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Abstract

As one of data mining techniques, outlier detection aims to discover outlying observations
that deviate substantially from the reminder of the data. Recently, the Local Outlier Factor
(LOF) algorithm has been successfully applied to outlier detection. However, due to the
computational complexity of the LOF algorithm, its application to large data with high dimen-
sion has been limited. The aim of this paper is to propose grid-based algorithm that reduces
the computation time required by the LOF algorithm to determine the k-nearest neighbors.
The algorithm divides the data spaces in to a smaller number of regions, called as a “grid”,
and calculates the LOF value of each grid. To examine the effectiveness of the proposed
method, several experiments incorporating different parameters were conducted. The pro-
posed method demonstrated a significant computation time reduction with predictable and
acceptable trade-off errors. Then, the proposed methodology was successfully applied to
real database transaction logs of Korea Atomic Energy Research Institute. As a result, we
show that for a very large dataset, the grid-LOF can be considered as an acceptable approx-
imation for the original LOF. Moreover, it can also be effectively used for real-time outlier
detection.

Introduction

As one of data mining techniques, outlier detection aims to discover outlying observations
that deviate substantially from the reminder of the data. Identifying an outlier is an important
task in many applications because an outlier frequently contains useful information on abnor-
mal behavior in a system, possibly generated by a different mechanism [1-2].

Recently, the Local Outlier Factor (LOF) algorithm has been successfully applied to outlier
detection [3]. The LOF algorithm is a density-based algorithm that detects the local outliers of
a dataset by assigning a degree of outlierness, called the local outlier factor (LOF), to each
object [4-5]. In the LOF algorithm, data points with a lower density than their surrounding
points are identified as outliers [3].

As the LOF algorithm can detect “local” outliers regardless of the data distribution of nor-
mal behavior [3], it has been applied to various applications including network intrusion
detection and process monitoring [6-7]. Due to the computational complexity of the LOF
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algorithm, however, its application to large data with high dimension has been limited. This
issue can be more critical for real-time application systems.

The complexity issue can be addressed from two perspectives [8]. The computation time of
LOF grows exponentially with the number of dataset dimensions #, called the “Curse of
Dimensionality”. For high-dimensional data, the complexity frequently becomes O( )[4].
Thus, efforts have been made to reduce computational complexity related to high-dimensional
data. Singular Value Decomposition (SVD) [9-10], Karhunen-Loéve (KL) [11], and FastMap
[12] have been proposed. Aggarwal and Yu [1] proposed a Genetic Algorithm that can deter-
mine the optimal projection for dimensional reduction in outlier detection of high-dimen-
sional data.

The second approach relates to the computation of the k-nearest neighbors. The problem
of determining the k-nearest neighbors of a data point can be formulated as follows (Kim
etal., 2011): Suppose a dataset, S C R% is composed of n data points in d-dimensional real
space. For a given query object, g € R%, the problem is to determine the k number of objects
whose Euclidean distances from q are closest to the query object. The original LOF algorithm
by Breunig et al. (2000) [4] computed distances from the entire dataset to the query object and
sorted the distance data, resulting in large calculation time. To reduce the computation
required for the k-nearest neighbors, Kim et al. [8] utilized kd-tree indexing with approxi-
mated k-nearest neighbors.

The objective of this paper is to develop a methodology that reduces the computation time
required by the LOF algorithm to determine the k-nearest neighbors. An algorithm that
divides the data spaces in to a smaller number of regions, called as a “grid”, is proposed. To
examine the effectiveness of the proposed method, several experiments incorporating different
parameters were conducted. In addition to the datasets obtained from the UCI machine-learn-
ing repository [13], a real dataset composed of database transaction logs of KAERI (Korea
Atomic Energy Research Institute) was used in the experiments. The proposed method dem-
onstrated a significant computation time reduction with predictable and acceptable trade-off
errors.

Methods

In this paper, a grid-based LOF algorithm is proposed. The proposed algorithm divides the
data space into a smaller number of regions, called a grid, and calculates the LOF value of each
grid. Then, the LOF value of a grid is used to determine the LOF values of the data points that
belong to the grid.

The overall procedure of the proposed methodology is depicted as follows. Consider a data-
set, S € R? is composed of 1 data points in d-dimensional real space. Suppose that the number
of grids per dimension is set to k. The algorithm for computing the grid-LOF values of the data
points is as follows:

1. Divide the data space of each dimension in S into k equidistant intervals. Generate total k“
grids over the dataset.

2. Associate each data point x; € S with one of the grid indexes, j = {1,.. ,k%. If none of the
data points belong to a grid, the grid is not considered.

3. For each grid j in the dataset, calculate the grid centroid C;.

4. For each grid centroid Gy calculate the LOF, LOF(C)). For more detailed information for
computing the LOF value, please refer to [4] Breuning et al. (2000).

5. Determine the grid-LOFs for each data point. If x; belongs to grid j, then LOF(x;) = LOF(C;).
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Fig 1. Artificial Dataset. (A) 530 data points in two dimensional space. The majority of the dataset belongs to one of the three clusters. Cluster |: Bivariate
Normal distribution with mean (300,1000) with covariance 500. Cluster |I: Bivariate Normal distribution with mean (2000,0) with covariance 50. Cluster Il
Bivariate Normal with mean (3000,3000) with covariance 100000. The outlier point is generated by the uniform distribution. (B) LOF value of data points

(MinPts = 10).
doi:10.1371/journal.pone.0165972.9001

To illustrate the difference between the original LOF algorithm and the proposed algo-
rithm, consider a two-dimensional dataset consisting of 530 data points. The overview of the
data is illustrated in Fig 1A. As can be observed, the normal data points that are within ellipse
boundaries were generated from three bivariate normal distributions with different means and
variances. Conversely, the outliers that are outside of the ellipse boundaries were generated
from a uniform distribution. Fig 1B indicates the LOFs of each data point in Fig 1A. As can be
seen, the LOF values of the normal data are less than one, whereas the LOF values of the outli-
ers are greater than five.

Fig 2A and 2B illustrate the result of the grid-LOF method with the same data as Fig 1. As
indicated in this figure, each dimension is first divided into ten equidistant intervals, generat-
ing 10* grids for the data space. In contrast to the brute-force algorithm, the grid-LOF algo-
rithm only considers the grid centroid represented by the cross mark (+) in Fig 2A. Note that
the grids without data points are not considered for the LOF calculation. Fig 2B displays the
LOFs of each data point obtained by the grid-LOF method. In the next section, the perfor-
mance of the grid-LOF algorithm is evaluated through several real datasets.

Experiment

Four datasets were used to compare the performance of the original LOF algorithm and the
grid-LOF algorithm. All of these datasets were obtained from the UCI machine-learning
repository [13]. Table 1 provides an overview of the datasets. The purpose of the experiment
was to compare the performance between the original LOF algorithm and the grid-LOF
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Fig 2. Grid-LOF values of the dataset in Fig 1. (A) Grid centroids (k = 10). (B) LOF values of Grid centroids.
doi:10.1371/journal.pone.0165972.g002

algorithm. Although the grid-LOF algorithm could be more efficient than the brute-force algo-
rithm in terms of computation time, the LOF values obtained by the grid-LOF algorithm
could also lead to both Type 1 and 2 errors. However, if the quality deterioration of the LOFs
with the grid method remains at an acceptable level, the use of the grid-LOF algorithm can be
justified. In the experiment, recall and precision values at various parameters for each dataset
were used to examine the quality of LOF values produced by the grid-LOF.

As discussed in the previous section, the size of the grids, determined by the interval num-
ber k, can influence the performance of the grid-LOF algorithm. As the interval number k
increases the grid size decreases, which results in more calculation time and smaller approxi-
mation error. Thus, experiments were conducted with varying interval numbers, k.

The experiments were run on a 1.60 GHz, 4.00 GB PC. The code for implementation of
both the brute force LOF and grid-LOF algorithms were written in Python.

Improvement in search time efficiency

Fig 3 depicts the calculation time of the original and grid-LOF algorithms for the four datasets.
For each dataset, the x-axis represents different experiment scenarios with respect to interval
numbers (k = 5, 10, 20, and 30) defined for each dimension. The y-axis represents the

Table 1. Experiment Datasets.

Dataset # of instances # of attributes
Banknote Authentication (BA) 1372 5

Wilt 4889 6

Parkinson Telemonitoring (PT) 5875 19

Combined Cycle Power Plant (CCPP) 9568 5

doi:10.1371/journal.pone.0165972.t1001

PLOS ONE | DOI:10.1371/journal.pone.0165972 November 10, 2016 4/11



12;2;."'_(:’!; |C)NE

Outlier Detection Using a Grid

CCPP BA
4000 ¢ 100
3000 | 80
60 |
2000 | i
40
1000 | 00 |
0 — 0
& & N D o & N O N o
& N > > xS 0 3 > > Q
¥ & § § ¥ ® $ § S
PT Wilt
1800 800
1600 [
1400 F 600 F
1200 |
1000 | 400 |
800 |
600 |
400 f 200 F
200 | —
0 0 —
& > o P o & N Q N o
& S S > > O N > > Q
o e & § § ¥ °§ $ S

Fig 3. LOF calculation time (seconds) of brute-force algorithm and grid-LOF algorithm for four datasets.
doi:10.1371/journal.pone.0165972.9003

calculation time (seconds) of each experiment scenario. In the experiment, the number of
nearest neighbors was fixed at ten. As indicated, for the four datasets, the grid-LOF algorithm
was superior to the brute-force algorithm in calculation time. The time efficiency, though,
diminished as the grid number increased. In particular, when the interval number was 30, the
calculation time was virtually the same as the brute-force algorithm.

Fig 4 illustrates the computation time efficiency of the grid-LOF algorithm over the original
algorithm. The x-axis represents the interval numbers (k) defined for each dimension. The y-
axis represents the percent gain of the grid-LOF over the brute-force method. As indicated in
Fig 4, the time efficiency gain ranged from 1388.329 (Parkinson, grid = 30) to 0.931 (Wilt,
grid = 5). The efficiency gain effect was more significant with a larger grid size. The efficiency
gain gradually decreased as the interval value k increased. A greater interval value means that
the search space was subdivided into smaller grids, which resulted in less efficiency gain and
less approximation errors.

Fig 4 also depicts the time efficiency gain of the four datasets. Three datasets including
Banknote Authentication (BA), Wilt, and Combined Cycle Power Plant (CCPP) had a signifi-
cant time efficiency gain; Parkinson Telemonitoring (PT) had a moderate gain compared to
the other data sets. The moderate performance of Parkinson Telemonitoring (PT) data is
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Fig 4. LOF calculation time of brute-force algorithm and grid-LOF algorithm for four datasets.

doi:10.1371/journal.pone.0165972.g004

related to the large attribute number (19) of the data because the grid-LOF addresses the com-
putation complexity of the k-nearest neighbors, not the “Curse of Dimensionality”. Therefore,
the proposed algorithm can provide improved performance for low-medium dimensional data

with a large number of data points.

Effectiveness: Quality deterioration of the Grid-LOF

Fig 5 depicts the difference between the exact LOFs obtained from the brute-force method and
approximated LOFs obtained from the grid-LOF method for each dataset. On the horizontal
axis, the data points are sorted by the exact LOFs with decreasing order. The red curve repre-
sents the exact LOFs, while the lumpy blue curve represents the approximated LOFs. As indi-
cated in the figure, the LOFs from the grid-LOF algorithm are different from exact LOF values

not only in absolute scale but also in the order of LOF values.

In this study, the quality deterioration of the grid-LOF algorithm is compared with the orig-

inal algorithm in terms of precision and recall. A data point with greater original LOF value

than a predetermined threshold (marked by the horizontal dotted line in Fig 5) is considered
as a true outlier. Then, a data point with a grid-LOF value over the 90th percentile is selected

as a potential outlier.

Fig 6 and Fig 7 illustrate the precision and recall with respect to different interval numbers
for each dataset. As indicated, the solution quality deteriorates as a smaller number of grids are
used. When the interval number is five, the recall does not exceed 0.5 until the top 10 percent
grid-LOF values. This implies that virtually half of the true outliers cannot be predicted within
the top 10 percent grid-LOF values. The solution quality, however, increases rapidly when the
interval number increases up to ten. In all cases, more than 70 percent of the true outliers were

identified within a search of the top 10 percent data. If the interval number increases to 30,
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Fig 5. Difference between exact LOFs (brute-forced LOF) and approximated LOFs (grid-LOF).
doi:10.1371/journal.pone.0165972.g005

there is virtually no quality deterioration in the grid-LOF method. However, as indicated in
Fig 4, there is less efficiency gain when k = 30. Considering the trade-off between efficiency
and effectiveness, a strategy that accepts a minor quality deterioration in exchange for a faster
calculation is useful in situations requiring real-time outlier detection.

Fig 6 also displays the effect of the dataset on the quality deterioration. Parkinson, which
has the largest number of attributes (19), indicates reasonable performance over the other
datasets. This result is because the total grid number is greater than other datasets, although
each dimension is divided by the same intervals. Among the datasets with similar attribute
sizes (Banknote, Wilt, CCPP), CCPP outperformed the others.

Case Study

In this section, to further validate the proposed algorithm, experiments were conducted with a
real dataset with a large volume. In the present study, the database of transaction logs of
KAERI (Korea Atomic Energy Research Institute) were used. The dataset consisted of 297,019
records and 33 fields. For a further description of this dataset, please refer to [14].

The raw dataset set was preprocessed to allow it to be analyzed by the grid-LOF algorithm.
First, trivial data fields were manually removed. Among the 33 fields, seven fields were consid-
ered for the grid-LOF calculation. Table 2 represents the name and property of the selected
fields. Then, categorical or text values were converted into numerical values because LOF cal-
culations are based on real numbers. Moreover, each field was standardized to have a zero
means and unit variance. Finally, duplicated records were eliminated from the dataset. Conse-
quently, the preprocessed dataset contained 17,140 records with seven fields. The experiment

PLOS ONE | DOI:10.1371/journal.pone.0165972 November 10, 2016 7/11
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doi:10.1371/journal.pone.0165972.9006

was executed in the same environment as in the previous section. Similar to the previous
experiments in Sections 3, the number of nearest neighbor was fixed at ten.

First, we compared the computation time of the original and grid-LOF algorithms. Table 3
represents the calculation time of the original and grid-LOF algorithms with different grid
sizes. As indicated in the table, the calculation time was reduced dramatically by the grid-LOF
algorithm. The time efficiency gain ranged from 42.64 (k = 10) to 11.25 (k = 100). It is note-
worthy that there was minimal efficiency loss as the grid size decreased. One possible explana-
tion of this result is that the dataset had a dense structure where the majority of the data
records belonged to a few number of grids.

We also measured the solution quality of the grid-LOF algorithm. Data points whose original
LOF values were greater than the 99™ percentile were determined as true outliers. Then data
points whose grid-LOF values were greater than the 90™ percentile were considered as potential
outliers. Fig 8 displays the quality deterioration with the grid-LOF methods (k = 5, 50, and 100)
compared with the original method. As indicated in the figure, the solution quality increased
rapidly as the size of the grid decreased. When k = 100, the grid-LOF identified almost 80 percent
of the true outliers within a search of the top two percent of data. The precision rate increased up
to 90 percent until the 90™ percentile of the dataset. The result confirms that the grid-LOF algo-
rithm can enhance the time efficiency of outlier detection while maintaining solution quality.

PLOS ONE | DOI:10.1371/journal.pone.0165972 November 10, 2016 8/11
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Conclusion

To reduce the LOF algorithm’s computation time required for the k-nearest neighbors, a grid-
LOF algorithm that divides the data spaces into grids was proposed. A set of experiments
incorporating various parameters was conducted. The proposed method demonstrated a

Field Description Preprocess

dbdatasize Query size No treatment

dbipfrom Client IP Mapping IP to integer number

dbquerytype Type of query Mapping from “DML”, “DDL”, “DCL"to0 1, 2, 3

dbdurationtime | Response time (ms) No treatment

dbtable Table name used in query | Mapping from unique table name to unique integers (0,. ..,514)

dbcolumn Column name used in Mapping from unique table name to unique integers (0,. . .,759)
query

dbcommand Query command

doi:10.1371/journal.pone.0165972.t002

Mapping from “NULL”, “ALTER”, “COMMIT”, “ROLLBACK”, “UPDATE”, “DELETE”, “INSERT”, “SELECT"” to
0,....7
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significant computation time reduction with predictable and acceptable trade-off errors. Then,
the proposed methodology was successfully applied to real database transaction logs.

The main advantage of the proposed algorithm lies in its computational efficiency as it cal-
culates the LOF values based on the centroid of a grid instead of the entire set of data. Thus,
for a very large dataset, the grid-LOF can be considered as an acceptable approximation for the
original LOF. The efficiency gain of the grid-LOF was more significant when it was applied to
the real data.

Moreover, it can also be effectively used for real-time outlier detection. If the brute-force,
original LOF approach is assumed, the LOF value of every point must be recalculated and
updated every time new data points are added to the data set, often resulting in poor perfor-
mance. The grid-LOF can rapidly detect outlierness of new data points, as it can utilize a grid
structure of existing data points. In the grid-LOF, the LOF calculation of new data points only
requires the identification of the grid-location of the data points and no further calculations
are required.

However, this article also addressed some limitations of the grid-LOF. As discussed in Sec-
tion 4, the grid-LOF had only a moderate efficiency gain with high dimensional data. Thus,
the grid LOF is more appropriate for low-medium dimensional data with a large number of
data points. To further enhance the performance of the grid-LOF, the application of a
dimensionality reduction method such as Support Value Decomposition (SVD) to the grid-
LOF could be a suitable future research topic.

Author Contributions
Conceptualization: NWC.
Methodology: NWCJL.
Validation: NWC JL.
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