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Abstract

Background: Throughout Africa, food fermentations are still driven by indigenous microorganisms which influence
the nutritional, organoleptic and safety of the final products. However, for improved safety, consistent quality and
beneficial health effects, a trend has emerged which involves the isolation of indigenous strains from traditional
fermented products to be used as functional starter cultures. These functional starter cultures possess inherent
functional characteristics and can contribute to food quality and safety by offering one or more organoleptic,
nutritional, technological or health advantage (probiotics). With the aim of selecting potential probiotic starter
cultures, Lactobacillus fermentum strains isolated from fermented millet dough were investigated for technological
properties and probiotic traits in-vitro.

Results: A total of 176 L. fermentum strains were assessed for technological properties including rate of acidification,
exopolysaccharide production and amylase activity. Following this, 48 strains showing desirable technological
properties were first screened for acid resistance. Sixteen acid resistant strains were assessed for additional probiotic
properties including resistance to bile salts, bile salt hydrolysis, antimicrobial property, haemolysis and antibiotics
resistance. L. fermentum strains clustered into 3 groups represented by 36 %, 47 % and 17 % as fast, medium and
slow acidifiers respectively. About 8 %, 78 % and 14 % of the strains showed strong, weak and no
exopolysaccharides production respectively. Amylase activity was generally weak or not detected. After exposure of
48 L. fermentum strains to pH 2.5 for 4 h, 16 strains were considered to be acid resistant. All 16 strains were resistant
to bile salt. Four strains demonstrated bile salt hydrolysis. Antimicrobial activity was observed towards Listeria
monocytogenes and Staphylococcus aureus but not E. coli and Salmonella enteritidis. Lactobacillus fermentum strains
were generally susceptible to antibiotics except 6 strains which showed resistance towards streptomycin,
gentamicin and kanamycin.

Conclusion: In vitro determination of technological and probiotic properties have shown strain specific difference
among L. fermentum strains isolated from fermented millet dough. Sixteen (16) L. fermentum strains have been
shown to possess desirable technological and probiotic characteristics in vitro. These strains are therefore good
candidates for further studies to elucidate their full potential and possible application as novel probiotic starter
cultures.
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Background
The consumption of fermented foods contribute im-
mensely to human diet in many countries around the
world. Throughout Africa, food fermentations are still
driven by indigenous microorganisms in the raw ingredi-
ents [1–3] which influence the nutritional availability,
organoleptic quality and safety of the final products [4,
5]. However, for improved safety and the production of
fermented foods with consistent quality and beneficial
health effects, a trend has emerged which involves the
isolation of wild-type strains from traditional fermented
products to be used as functional starter cultures in food
fermentation [6, 7]. These functional starter cultures are
starters that possess inherent functional characteristics
and can contribute to food quality and safety by offering
one or more organoleptic, nutritional, technological
or health advantage (probiotics) [8]. Thus, the imple-
mentation of carefully selected strains as starter cul-
tures or co-cultures in fermentation processes can
help to achieve in situ expression of the desired prop-
erty, maintaining a perfectly natural product and still
function as probiotics (impart health benefit unto the
consumer) where applicable.
Lactobacillus fermentum has been identified as the

predominant lactic acid bacteria (LAB) specie in several
African cereal based fermented foods [1, 3, 9–12]. The
predominance of L. fermentum during koko production,
a millet-based fermented porridge in northern Ghana,
was reported by Lei and Jakobsen [11] and the biodiver-
sity of L. fermentum in their study was revealed by
pulsed field gel electrophoresis (PFGE) and by multivari-
ate data analysis. Similar results were demonstrated by
randomly amplified polymorphic DNA (RAPD)-PCR fin-
gerprinting patterns for fermented maize [9]. The
technological roles of L. fermentum including acidifica-
tion and aroma formation has also been described for
Ghanaian fermented maize dough [13, 14]. Despite the
significant importance of L. fermentum in food fermen-
tation, strains of this species isolated from spontaneously
fermented food products in Africa are still rarely dealt
with in scientific publications and detailed examinations
of their technological properties, their ability to survive
the passage of the gastrointestinal tract as well as their
susceptibility to common antibiotics are still missing.
In a framework to describe specific characteristics of

L. fermentum strains isolated from African fermented
cereals and to select and develop functional starter cul-
tures with probiotic effect for the production of trad-
itional fermented foods, predominant microorganisms
associated with the traditional processing of fura, a mil-
let based fermented food in Ghana were first isolated
and identified [1, 2]. In this paper, L. fermentum strains
originating from traditionally fermented millet dough
were evaluated for their technological properties. Their

ability to survive the passage of the gastro-intestinal
tract, haemolytic activities, antimicrobial properties and
susceptibility to several antibiotics were investigated.
This is geared towards the selection and further develop-
ment of probiotic starter cultures.

Methods
Bacterial strains
A total of 176 L. fermentum strains, isolated from spontan-
eously fermented millet dough were screened for some
technological and probiotic properties, following a series
of in vitro tests. The L. fermentum strains were previously
isolated and identified by (GTG)5 – based rep-PCR finger-
printing and sequencing of their 16S rRNA [GenBank:
JF268321 - JF268326], as described by [1].
Indicator strains for antimicrobial activity included

Escherichia coli O157 882364, Salmonella enteritidis
ATCC 13076, Listeria monocytogenes NCTC 10527 and
Staphylococcus aureus ATCC 1448 which were cultured
and maintained in Luria–Bertani (LB), Nutrient Broth
(NB), Brain–Heart Infusion (BHI) and Tryptic Soy (TS)
media respectively.

Determination of technological properties
Acidification of millet broth
Fermentations trials were conducted by inoculating L.
fermentum isolates into sterile millet broth and measur-
ing the change in pH over time. For the preparation of
millet broth, whole millet grains were cleaned by
washing three times with distilled water. The washed
grains were dried in an oven at 60 °C for 90 min and
dry milled using a disc plate attrition mill (Hunt no.
2A & Co., Kent, UK). Millet broth was prepared as
an aqueous suspension 10 % (w/v) in distilled water,
dispensed into conical flasks (200 ml per flask) and
autoclaved at 115 °C for 10 min. A loopful of an
overnight culture was collected from MRS agar, trans-
ferred into 10 ml MRS broth and incubated at 30 °C
for 24 h. About 100 μl of the 24 h old culture were
transferred into 10 ml MRS broth and incubated at
30 °C for 16 h. Subsequently, cells were harvested by
centrifugation at 5000 g for 10 min (4 °C), washed
three times with 20 ml sterile diluent [0.1 % (w/v)
peptone, 0.85 % (w/v) NaCl, pH 7.2 ± 0.2], and finally
re-suspended in 10 ml of sterile diluent. This suspen-
sion served as the isolate inoculum and was sampled
for viable cell count on MRS agar. Flasks containing
200 ml of autoclaved millet broth were inoculated in
duplicates to obtain initial cell counts of ca 106 cfu/
ml, and incubated at 35 °C. About 200 ml of sterile
millet broth served as a negative control. Samples
were aseptically collected at 3 h intervals over 24 h
period for measurement of pH.
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Exopolysaccharide production
The screening of L. fermentum isolates for their ability
to produce exopolysaccharide (EPS) was carried out as
described by [15]. Bacterial cells from fresh overnight
(18 h) cultures on MRS agar were streaked on LTV agar
[0.5 g/l tryptone, 10 g/l meat extract, 6.5 g/l NaCl, 8 g/l
potassium nitrate, 8 g/l sucrose, 0.1 % (v/v) Tween 80,
17 g/l agar, pH 7.1 ± 0.2] and incubated at 35 °C for
48 h. The stickiness of colonies were determined by the
inoculating loop method [16]. Isolates were tentatively
considered positive for exopolysaccharide if the length of
slime was above 1.5 mm. Positive isolates were con-
firmed using MRS – sucrose broth without glucose and
peptone as follows: [1 % (w/v) meat extract, 5 g/l yeast
extract, 50 g/l sucrose, 2 g/l K2HPO4

. 3H2O, 5 g/l sodium
acetate trihydrate, 2 g/l triammonium citrate anhydrous,
0.2 g/l MgSO4.7H2O, 0.05 g/l manganese (II) sulphate
monohydrate, 0.1 % (v/v) Tween 80, pH 5.0 ± 0.2]. The
isolates were then incubated at 30 °C for 24 h. A volume
of 1.5 ml of the 24 h culture was centrifuged at 5000 g
for 10 min (4 °C). About 1 ml of the supernatant was
put in a glass tube and an equal volume of ethanol
(99 %) was added. In the presence of EPSs, an opaque
link is formed at the interface.

Amylase activities
The ability of L. fermentum to produce amylase was de-
termined according to the method described by [17].
Active cultures of LAB isolates were point-inoculated on
modified MRS agar without glucose but with potato
soluble starch as the sole carbon source. The media
composition was as follows: [10 g/l tryptone, 10 g/l meat
extract, 5 g/l (w/v) yeast extract, 20 g/l potato-soluble
starch, 2 g/l K2HPO4.3H2O, 5 g/l sodium acetate, 2 g/l
triammonium citrate, 0.2 g/l MgSO4.7H2O, 0.05 g/l
manganese (II) sulphate monohydrate, 0.1 % (v/v)
Tween 80, pH 5.0 ± 0.2]. Inoculated plates were incu-
bated anaerobically (AnaeroGen, oxoid) at 35 °C for
48 h. The culture plates were covered by spraying with
Lugol’s iodine [0.33 % (w/v) iodine, 0.66 % (w/v) potas-
sium iodide] to detect starch hydrolysis. Un-degraded
starch stains blue-black while the presence of a clear
halo zone around a tested colony was taken as indication
of starch degradation and therefore the production of α-
amylase. Diameters of the halos around colonies were
measured.

Determination of probiotic properties
Resistance to low pH
Resistance to low pH was determined according to [18]
and [19]. Bacterial cells from fresh overnight (18 h) cul-
tures were harvested (10,000 x g, 5 min, 4 °C), washed
twice with PBS buffer (pH 7.2), re-suspended (2 %) in
PBS solution and adjusted to pH 2.5. Resistance was

assessed in triplicates in terms of viable colony counts
and enumerated on MRS agar (Merck) after incubation
at 37 °C for 4 h, reflecting the possible time spent by
food in the stomach.

Resistance to bile salts and bile salt hydrolysis
Bacterial cells from overnight (18 h) cultures were har-
vested (10,000 x g, 5 min, 4 °C), washed twice with PBS
buffer (pH 7.2), before inoculating in PBS solution
(pH 8.0), containing 0.3 %, 0.5 %, 1 % and 2 % (w/v) bile
salt (Oxgall, Difco). Resistance was assessed in triplicates
in terms of viable colony counts and enumerated after
incubation at 37 °C for 4 h.
For the determination of bile salt hydrolysis (BSH),

fresh bacterial cultures were streaked in triplicates on
MRS agar containing 0.5 % (w/v) taurodeoxycholic acid
(Sigma). The hydrolysis effect was indicated by different
colony morphology from the control MRS plates, after
48 h of anaerobic incubation at 37 °C.

Estimation of survival rates
Survival rates for L. fermentum strains were estimated
after their growth in low pH (pH 2.5) and different bile
salt concentrations (0.3 %, 0.5 %, 1 % and 2 %).

Haemolytic activity
Fresh bacterial cultures were streaked in triplicates on
Columbia agar plates, containing 5 % (w/v) human blood
(Michopoulos S.A., Athens, Greece), and incubated at
37 °C for 48 h under anaerobic condition. Blood agar
plates were examined for signs of β-haemolysis (clear
zones around colonies), α-haemolysis (green-hued zones
around colonies) or γ-haemolysis (no zones around
colonies).

Antimicrobial activity
Fresh overnight L. fermentum culture supernatants were
collected by centrifugation (10,000 x g, 15 min, 4 °C),
adjusted to pH 6.5 and filter-sterilised (0.20 μm). The
cell-free culture supernatants (CFCS) of the potential
probiotic strains were screened for inhibitory activity
against indicator pathogens (described in section 2.1)
using the agar well diffusion method. Briefly, an initial
inoculum of approximately 106 cfu/ml of the target
strain was incorporated into soft agar (1 %, w/v) plates
of the appropriate medium for the indicator strain.
CFCS (50 mL) were transferred into wells (5 mm diam-
eter) drilled into the agar. The plates were incubated at
37 °C for 24 h, and the antimicrobial activity was re-
corded as inhibition zones (diameter) around the well.
Kanamycin (30 mg/ml) was used as positive control,
while MRS broth, adjusted to pH 6.5 and filtered served
as the negative control.
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Antibiotic resistance
For antibiotic resistance test, L. fermentum strains were
inoculated (1 % v/v) in MRS broth supplemented with 9
different antibiotics (Ampicillin, Chloramphenicol, Tetra-
cycline, Erythromycin, Streptomycin, Kanamycin, Genta-
mycin, Quinupristin/Dalfopristin, Clindamycin) at various
final concentrations (1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
and 1024 μg/ml) and examined in triplicate for growth in
a microplate reader (OD at 610 nm) following a 24 h incu-
bation period at 35 °C.

Results and discussion
Acidification properties in millet broth
Lactobacillus fermentum strains were clustered into
three groups according to their acidification properties
(Fig. 1). Lactobacillus fermentum isolates representing
36 % (fast acidifiers) and 47 % (moderate acidifiers) were
able to obtain a change in pH (ΔpH) of 2 units after 9 h
and 12 h of fermentation respectively. However, a third
group of L. fermentum strains (slow acidifiers) represent-
ing 17 % of the total L. fermentum strains never attained
pH change up to 2 pH units. The demonstration of fas-
ter acidification property by L. fermentum strains is a re-
quired technological property for the development of
starter cultures for controlled fermentation processes as
faster acidification is necessary for reducing fermenta-
tion time and reducing contamination by spoilage and/
or pathogenic microorganisms.

Exopolysaccharide production and amylase activity
Amylase activity and exopolysaccharides production by
L. fermentum isolated from fermented millet are shown

in Table 1. Amylase activity of the L. fermentum strains
were generally weak or not detected. About 16.5 % of
the total strains only showed weak amylolytic activity.
Out of a total of 176 strains of L. fermentum, about 85.6
% showed slime formation while 14.4 % showed no slime
formation or exopolysaccharides production.
Generally, high prevalence of amylase producing LAB

has not been reported. However, few strains of L.
fermentum isolated from fermented maize products
have been reported as amylase producers [17, 20].
Amylolytic lactic acid bacteria from traditional fer-
mented foods could be of economic interest in the
production of lactic acid from direct fermentation of
starchy products [21, 22]. Additionally, they may present
the potential for decreasing the viscosity of bulky, starchy,
weaning porridges which may enable an improvement in
their nutrient density while maintaining an acceptable
thickness for feeding young children in developing coun-
tries [23].
The ability of L. fermentum strains to produce EPS is

not surprising since previous studies have shown that
many food grade microorganisms produce EPS [12, 24].
Technologically, the physicochemical properties of EPS,
such as viscosity, have motivated their utilization in food
applications as, for example, biothickeners [24, 25].
Therefore, texture which is an important attribute asso-
ciated with the consumption of traditional fermented
cereal products will be affected by EPS produced by the
selected L. fermentum starter cultures. Interestingly, The
L. fermentum strains which produced EPS were found to
be resistant to low pH condition (Table 5). The produc-
tion of EPS has been reported to protect the producing

Fig. 1 Rate of acidification by L. fermentum strains isolated from traditionally fermented millet dough. Values represent means ± standard errors
of two independent experiments carried out in triplicate. The Tukey-Kramer test was used for comparison of means. Means with different capital
alphabets are significantly different (P < 0.05) for each time point
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microorganisms against dehydration and other harsh
conditions such as acid and bile [26, 27], and may also
contribute to the aggregation properties required for col-
onisation by probiotic lactic acid bacteria [28, 29].

Resistance to low pH
Following a determination of technological properties,
48 L. fermentum strains were further assessed for resist-
ance to low pH (2.5) in PBS over 4 h duration (Table 2).
Using a survival rate of ≥ 80 % after incubation at pH 2.5
for 4 h, 16 L. fermentum strains were considered to be
resistant to low pH 2.5 and were selected for further
screening. This results confirm the strain-specific differ-
ences which exist among lactobacilli in relation to their
probiotic properties. Similar results were obtained from
previous reports, where Lactobacillus strains of food, hu-
man or animal origin, were able to retain their viability
when exposed to low pH values between 2.5 and 4.0 [18,
30–34]. The pH value in human stomach may ranges
from 1.5, during fasting, to 4.5, after a meal, and food
ingestion can take up to 3 h [35]. The pH value (2.5)
and 4 h duration used in this study for the selection of
potential probiotic L. fermentum strains is very selective
and even though it is not the most common condition
in the human stomach, it assures the selection of the
very acid-tolerant strains [36].
In order for probiotic bacteria to fulfil their physio-

logical role in the gut, the bacteria must overcome a
number of stresses before they reach the target site [37].
The acidic environments encountered both in food and
in the gastrointestinal tract provide a significant survival
challenge for probiotic organisms. For example, the pre-
ferred delivery vehicles for probiotic cultures are acid
fermented food products which present an acid chal-
lenge. In a situation where the probiotic bacteria is used
as a starter culture for the fermentation, the potential
probiotic organism require mechanisms to survive the
adverse effects of the by-products (organic acids) of their
own metabolism. In addition to their ability to survive
the harsh environments encountered during processing,
the bacteria will need to survive the highly acidic gastric
juice if they are to reach the small intestine in a viable
state [38]. Passage of probiotics through the gastrointes-
tinal tract (GIT) is a stressful journey, with stress stages
which may affect cell viability. The principal stress is

that of shifting pH encountered in the stomach, resulting
from gastric acid as well as bile [39, 40]. Hence, acid tol-
erance is accepted as one of the desirable properties
used to select potentially probiotic strains.

Resistant to bile and bile salts hydrolysis
The ability of L. fermentum strains to tolerate the effect
of different concentrations of bile salt after incubation
for 4 h is shown in Fig. 2. All 16 tested L. fermentum
showed resistance (survival rate ≥ 80 %) to 0.3 % bile salt.
However, resistance decreased significantly (P < 0.05)
with increasing bile salt concentration.
The detergent property of bile confers potent toxicity,

primarily through the dissolution of bacterial mem-
branes [41]. Therefore, for a probiotic strain to be able
to perform effectively in the gastrointestinal tract, it
must overcome the antimicrobial challenge posed by
bile. Thus in vitro resistance to bile has become neces-
sary in screening potential probiotic strains as one of the
physiologically relevant stresses in the gastrointestinal
tract [33, 42].
While all L. fermentum strains in this study were able

to grow in the presence of bile salt, only four (4) strains
demonstrated the ability to hydrolyse taurodeoxycholic
acid (TDCA), as indication of in vitro bile salt hydrolyse
(BSH) activity. Some authors have suggested that BSH
activity and resistance to toxicity of conjugated bile salts
are unrelated properties in lactobacilli [43, 44]. The abil-
ity of probiotic strains to hydrolyse bile salts has often
been included among the criteria for probiotic strain se-
lection [45], although there are divided views on whether
microbial bile salt hydrolase (BSH) activity is a desirable
trait for probiotic strains. On one hand, blood choles-
terol lowering effect has been correlated to the bile salt
hydrolase activity of some lactobacilli [45, 46]. On the
other hand, unconjugated bile acids are less efficient
molecules in the emulsification of dietary lipids and so
BHS may compromise normal lipid digestions, and sub-
sequently, the absorption of fatty acids and monoglycer-
ides could be impaired [47]. In general however, there is
sufficient data to suggest that microbial BSH-activity
function in the detoxification of bile salts increases the
intestinal survival and persistence of producing strains,
which in turn increases the overall beneficial effects as-
sociated with a probiotic strain [41, 45].

Table 1 Amylase activity and exopolysaccharides production by L. fermentum

Clear zone around colonies/slime lengtha

Microbial specie Activity - + ++ +++

L. fermentum (n = 176) Amylase 83.5 16.5 0 0

Exopolysaccharide 14.4 38.4 39.2 8.4
aValues are percentages (%) of the total number (n) of L. fermentum strains
- No clear zone around colony or slime formation observed, + diameter of clear zone or slime length of <1.5 mm, ++ diameter of clear zone or slime length of 1.5
– 3 mm, +++ diameter of clear zone or slime length >3 mm
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Antimicrobial activity
None of the cell free neutralized supernatant (pH 6.5)
showed antimicrobial activities against the pathogenic
strains Escherichia coli O157 882364 and Salmonella
enteritidis ATCC 13076. However, four L. fermentum
strains (i.e. 10–9, 4–20, 0–17 and 4–30) showed inhibi-
tions towards Listeria monocytogenes NCTC 10527 and
Staphylococcus aureus ATCC 1448 (Table 3.). Previous
reports on probiotic L. fermentum strains showed negli-
gible antimicrobial activity in neutral pH 7.0 [48]. More-
over, it has been reported that neutralization of the
soluble fraction to pH 6.5 significantly reduced the anti-
microbial activity against pathogens [49].
The prevention of gastrointestinal tract colonization

by a variety of pathogens is a primary mechanism of
beneficial effects mediated by probiotics [50]. The mech-
anisms underlying the antimicrobial activity of lactoba-
cilli are believed to involve the production of different
kinds of inhibitory substances and competitive exclusion
[51]. The capacity to produce different antimicrobial
compounds may be one of the critical characteristics for
effective competitive exclusion of pathogen survival in
the intestine and expression of a probiotic effect for the
host [52]. The acidic conditions in the stomach may also
enhance the activity of these antimicrobial compounds
[53]. Furthermore, these probiotic characteristics may
partly be based on the production of relevant concentra-
tions of lactic acid in the microenvironment, which, in
combination with a detergent such as bile salts, inhibits
the growth of Gram-negative pathogenic bacteria [41].
However, antimicrobial mechanisms other than those
driven by bacterial metabolites may play a significant
role the antimicrobial property of probiotic in vivo.

Haemolytic activity
None of the tested L. fermentum strains showed β-
haemolytic activity. However, L. fermentum 0-25A and
L. fermentum 12-18A showed α-haemolytic activity.
Thus, almost all L. fermentum strains isolated from fermen-
ted millet dough expressed γ-haemolysis (i.e. no haemoly-
sis). Similar observations were made for Lactobacillus spp.
isolated from dairy products [18], fermented olives [30] and

Table 2 Acid resistance of 48 L. fermentum strains grown in PBS
at pH 2.5 for 4 h

Strains Viable count (log cfu/ml)a Survival rate (%)b

0 h 4 h

L. fermentum 6–6 8.87 ± 0.02 7.36 ± 0.11 83.0

L. fermentum f-7 9.11 ± 0.06 8.05 ± 0.04 88.4

L. fermentum f-17 9.05 ± 0.10 6.48 ± 0.12 71.6

L. fermentum 6–1 8.70 ± 0.05 4.33 ± 0.03 49.8

L. fermentum 6–2 9.21 ± 0.05 6.00 ± 0.08 65.1

L. fermentum 10–4 9.03 ± 0.13 3.58 ± 0.05 39.6

L. fermentum 10–9 9.45 ± 0.04 8.20 ± 0.00 86.8

L. fermentum f-26 9.20 ± 0.06 7.04 ± 0.02 76.5

L. fermentum f-29 9.18 ± 0.03 8.10 ± 0.06 88.2

L. fermentum 10–1 8.84 ± 0.11 3.65 ± 0.09 41.3

L. fermentum 12–5 8.92 ± 0.08 5.54 ± 0.05 62.1

L. fermentum 10–3 9.00 ± 0.01 6.35 ± 0.05 70.6

L. fermentum 4–12 8.96 ± 0.15 4.08 ± 0.10 45.5

L. fermentum 12-18A 9.10 ± 0.07 8.26 ± 0.06 90.8

L. fermentum 12-19A 9.37 ± 0.05 7.99 ± 0.12 85.3

L. fermentum 12-20A 9.05 ± 0.08 8.35 ± 0.03 92.3

L. fermentum 12-6A 9.38 ± 0.15 4.82 ± 0.10 51.4

L. fermentum 8-16A 9.33 ± 0.06 3.50 ± 0.08 37.5

L. fermentum 4–20 8.66 ± 0.02 7.58 ± 0.10 87.5

L. fermentum 4-12A 9.35 ± 0.05 4.65 ± 0.06 49.7

L. fermentum f-11A 9.22 ± 0.08 4.05 ± 0.12 45.0

L. fermentum f-22 9.40 ± 0.04 5.50 ± 0.05 58.5

L. fermentum f-2A 8.78 ± 0.05 4.80 ± 0.10 54.1

L. fermentum 2–15 9.08 ± 0.10 8.20 ± 0.14 90.3

L. fermentum 2-3A 9.08 ± 0.07 6.18 ± 0.04 68.0

L. fermentum 6-13A 9.20 ± 0.15 3.95 ± 0.10 42.9

L. fermentum 0–17 9.35 ± 0.06 8.00 ± 0.07 85.6

L. fermentum 2-23A 9.28 ± 0.10 3.20 ± 0.14 34.5

L. fermentum 8–10 9.64 ± 0.10 7.95 ± 0.08 82.5

L. fermentum 0-25A 9.50 ± 0.04 8.06 ± 0.15 84.8

L. fermentum 10–31 9.00 ± 0.06 6.50 ± 0.04 72.2

L. fermentum 2-14A 9.47 ± 0.12 4.45 ± 0.10 46.9

L. fermentum f-5A 8.85 ± 0.07 8.11 ± 0.05 91.6

L. fermentum f-22A 8.91 ± 0.05 3.80 ± 0.12 42.6

L. fermentum 12–15 8.80 ± 0.15 5.65 ± 0.06 64.2

L. fermentum 10-19A 9.06 ± 0.07 3.90 ± 0.10 43.0

L. fermentum 10–24 7.98 ± 0.10 4.00 ± 0.08 50.1

L. fermentum 10-16A 9.18 ± 0.08 5.45 ± 0.15 59.4

L. fermentum 8–13 9.50 ± 0.14 4.85 ± 0.05 51.1

L. fermentum 8-5A 9.06 ± 0.06 7.30 ± 0.10 80.6

L. fermentum 8–20 9.35 ± 0.08 6.03 ± 0.07 64.5

L. fermentum 8–28 9.28 ± 0.12 8.45 ± 0.09 91.1

Table 2 Acid resistance of 48 L. fermentum strains grown in PBS
at pH 2.5 for 4 h (Continued)

L. fermentum 6-18A 9.09 ± 0.10 6.60 ± 0.10 72.6

L. fermentum 6–23 9.11 ± 0.06 5.84 ± 0.05 64.1

L. fermentum 4–30 9.36 ± 0.08 8.00 ± 0.16 85.5

L. fermentum 4-16A 9.20 ± 0.14 5.36 ± 0.09 58.3

L. fermentum 4-10A 8.97 ± 0.05 2.66 ± 0.15 29.7

L. fermentum 12–7 9.06 ± 0.10 3.50 ± 0.07 38.6
aValues are means ± standard deviation of two independent experiments
bacid resistant strains with mean survival rates ≥80 % after 4 h in are in bold
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different African fermented food products [54]. The gen-
eral absence of haemolysis or poor haemolytic activities
expressed by lactic acid bacteria is indicative of their safety
applications in food. In vitro assessment of haemolytic ac-
tivity on blood agar is one of the safety requirements often
used to assess potential probiotic strains [55]. On blood
agar plates, microbial strains with β-haemolytic activity
produce exotoxins which causes the lysis of blood cells,
resulting in clearing of the zones around bacteria colonies.

Antibiotic resistance
Minimum inhibitory concentration (MIC) of 9 antibi-
otics determined for 16 L. fermentum strains is shown in
Table 4. Strains were considered resistant when they
showed MIC values higher than the MIC breakpoints
established by the European Food Safety Authority [56].
The majority of L. fermentum (n = 10) revealed low
MICs for all tested antibiotics and are considered as
non-resistant according to the EFSA breakpoint [56].
However, 6 strains showed resistance towards the pro-
tein synthesis inhibitor antibiotics streptomycin, kana-
mycin and gentamicin, mostly at low levels (MICs one
to two log cycles above the cut-off point). [57] and [54]
similarly reported gentamicin resistance in L. fermentum
strains from African fermented foods.
Safety concerns regarding the use of probiotics contain-

ing antibiotic resistant strains arise due to the possibility of
transferring antibiotic resistant genes to intestinal patho-
gens [58]. However, according to previous studies [59–61]

Fig. 2 Survival rate (%) of L. fermentum strains after 4 h incubation in different bile salt concentrations. Values are given as the mean ± standard
error of two independent experiments carried out in triplicate. The Tukey-Kramer test was used for comparison of means. Means with different
alphabets within a strain are significantly different (P < 0.05)

Table 3 Antagonistic activity of 16 L. fermentum strains against
selected pathogens

Bacteria strain aAntagonistic activity

L. monocytogenes
NCTC 10527

Sta. aureus
ATCC 1448

L. fermentum 6–6 - -

L. fermentum f-7 - -

L. fermentum 10–9 ++ ++

L. fermentum f-29 - -

L. fermentum 12-18A - -

L. fermentum 12-19A - -

L. fermentum 12-20A - -

L. fermentum 4–20 + ++

L. fermentum 2–15 - -

L. fermentum 0–17 ++ ++

L. fermentum 8–10 - -

L. fermentum 0-25A - -

L. fermentum f-5A - -

L. fermentum 8-5A - -

L. fermentum 8–28 - -

L. fermentum 4–30 + ++
aAntagonistic activity was measure as diameter of inhibition zone as follows:
(−) = < 1 mm, (+) = 1-2 mm, (++) = 3-4 mm, (+++) = > 4 mm. No antagonistic
activity was observed towards others strains E. coli O157 882364 and S.
enteritidis ATCC 13076
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Table 4 Minimum inhibitory concentrations of 9 antibiotics for 16 L. fermentum strains isolated from traditional millet fermentation

Bacteria strain aMIC (μg/ml)

A C T F S K G Q/D CL

L. fermentum 6–6 <1 2 2 <1 8 16 8 <1 <1

L. fermentum f-7 1 4 4 <1 32 32 4 <1 <1

L. fermentum 10–9 1 4 2 1 128b 32 64b 1 <1

L. fermentum f-29 1 2 2 <1 4 64b 32b <1 <1

L. fermentum 12-18A 1 1 2 <1 8 8 16 <1 1

L. fermentum 12-19A <1 2 2 <1 128b 128b 32b <1 <1

L. fermentum 12-20A <1 2 8 <1 8 32 16 <1 1

L. fermentum 4–20 1 2 2 <1 8 16 16 <1 1

L. fermentum 2–15 1 1 2 <1 32 32 8 <1 <1

L. fermentum 0–17 1 1 4 <1 16 128b 16 <1 <1

L. fermentum 8–10 1 1 2 1 128b 64b 64b 2 <1

L. fermentum 0-25A 1 <1 1 1 64 32 8 <1 <1

L. fermentum f-5A 1 <1 1 <1 8 16 8 <1 <1

L. fermentum 8-5A <1 2 4 <1 8 16 16 1 <1

L. fermentum 8–28 1 2 2 <1 128b 64b 32b 1 <1

L. fermentum 4–30 1 1 2 1 64 8 16 <1 <1
aMIC Minimum inhibitory concentration
bResistant according to the EFSA’s breakpoints (EFSA, 2008)
A ampicillin, C chloramphenicol, T tetracycline, E erythromycin, S streptomycin, K kanamycin, G gentamycin, Q/D quinupristin/dalfopristin, CL clindamycin

Table 5 Summary of the characteristics of 16 L. fermentum strains with technological and probiotic potential according to in vitro tests

Bacteria strain Technological properties Probiotic properties
aRA bEPs cAA dAR (SR %) eRBS (SR %) gBSHA iHA jRAB

L. fermentum 6–6 F H - 83.0 96.5 0 γ -

L. fermentum f-7 F H - 88.4 100.3 0 γ -

L. fermentum 10–9 F H + 86.8 95.5 1 γ S, G

L. fermentum f-29 F H - 88.2 99.5 1 γ K, G

L. fermentum 12-18A F H - 90.8 97.8 1 α -

L. fermentum 12-19A F H - 85.3 98.5 0 γ S, K, G

L. fermentum 12-20A F H + 92.3 102.6 0 γ -

L. fermentum 4–20 F H + 87.5 96.5 0 γ -

L. fermentum 2–15 F H - 90.3 99.0 0 γ -

L. fermentum 0–17 F H - 85.6 98.7 1 γ K

L. fermentum 8–10 F H + 82.5 93.5 0 γ S, K, G

L. fermentum 0-25A F H - 84.8 101.3 0 α -

L. fermentum f-5A F H - 91.6 100.6 0 γ -

L. fermentum 8-5A F H - 80.6 88.0 0 γ -

L. fermentum 8–28 F H - 91.1 98.6 0 γ S, K, G

L. fermentum 4–30 F H - 85.5 101.5 0 γ -
aRA rate of acidification, F fast acidifier
bEPs Exopolysaccharides production, H high potential EPs producer
cAA amylase activity, − no amylase activity, + weak amylase activity
dAR acid resistance measured as mean survival rate (%)
eRBS resistance to 0.3 % bile measured as mean survival rate (%)
gBSHA bile salt hydrolase activity, 0 no hydrolysis, 1 partial hydrolysis
iHA haemolytic activity, γ-haemolysis, α-haemolysis
jRAB resistance to antibiotics, S streptomycin, K kanamycin, G gentamycin
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the antibiotic resistance observed for Lactobacillus strains
are considered to be intrinsic or natural resistance
because it is chromosomally encoded and, therefore,
non-transmissible. Resistance to aminoglycoside anti-
biotics, such as gentamicin, streptomycin, kanamycin,
is considered to be intrinsic in the Lactobacillus genus
and is attributed to the absence of cytochrome-
mediated electron transport, which mediates drug up-
take [60, 62].

Conclusion
In conclusion, in vitro determination of technological
and probiotic properties have shown strain specific dif-
ference among L. fermentum strains isolated from fer-
mented millet dough. Sixteen (16) L. fermentum strains
have been shown to possess desirable technological and
probiotic characteristics in vitro as summarised in
Table 5. These strains are therefore good candidates for
further studies to elucidate their full potential and pos-
sible application as novel probiotic starter cultures.
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