum in Qfhs.ifa-5A con-
taining lines (Figure 4). How these expression patterns fit into the
proposed mechanism remains unclear. For a more detailed interpreta-
tion of these observationsmore comprehensive, preferably longitudinal
expression profiles will be needed.

The observed changes for the TCA cycle and glutamate metabolism
could contribute to a greater “endurance” in Qfhs.ifa-5A lines and thus
be part the resistance mechanism encoded by the QTL. Among the
genes constitutively changed for the QTL encoded on 5A in module C
two amino acid permeases (AAP, isoforms 6, Traes_5AS_776E1FEE4
and 8, Traes_5AS_073CAB1CC) could contribute to the greater influx
of amino acids from the phloem and provide substrates for the ob-
served QTL-associated changes. In A. thaliana AtAAP6 regulates the

phloem amino acid composition and AtAAP8 is involved in seed de-
velopment (Tegeder and Rentsch 2010). AtAAP6 was reported to be
expressed in sink tissue with a high affinity for neutral amino acids and
other amino acids with acidic side chains (Hunt et al. 2010). Also
AtAAP8 has a high affinity to aspartate and glutamate (Schmidt
et al. 2007). Because of the potentially large pericentromeric introgres-
sion harboring the QTL many other genes that show constitutive ex-
pression differences cannot be ruled out as putative candidates. This list
(Table S10) also includes candidates from our previous studies
(Schweiger et al. 2013, Kugler et al. 2013) including a lipid transfer
protein, which shows among the highest expression differences.

Narrowing down single-gene candidates is aggravated
by the susceptible Chinese Spring mapping reference
We have made use of a combination of coexpression patterns, differ-
ential expression analysis, and chromosome location to narrow down
the list of candidates for Fhb1. Most genes specifically expressed for
Fhb1 exhibited a constitutive expression pattern (module D). Although
many of these genes map to chromosome 3B a closer inspection
showed that none of the modules hub genes mapped within close
vicinity of the genomic region carrying the susceptible Fhb1 locus
of cultivar Chinese Spring (contig ctg0954 [GenBank:FN564434]
(Choulet et al. 2010). It is unclear how large the introgressed region
carrying Fhb1 is. Possibly several of the reported genes are distant
from the locus and QTL unrelated: Mapping against the complete
3B chromosome sequence (Choulet et al. 2014) placed Traes_
3B_3A70D33A6, a receptor-like protein kinase, at position 10.095.372 bp
and Traes_3B_6A585354F, a protein kinase, at position 9.817.008 bp,
which is about 17 Mbp distal to the Fhb1marker Umn10 (27.605.772 bp).
Several other genes in module D mapped to ctg0954, but only three
within the QTL confidence interval between flanking markers Sts32
and Sts189. All three are only weakly expressed and corresponding
transcripts are more abundant in lines harboring the susceptible QTL
allele (Traes_3B_07980E2CE, Traes_3B_0D8C9A632, Traes_3B_CDF3C9680).
Similarly, candidates from module E, which groups Fhb1-specific
and F. graminearum2responsive genes (Traes_3B_5088D482E,
19.748.084 bp, SINA-like 11 E3 ubiquitin-protein ligase and
Traes_3B_6E28B451A, 4.483.234 bp, unknown) are too distant from
the marker to be considered candidate genes based on the Chinese
Spring reference.

The absence of closelymapped genes does not necessarilymean that
the elusive Fhb1 gene remains unrecognized by the IWGSC wheat gene
set, which is also based on the susceptible Chinese Spring cultivar. It
may be that the resistance gene is only present in the resistant genotype
and would not map onto the contig. Likely reads derived from genes
not represented in the gene set will map to close homologs or in case of
hexaploid wheat to the next homoelog on sister chromosomes should
they exist. For example Traes_3DS_2BD8DC857 specifically expressed
for Fhb1 containing lines maps to the homoelogous region of Fhb1 on
chromosome 3D. Possibly, the susceptible reference genotype Chinese
Spring lacks such a gene in the Fhb1 region and 3B-specific reads map
to this putative homeolog. The possible absence of this gene in the
susceptible cultivar Chinese Spring may derive from pseudogenization
or small chromosomal rearrangements (Bennetzen and Ramakrishna
2002), which may occur even between different varieties of the same
species (Feuillet and Salse 2009). Liu et al. have compared the synteny
of the genetically mapped locus of Fhb1 to the rice and barley physical
maps and did find evidence for rearrangements based on marker collin-
earity in this region (Liu et al. 2006). Possibly, the gene content and/or
gene order of the genomic region containing the resistant Fhb1 locus does
not follow the established Chinese Spring reference cultivar. This would
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also allow to hypothesize that candidate genes that mapped in this study
distant to the Fhb1 marker Umn10 in Chinese Spring could in fact be
locatedwithin theQTL confidence interval inFhb1-containing genotypes.

On the other hand, this study has considered high-confidence gene
models only. Low confidence genes in wheat comprise a large number,
more than 100,000, of putatively fragmented genemodels, pseudogenes,
and repeat associated elements for which little evidence for functionally
expressed gene products exist. In Schweiger et al. (2013) we have mea-
sured gene expression using the Affymetrix wheat GeneChip, yielding
four differentially expressed transcripts mapping to the region of Fhb1.
Two of these genes corresponded to low confidence genes (Ta.6066.2.
S1_a_at: Ta3bMIPSv2Loc009233; Ta.22694.1.A1_at: Ta3bMIPSv2-
Loc008006) and only one, Ta.28185.1.S1_at, had homology to a high
confidence gene (Traes_3B_05EEE7D3F1). This is also the only gene
mapping to the QTL confidence interval between markers sts32 and
sts189. All genes are expressed in a constitutivemanner for the absence/
presence of the introgressed QTL region, which matches the reported
findings. Traes_3B_05EEE7D3F1 is higher expressed for the susceptible
QTL allele. One of the reported differentially expressed probe sets
(TaAffx.12498.2.S1_at) was not included in either data set. Possibly
these low confidence genes are relevant for the QTL activity and should
be considered once the genomic region of a Fhb1-containing cultivar is
resolved and available.

Genetic approaches to map these genes in materials segregating for
Fhb1 are required to narrow down this list of candidates. Zhuang et al.
(2013) have mapped the expression traits of one out of 47 FHB in-
vestigated resistance candidate genes in an expression QTL study to the
Fhb1 locus (10.1094/MPMI-10-12-0235-R). However, a BLAST survey
of this putative resistance gene designated WFhb1_c1 showed that the
IWGSC gene set does not include a homolog on chromosome 3B and
also their mapped Fhb1 interval spanning more than 16 cM is large.

Imbalances in subgenome expression contribution
Polyploidization events present a form of “genomic shock,” which leads
to increased transposable element activity and epigenetic silencing
(Wendel 2000). Such effects may also be reflected in the expression
patterns and the interplay between the A, B, and D subgenomes. An
imbalance in the number of disease-resistance genes has been described
for tetraploid and hexaploid wheat, with the highest number of genes
stemming from the B subgenome (Feldman et al. 2012; Fahima et al.
2006; Peng et al. 2003). Based on the IWGSC annotation, most members
of two defense-related gene families were encoded on the A and B sub-
genomes (Mayer et al. 2014). This distribution does not correspond to
findings in our data, where in terms of gene expression contributions to
the defense response from the D and the B subgenomes dominated over
contributions from the A subgenome. Such expression observations
might be affected by differences in total gene numbers on the subge-
nomes. To address this we eliminated this bias by considering only the
1:1:1 homoelogous triplet genes in the triplet gene coexpression network,
which showed that genes from the D subgenome are more abundant in
response to the pathogen than their A and B counterparts. From these
observations and the hub gene-specific subgenome distribution in mod-
ules A and B we reason that subgenome D contributions may play a
decisive role in overall resistance to F. graminearum. This hypothesis
could relate to the overall high susceptibility to FHB of tetraploid durum
wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, AABB). Only single
lines have been described which harbor intermediate levels resistance to
FHB (Huhn et al. 2012; Prat et al. 2014). Because durum and bread
wheat share the same ancestral A and B subgenomes, the added resis-
tance in bread wheat may stem from D subgenome contributions. Al-
though, most of the relevant resistance QTL in T. aestivum have been

mapped to the A or B subgenome (Buerstmayr et al. 2009), resistances
encoded on the D subgenome may well play decisive roles: The D sub-
genome is much less polymorphic due to its evolutionary only recent
addition to wheat and thus resistance contributors may not be segregat-
ing in mapping populations. An indication for its relevance comes from
Aegilops tauschii, the contributor of the D subgenome to wheat, which
has been used widely in the generation of synthetic hexaploid wheats
from crosses with tetraploid species such as Triticum turgidum. The
addition of the D subgenome has improved resistances against a variety
of biotic and abiotic stresses including resistance against FHB in com-
parison to the tetraploid parental line (Mujeeb-Kazi et al. 2008).Whether
these resistance genes are in effect in T. aestivum remains to be shown.
However, we also observed a slight bias toward the A genome for triplets,
where only a single copy was responsive to the pathogen. Overall, it
appears that the response to the pathogen is distributed between the
different subgenomes, and more data is needed to generalize findings
of subgenome bias in the context of bread wheat pathogen response.
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