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Abstract: To search for possible anti-tumor agents or anti-tumor promoters among natural 
or synthetic products, we used cyclic voltammetry to determine the reduction-oxidation 
potentials of heterocyclic quinones in phosphate buffer at pH 7.2. We determined the 
growth inhibitory- and cytotoxic activities of 12 heterocyclic quinone anti-tumor agent 
candidates against a panel of 39 human cancer cell lines (JFCR39). The average 
concentrations of the heterocyclic quinones required for 50% growth inhibition (GI50) 
against JFCR39 ranged from 0.045 to 13.2 μM, and the 50% lethal concentration (LC50) 
against JFCR39 ranged from 0.398 to 77.7 μM. The average values of GI50 or LC50 of the 
heterocyclic quinones correlated significantly with their reduction potentials. These results 
suggested that reduction-oxidation potentials could be a useful method for the discovery of 
novel antitumor agents. 
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1. Introduction  

Naturally occurring quinones, which are widely distributed throughout both the animal and plant 
kingdoms, typically function as pigments and as intermediates in cellular respiration and 
photosynthesis. Several of these molecules possess anti-neoplastic chemotherapeutic properties [1,2]. 
Quinones are found in many drugs, including anthracyclines, daunorubicin, doxorubicin, mitomycin, 
mitoxantrones, and saintopin, all of which are used in the clinical therapy of solid tumors. The 
cytotoxic effects of these quinones are primarily due to inhibition of DNA topoisomerase-II [3,4]. 
Several recent publications have highlighted the anti-tumor activity of kigelinone (2-(1-hydroxyethyl)-
5(or 8)-hydroxynaphtho[2,3-b]furan-4,9-dione), a furanonaphthoquinone molecule isolated from 
Tabebuia cassinoides [5]. Heterocyclic quinones containing nitrogen atoms possess excellent anti-
tumor [6,7] and other biologic activities [8,9]. Previously, we reported the in vitro anti-tumor 
promoting activity of heterocyclic quinines, as evidenced by inhibitory effects on 12-O-
tetradecanoylphorbol-13-acetate (TPA)-induced Epstein-Barr virus early antigen (EBV-EA) activation 
in Raji cells [10,11]. Standard redox potential is important in determining the physiological activity of 
drugs [12]. We employed cyclic voltammetry to determine the standard redox or first reduction 
potentials of anthraquinones, bianthraquinones, naphthoquinones, and azaanthraquinones at a 
physiological pH of 7.2. We found a significant correlation between the standard redox or first 
reduction potentials and the inhibitory effects (log IC50) of these compounds on EBV-EA  
activation [13-18].  

In this study, we have attempted to expand the potential use of reduction-oxidation potentials 
determined by cyclic voltammetry to the discovery of anti-tumor agents. We determined the growth 
inhibitory- and cytotoxic activities of 12 heterocyclic quinine anti-tumor agent candidates against a 
panel of 39 human cancer cell lines (JFCR39), an information-rich and pharmacologically well 
characterized drug discovery system [19-23]. Subsequently, we measured the reduction-oxidation 
potentials of these compounds in phosphate buffer at pH 7.2. Then, we examined the correlation 
between the activities (log GI50 and log LC50) and first reduction potentials of these compounds. 
Furthermore, we calculated additional molecular properties of heterocyclic quinones using the CAChe 
MOPAC program and the PM3 method [24], and identified the partition coefficient (log P) and LUMO 
energy as useful parameters that could help predict anti-tumor activities of these compounds. 

2. Results and Discussion  

Twelve heterocyclic quinones (Figure 1) were tested for their growth inhibitory- and cytotoxic 
activities against JFCR 39 cells; the results (the means of GI50 and LC50 values) are summarized in 
Table 1. Compounds 2-4, 6-8, and 12 were cytotoxic (GI50: 0.045-0.831 μM). Compounds 7 and 8 
exhibited the highest levels of cytotoxicity, with GI50 values of 0.071 and 0.045 μM and LC50 values of 
0.724 and 0.398 μM, respectively. In contrast, compounds 9 and 11 were minimally cytotoxic, with 
GI50 values of 13.18 and 9.33 μM, respectively. The presence of a phenolic hydroxy group increased 
the potency of compounds having similar backbone molecular structures (1→2,3); a similar tendency 
was observed for anthraquinones [18]. Replacement of the thiophene for a furan ring showed a similar 
tendency in activity (4 and 6, 7 and 8). The pyridine ring with the nitrogen in the 2 position lead to 
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We performed multiple regression analyses for the log GI50 and log LC50 values using electronic 
and molecular properties of the heterocyclic quinone derivatives:                        

                                    log GI50 = –6.097 – 0.012 Epc-1 – 2.338 LUMO    (n = 12, r = 0.893)           (7) 
                                    log GI50 = –9.864 – 0.010 Epc-1 + 0.429 log P    (n = 12, r = 0.869)              (8) 
                                    log LC50 = –6.357 – 0.013 Epc-1 – 1.930 LUMO    (n = 12, r = 0.911)          (9) 

                                      log GI50 = –9.187 – 0.011 Epc-1 + 0.428 log P    (n = 12, r = 0.910)              (10) 

Thus, Epc-1, LUMO, and log P were promising parameters to predict GI50 and LC50. It remains 
unclear, however, why these parameters correlate well with the GI50 and LC50 values of  
hererocyclic quinones.  

Table 2. First and second cathodic peak potentials (Epc-1 and Epc-2) and the anodic peak 
potential (Epa) versus Ag/AgCl (saturated NaCl) obtained at 20 mVs-1 for heterocyclic 
quinone derivatives. 

Compound Epc-1 (mV) Epc-2 (mV) Epa (mV) 
1 - 339 - 426 - 400 
2 - 365 - 435 - 417 
3 - 333 - 429 - 411 
4 - 294 － - 282 
5 - 359 - 245 - 431 
6 - 365 － - 330 
7 - 275 － - 253 
8 - 267 － - 245 
9 - 370 - 245 - 374 

10 - 370 － - 362 
11 - 384 － － 
12 - 359 (- 640) - 336 

 
Figure 4. Regression plot of log GI50 or log LC50 and the first reduction potential at pH 7.2 
of heterocyclic quinone derivatives with their cytotoxic activity.  

 

Blue line: Eq. 1 (log GI50 against Epc-1). Red line: Eq. 2 (log LC50 against Epc-1). 
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Table 3. Electronic properties of heterocyclic quinone derivatives. 

r*1: Correlation coefficient with log GI50; r*2: Correlation coefficient with log LC50; r*3: Solvent 
accessible surface area. 

3. Experimental  

3.1. Instruments, reagents and materials 

List analytical instruments used-MS and NMR data are given. 2-Methylnaphtho[2,3-b]furan-4,9-
dione (1), 2-methyl-8-hydroxynaphtho[2,3-b]furan-4,9-dione (2), and 2-methyl-5-hydroxynaphtho[2,3-
b]furan-4,9-dione (3) were synthesized from 2-acetyl-5-methyl-furan and phthalic anhydride 
derivatives [25]. Thieno[2,3-b]benzofuran-4,8-dione (4), naphtho[2,3-b]thiophen-4,9-dione (5), 
benzo[1,2-b:4,5-b’]dithiophene-4,8-dione (6), thieno[2,3-g]isoquinoline-4,9-dione (7), furano[2,3-
g]isoquinoline-4,9-dione (8), 5-methyl-4H-thieno[3,2-b]carbazole-4,10(5H)-dione (11), and 6-methyl-
5H-pyrido[4,3-b]-carbazole-5,11(6H)-dione (12) were prepared by tandem-directed metalation 
reaction [26]. Benzo[g]quinoline-5,10-dione (9) was synthesized from 5,8-quinolone and 
cyclohexadiene derivatives [11]. Benzo[g]isoquinoline-5,10-dione (10) was synthesized from 5,8-
isoquinolone and cyclohexadiene derivatives [27]. 

Furano[2,3-g]isoquinoline-4,9-dione (8). HR-EI-MS m/z: 199.0281 (Calcd. for C11H5NO3, 199.0269); 
1H-NMR (300 MHz, CDCl3) δ: 7.05 (1H, d, J = 1.8 Hz, 2-H), 7.87 (1H, d, J = 1.8 Hz, 3-H), 8.03 (1H, 
d, J = 5.0 Hz, 8-H), 9.10 (1H, d, J = 5.0 Hz, 7-H), 9.43 (1H, s, 5-H). 

5-Methyl-4H-thieno[3,2-b]carbazole-4,10(5H)-dione (11). HR-EI-MS m/z: 267.0349 (Calcd. for 
C15H9NO2S, 267.0353); 1H-NMR (300 MHz, CDCl3) δ: 4.19 (3H, s, CH3), 7.41 (3H, m, 3,6,9-H), 7.55 
(2H, m, 7,8-H), 8.34 (1H, d, J = 5.0 Hz, 2-H).  
 
 

 

 
Steric energy 
(kcal/mole) 

Total energy 
 (eV) 

LUMO 
(eV) 

HOMO 
(eV) SASA*3 log P 

1 -11.449 -114.15 -1.470 -9.626 102.26 1.750 
2 -16.057 -126.4 -1.387 -9.523 104.58 1.466 
3 -16.000 -126.4 -1.407 -9.545 104.52 1.466 
4 -0.746 -103.66 -1.809 -9.974 94.668 -0.230 
5 -13.257 -104.02 -1.685 -9.994 100.34 1.286 
6 -3.978 -100.72 -1.914 -10.064 100.42 0.113 
7 -10.420 -106.18 -1.913 -10.148 99.581 -0.026 
8 -6.835 -109.12 -1.774 -10.087 93.707 -0.369 
9 -17.281 -109.49 -1.537 -10.258 99.896 1.547 

10 -19.072 -109.49 -1.636 -10.339 99.362 1.148 
11 -5.210 -131.74 -1.647 -8.749 118.07 1.070 
12 -11.186 -137.2 -1.631 -8.835 116.86 0.931 
r*1 0.396 0.247 0.730 0.250 0.432 0.789 
r*2 0.508 0.346  0.700 0.290 0.498 0.820 
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3.2. Cell lines and cell cultures  

The panel of human cancer cell lines, described by Yamori et al. [19-23], consists of the following 
39 human cancer cell lines: lung cancer, NCI-H23, NCI-H226, NCI-H522, NCI-H460, A549, DMS273, 
and DMS114; colorectal cancer, HCC-2998, KM-12, HT-29, HCT-15, and HCT-116; gastric cancer, 
MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, and St-4; ovarian cancer, OVCAR-3, OVCAR-4, 
OVCAR-5, OVCAR-8, and SK-OV-3; breast cancer, BSY-1, HBC-4, HBC-5, MDA-MB-231, and 
MCF-7; renal cancer, RXF-631L and ACHN; melanoma, LOX-IMVI; glioma, U251, SF-268, SF-295, 
SF-539 , SNB-75, and SNB-78; and prostate cancer, DU-145 and PC-3. All cell lines were cultured at 
37 ºC under 5% CO2 in RPMI 1640 medium (Nissui Pharmaceutical, Tokyo, Japan) supplemented 
with 5% fetal bovine serum, penicillin (100 units/mL), and streptomycin (100 μg/mL). 

Inhibition experiments were performed to assess the sensitivity of cells to various chemicals as 
described by Yamori et al. [19]. Growth inhibition was assessed using a sulforhodamine B (SRB) 
assay to determine the changes in total cellular protein after cancer cells were incubated for 48 h in the 
presence of test compounds [19,28,29]. Absorbances at 525 nm were measured in control wells (C) 
and test wells at time 0 (T0) and at the indicated times thereafter (T). Cell growth values were 
calculated as follows: (i) when T > T0, cell growth (%) = 100 × ([T – T0]/[C – T0]), while (ii) when  
T < T0, cell growth (%) = 100 × ([T – T0]/T0). GI50 was calculated as 100 × ([T – T0]/[C – T0]) = 50. 
The LC50, an index of cytotoxic effect, was determined as the concentration of the compound at which 
100 × (T – T0)/T0 = –50. The mean graph was produced by computer processing of the GI50 (LC50) 
values as described [19]. For each chemical, assays were performed using five concentrations (for 
example, 10-4, 10-5, 10-6, 10-7, and 10-8 M) and a negative control. All assays were performed in 
duplicate. Mean graphs, which show differential growth inhibition of each drug against the cell line 
panel, was generated based on calculations using a set of GI50 values [29,30]. To analyze correlations 
between the means of compounds A and B, we developed a COMPARE computer algorithm as 
described by Paull et al. [28]. Correlation coefficients were calculated according to the following 
formula: r = (Σ(xi-xm)(yi-ym))/(Σ(xi-xm)2Σ(yi-ym)2)1/2, in which xi and yi are log GI50 values for 
compounds A and Bagainst each cell line and xm and ym are the mean values of xi and yi, respectively. 
We verified the accuracy of measured data by checking the dose response curves of reference control 
chemicals, such as mitomycin-C, paclitaxel, and SN-38, in every experiment. 
 
3.3. Electrochemical measurements  

Cyclic voltammetric measurements were performed on a conventional three-electrode system using 
a laboratory-constructed microcomputer-controlled system in which the working electrode potential 
was controlled by a potentiostat (Hokuto Denko, HA-301). Plastic-formed-carbon (PFC) electrodes 
with a surface area of 0.071 cm2 (BAS, PFCE-3), Ag/AgCl (saturated NaCl) electrodes, and platinum 
coil electrodes were used as the working, reference, and counter electrodes, respectively. Before 
recording each voltammogram, the working electrode was pretreated as previously described [13]. 
Aliquots of 0.05 mM heterocyclic quinone solutions in 3:1 (v/v) 0.1 M phosphate buffer containing  
0.1 M KCl (pH 7.2)-ethanol were degassed using purified N2 gas prior to voltammetric measurements. 
The electrolytic cell was water-jacketed to maintain a constant temperature of 25 ± 0.1 ºC.   
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3.4. Correlation coefficients 

Correlations of the electrochemical and electronic parameters with the cytotoxic activities of 
heterocyclic quinones were determined using Pearson's correlation coefficient. 

4. Conclusions  

We have determined the growth inhibitory- and cytotoxic activities of 12 heterocyclic quinone anti-
tumor agent candidates against a panel of 39 human cancer cell lines (JFCR39). The first reduction 
potentials, determined at a physiological pH (7.2), correlated with the cytotoxic activities against JFCR 
39 of the heterocyclic quinones. In addition, log P and LUMO energy were also useful parameters to 
predict the cytotoxic activity. In our previous study, the first reduction potentials also correlated with 
the inhibitory effects of anthraquinone derivatives on EBV-EA activation; both the number of hydroxy 
groups and LUMO were useful parameters to predict inhibitory activity [18]. From these results, a 
reliable prediction of the cytotoxic activity of various quinone derivatives can be made using their 
reduction potentials without in vitro screening.  
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