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Abstract
There is growing evidence for the key role of social determinants of health (SDOH) in understanding morbidity and mortality 
outcomes globally. Factors such as stigma, racism, poverty or access to health and social services represent complex con-
structs that affect population health via intricate relationships to individual characteristics, behaviors and disease prevention 
and treatment outcomes. Modeling the role of SDOH is both critically important and inherently complex. Here we describe 
different modeling approaches and their use in assessing the impact of SDOH on HIV/AIDS. The discussion is thematically 
divided into mechanistic models and statistical models, while recognizing the overlap between them. To illustrate mechanis-
tic approaches, we use examples of compartmental models and agent-based models; to illustrate statistical approaches, we 
use regression and statistical causal models. We describe model structure, data sources required, and the scope of possible 
inferences, highlighting similarities and differences in formulation, implementation, and interpretation of different modeling 
approaches. We also indicate further needed research on representing and quantifying the effect of SDOH in the context of 
models for HIV and other health outcomes in recognition of the critical role of SDOH in achieving the goal of ending the 
HIV epidemic and improving overall population health.
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Introduction

The social determinants of health (SDOH) have been defined 
by the World Health Organization (WHO) as “the conditions 
in which people are born, grow, work, live, and age, and the 
wider set of forces and systems shaping the conditions of 
daily life” such as “economic policies and systems, devel-
opment agendas, social norms, social policies and political 
systems”[1]. The WHO notes that these circumstances “are 
shaped by the distribution of money, power and resources” 
and are largely responsible for health inequities [1]. In the 

last two decades or so, investigators have come to appreciate 
that an individual’s vulnerability to disease is multi-factoral 
and subject to community, societal and environmental deter-
minants [2].

Global pandemics such as the ongoing HIV pandemic, 
where SDOH play a central role in incidence and disease 
burden outcomes [3], present an important opportunity for 
utilizing models to inform investigators, practioners and 
policy-makers about how SDOH shape and impact epidemic 
and disease dynamics. The role of SDOH in the trajectory 
of the HIV epidemic has received increasing recognition, 
especially since the 2000s with a growing number of pub-
lic health and epidemiologic studies designed to assess the 
role of SDOH through observational, intervention and ran-
domized trial designs [4–6]. As the availability of data and 
newly developed measures around SDOH and inequitable 
health outcomes grows [7], so does the potential utility 
of disease and intervention models to illuminate the rela-
tionship between SDOH and indicators of individual and 
population health. Well-formulated models can be used to 
quantify and provide insight about the impact of planned or 
already implemented interventions at both the individual and 
community level.
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This paper joins this AIDS and Behavior supplement, 
devoted to research conducted through the NIMH and 
NIAID funded RFA, Methodologies to Enhance Under-
standing of HIV-Associated Social Determinants [8], to 
offer a reflection on the specific ways in which models can 
be employed to elucidate relationships between SDOH and 
HIV outcomes. The paper provides a broad overview of 
two basic and foundational approaches, namely mechanis-
tic and statistical models, and considers how two papers in 
this volume, that provide findings from modeling analyses, 
reflect the basic structures of these exemplars. While our 
review is divided thematically into mechanistic and statisti-
cal approaches to modeling, we recognize this distinction 
to be somewhat artificial as the approaches are not mutu-
ally exclusive. In fact the overlap can be substantial, and 
the coherent integration of methods that are traditionally 
labeled ‘mechanistic’ and ‘statistical’ is an active area of 
ongoing methodologic research. This paper speaks to the 
commonalities between mechanistic and statistical models 
and shows how they can be used to draw various kinds of 
inferences about the role of social determinants of health in 
HIV research.

Our discussion of these models is necessarily concise; 
hence, for comparison purposes, we focus on model struc-
ture, the sources of information that inform parameters 
(model inputs), and how the models are used to generate 
inferences (model outputs). Examples are given to illustrate 
the different modeling approaches. We discuss considera-
tions for model choices and issues related to the general-
izability of results from the various modeling approaches. 
Finally we describe connections between statistical and 
mechanistic models and give potential directions for future 
research.

Model Structure and Some Reasons 
for Using Models

To fix ideas for comparing the models, it is hepful to intro-
duce some basic notation that will be used throughout. We 
assume that all models in our discussion have the basic 
form Y = M(X, θ, ε), where Y is an outcome of interest, 
X are inputs or covariates, θ is a set of model parameters, 
ε represents random variation (e.g. random error), and M 
is a model that describes how the inputs and parameters 
are related to Y. This is a generic description but it will be 
useful in organizing our discussion. A familiar example of a 
model is the normal-error linear regression Y = α + βX + ε, 
where ε is a normally-distributed error term having mean 
zero and standard deviation σ. In this case, Y is the output, 
X is the input, θ = (α, β, σ) is the set of parameters, and ε 
captures the random variation in Y after accounting for sys-
tematic variation explained by X. The model is the normal 

probability distribution function where the mean is α + βX 
and the standard deviation is σ.1

Models have various types of uses and the ultimate choice 
of a model is based both on the information available and 
the intended use. Our focus here is on the use of models 
to understand the impact or role of SDOH on outcomes of 
interest such as the risk of HIV infection, and to understand 
the impact of interventions or policy changes that might be 
motivated by or targeted to considerations related to SDOH. 
It is also important to note that human interactions are cen-
tral for understanding the dynamics of infectious diseases 
transmission and control. For example, suppose we are inter-
ested in the effect of needle exchange on HIV incidence in a 
population of injection drug users at risk for HIV. Consider 
a model of the form Y = M(X, A, θ,ε). In this case, Y is 
HIV incidence, A is needle exchange, X are individual- and 
community-level predictors of HIV incidence, and θ is a set 
of parameters that governs the relationship between A, X 
and Y via the model M.

There are two ways to use models to study this effect. The 
first is to use knowledge about the form of the model itself; 
that is, to use, for example, a set of mathematical equations 
that describes how HIV transmission takes place in a popula-
tion having characteristics and behaviors captured by inputs 
X, and then to use that model to generate predictions of 
Y under different levels of A. In this case, the ‘inputs’ are 
knowledge about the mathematical form of the model (that 
is, model structure), and values of X that describe a popula-
tion, or individuals in the population, including, for example, 
frequency of drug injection and likelihood of sharing injec-
tion equipment. An assessment of the effectiveness of needle 
exchange is made by simulating values of Y under different 
values of A; for example, simulating HIV incidence under 
assumptions that needle exchange is fully available (A = 1) 
or not at all available (A = 0). Such a mathematical model 
might also encode assumptions about how individuals inter-
act with each other—information that would be difficult to 
obtain from observed data. Because this approach relies on 
the user specifying the mathematical form of the model that 
reflects the mechanism leading to HIV incidence—we call 
these models mechanistic. Mechanistic models also typi-
cally include assumptions about the values and distribution 
of some of the model parameters, often derived from knowl-
edge or information gained from previous studies.

A second approach is to use what we call here statisti-
cal models, where individual-level data is used to estimate 
parameters of the model itself. In a statistical model, the 
model structure does not attempt to explicitly describe the 

1 The model itself is written mathematically as p(Y | X,α,β,σ) = { 
(2)}−1 exp{—(Y—α—βX)2 / (2σ2)}, which describes the relative 
probability of observing the value Y for a fixed value of X.



S217AIDS and Behavior (2021) 25 (Suppl 2):S215–S224 

1 3

underlying disease dynamics but rather the association 
between covariates and outcome, often assuming a general 
linear structure. In this case, we may have individual-level 
data on Y, A and X. For example, Rich et al. [9] recorded 
data on HIV incidence (Y) for individuals at outpatient treat-
ment centers in two neighboring states (RI and MA) where, 
by law, access to needle exchange was substantially differ-
ent. In this case, observed individual-level data are used to 
estimate the parameters (θ) of an instrumental variables 
model, which takes a much simpler form than the mecha-
nistic model.

An instrumental variables model can be formulated as a 
simultaneous equations model with correlated error terms 
(one equation for the outome and a second for the exposure). 
In this context, the model would be fit under an assump-
tion that any between-state differences in the outcome Y 
are assumed to be attributable solely to differences in needle 
exchange access. Rich et al. use this model to estimate the 
impact of access to needle exchange (A = 1 versus A = 0), 
on syringe re-use and sharing and demonstrate that access 
to needle exchange substantially reduces both. In fact a ver-
sion of this model can be used to generate simulated out-
comes under A = 1 and A = 0 as a way to assess the impact 
of needle exchange, which mimics how a mechanistic model 
might be used for the same purpose, a point we return to 
later in the paper. A key difference between the mechanistic 
model and the statistical model is that a single source of data 
is used to estimate the parameters of the statistical model, 
whereas multiple data sources might be used to determine 
fixed values or distributions of parameters for the more com-
plicated mechanistic model. Additionaly, while mechanistic 
models attempt to represent multiple complexities or stages 
of a process leading to a health outcome Y, statistical mod-
els typically rely on simplified versions of data generating 
mechanisms.

In the next two sections we provide some additional 
description and concrete examples of mechanistic and sta-
tistical models and illustrate how they are used to assess the 
role of SDOH and to generate causal comparisons of inter-
ventions that are motivated by or closely related to SDOH. 
Where possible we make reference to the model structure 
described above.

Mechanistic Models

Mechanistic models are rooted in a mathematical representa-
tion of the mechanism driving the process of interest. Mech-
anistic models used to characterize population dynamics of 
HIV infection are often formulated to capture the popula-
tion structure, infection transmission dynamics and stages of 
disease progression. Our discussion of mechanistic models 
uses examples of compartmental and agent-based models 

that have been applied to model HIV in a variety of popula-
tions and that incorporate SODH.

A major motivation for using mechanistic models to study 
SDOH is the need to characterize a complex system or pro-
cess that cannot be studied using a single source of data. 
Hence the model inputs and information about model struc-
ture, in terms of key parameters, values or functional form 
of key mathematical components, can derive from multiple 
sources [10]. For some parameters there may be little or 
no a-priori information available; these values are typically 
tuned or fixed using a calibration process. To calibrate the 
model parameters, simulations from a version of the model 
having fixed parameter values are compared to data on a the 
outcome of interest, such as HIV incidence over a period 
of time, measured in the target population. Optimization or 
grid-search methods can be used to identify the parameter 
values for which simulated outcomes from the model align 
with observed data. Importantly, for a given model, there 
may be more than one set of parameter values for which 
simulations from the overall model are consistent with the 
data used for calibration; in other words, the post-calibration 
parameter values may not represent a unique solution [11].

Compartmental Mechanistic Models

Compartmental models of infectious disease dynamics 
provide a prototypical example of a mechanistic model. 
These mathematical models represent the process of inter-
est assuming a structure that is driven by the definition of 
a set of disease-related states (compartments) and the rules 
that govern the transition between compartments. These 
models are often specified using a set of differential equa-
tions to describe for example transitions between different 
compartments that respresent disease states (e.g. suscepti-
ble, infected, recovered; or transitions between HIV disease 
states that reflect disease progression and are defined in 
terms of CD4 count and viral load [12].

Compartmental models can be specified to quantify the 
effects of demographic factors and SDOH at either the popu-
lation or individual level including, for example, economic 
factors such as income distribution, educational attainment, 
and knowledge of disease risk, or to characterize a more 
refined representation of the disease process including incu-
bation period, disease progression, treatment status and 
death [13]. Thus SDOH may be incorporated by defining 
compartments corresponding to specific sub-populations, 
by say education levels or race, or by allowing transition 
parameters to be influenced by social determinants such as 
access to care or stigma and discrimination. Dynamic com-
partmental models can be used to represent the changes in 
disease prevalence over time due to changes in transmission 
rates and or population-level dynamics such as migration 
patterns or proportion of antiretroviral treatment coverage.
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A compartmental model that has been used for a variety 
of purposes is the Estimation and Projection Package Age-
Sex Model (EPP-ASM) [14], implemented in the Spectrum 
software package [15]. This model is used in the paper by 
Jahagirdar et al. [16] in this supplement to derive country-
specific estimates of HIV incidence over time in over 40 
countries in Africa. Within the Spectrum model, incidence 
rate, which in our notation is the Y variable, is modeled 
as a function of several inputs that comprise the country-
specific X variables: transmission rate among untreated 
HIV-infected individuals, HIV prevalence, proportion of 
HIV-positive individuals on ART, and the effectiveness of 
ART at reducing onward transmission. The model M(X, θ, 
ε) is a set of mathematical equations that describes how the 
X variables are related to HIV incidence; the values of the 
θ parameters have been derived from different sources. For 
a given set of inputs X, which the user needs to supply, the 
model can then be used to generate estimates or even simula-
tions of the number of new cases that would be anticipated 
based on the model inputs. Notably the model inputs for this 
example are specified at the population level as opposed to 
the individual level.

Other examples of compartmental models that have 
been proposed to study HIV incidence and prevalence and 
their relationship to SDOH include Shannon et al. [17] who 
showed the impact of gender-based violence and discrimi-
nation of sex work on new HIV infections among female 
sex workers. Compartmental models can be also be used 
for post-hoc quantification of the contribution of individual 
components of a complex intervention by simulating hypo-
thetical scenarios that are not likely to be reproducible in 
practice and would otherwise be difficult to isolate empiri-
cally. Examples include Nosyk et al. who demonstrated the 
impact of harm reduction services and ART coverage on 
averting new HIV infection in the population due to needle 
sharing [18].

Agent‑Based Mechanistic Models

Individual or agent based models (ABM), also termed 
micro-simulation models, can be viewed as higher-resolution 
versions of mechanistic models and can be used to char-
acterize and simulate outcomes based on individual-level 
behavior. ABM treat each individual in the population as 
unique and can incorporate or represent information about 
relationships between individuals.

In compartmental models such as the Jahagirdar et al. 
HIV incidence model described above [16], heterogeneity 
in a population is introduced by division of compartments 
into smaller subgroups, such as by age or risk profile (e.g. 
men who have sex with men (MSM), drug users, or those 
with pre-existing conditions) where each subgroup has pos-
sibly different transition rates between states; that is, the 

compartmental model is developed at the population level 
and assumes that individuals within each compartment 
are homogeneous (a top to bottom approach). By contrast, 
individual-based or microsimulation models introduce het-
erogeneity at the individual level whereby each individual 
can be assigned unique characteristics and risk profiles and 
a personal pattern of contacts with other individuals in the 
population (a bottom-up approach). In an individual-level 
model for HIV incidence, for example, each individual has 
their own probability of transmitting and contracting the 
infection. In our generic model representation, Y denotes a 
new HIV infection for an individual (e.g. 1 if yes, 0 if no). 
The inputs X can include both individual-level and popula-
tion- or stratum-level variables.

Like population-level mechanistic models, ABM typi-
cally require simulation solutions to produce a projected 
output and often utilize multiple sources of data to obtain 
information on the values of model parameters and their 
distribution. Within the ABM framework, SDOH such as 
education, socio-economic status, racial or gender minority 
affiliation can be incorporated in individual characteristics 
that compose a simulated population and in turn, determine 
the interactions with other individuals in the population. 
Simulated output from agent-based models, then, produce 
overall epidemic dynamics and selected health outcomes 
under different assumptions on population structure and 
inter-personal interactions.

Similar to compartmental models, ABM have beeen used 
to assess the potential effects of complex interventions that 
cannot be easily studied using a single cohort or source of data. 
For example, Marshall et al. [19] used an ABM to model HIV 
incidence among interacting individuals that included injec-
tion drug users, non-injection drug users and non-drug users 
in New York City between 1992 and 2002. The model formula 
can be written generically as Y = M(X, A, θ, ε), where X repre-
sent individual-level characteristics, A denotes a system-level 
intervention such as availability of needle exchange, and the 
ε term represents the stochastic or probabilistic component of 
the model. Marshall et al. used this model to simulate indi-
vidual HIV infection status within each subpopulation under 
various system-level interventions and used the output to gen-
erate population- and stratum-level HIV incidence trajectories. 
By generating simulated outcomes under different configura-
tions for the interventions—which in the model correspond to 
different versions of the A variable—they demonstrated that 
the combination of syringe exchange and provision of ART 
could produce substantial reductions in HIV prevalence among 
injection drug users. This finding mirrored the results from 
several empirical studies [20]. An important feature of this 
ABM is that the model itself was parameterized to allow inter-
actions between individuals under different network assump-
tions. Although typically there are limited data available to 
verify whether population interaction assumptions are correct, 
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the model can be used to generate simulations under various 
assumptions about network structure in order to quantify the 
robustness of findings about intervention effects.

An additional example of agent-based modeling is carried 
out by Brookmeyer et al. [21], who used simulations from 
an agent-based model to evaluate the impact of 163 differ-
ent HIV prevention packages comprising varying combina-
tions and intensities of four prevention measures: percent 
of eligible persons who receive ART, percent reduction 
in unprotected anal intercourse (UAI), percent of eligible 
persons accepting PrEP, and a variable capturing increase 
in HIV testing. In empirical studies, these had only been 
examined one at a time. The analysis followed two steps: in 
the first step, simulation of data from an agent-based model 
where the population starts out with initial values of HIV 
prevalence, knowledge of HIV status, testing frequency, and 
frequency of sexual risk behavior. This model also makes 
assumptions about frequency of sexual contact based on an 
assumed social network structure, and about the probability 
of HIV transmission per contact. Individual-level outcomes 
are simulated forward in time.

In the second step, a regression model is applied to the 
simulated data to estimate the impact of varying the per-
cent intensity of each prevention measure. The regression 
model used by Brookmeyer et al. [21] includes covariates 
representing percent uptake of the prevention measures 
listed above; fixing these values in different combinations 
encodes the 163 distinct prevention packages. Aside from 
the assumptions used to generate the synthetic data from the 
ABM, another critical set of assumptions is the specification 
of the impact of each intervention in the regression model. 
Brookmeyer et al. assume that, on the logit scale, the effects 
of ART uptake and UAI are additive and that the impact 
of PrEP is dependent on the rate of HIV testing. SDOH in 
this model were incorporated as factors impacting various 
prevention strategies such as ART and PrEP coverage and 
condom use, that are influenced by societal and cultural 
norms, stigma and discrimination as well as empowerment.

An advantage of this approach is that we can potentially 
gain insights about combinations of interventions that typi-
cally can only be tested one at a time in a randomized trial 
(if they can be tested at all). A key limitation is the strong 
dependence on modeling assumptions: the data generated by 
the ABM are synthetic, and the estimated impact of com-
bination interventions depends on how each intervention is 
parameterized in the second-step regression model.

Statistical Models

Statistical models tend to have a less complex mathematical 
structure, and typically are used to draw inferences based 
on a single source of individual-level data from a target 

population (e.g. a cohort study or clinical trial). The most 
commonly used statistical models are regression models, 
which quantify associations between the inputs X and the 
outcome variable Y with the regression coefficients β. While 
it is possible to conduct a statistical analysis of a complex 
mathematical model, statistical models per se are not typi-
cally designed to represent population-level mechanistic 
processes. In contrast with mechanistic models that rely on 
calibration to tune parameter values, in statistical models the 
parameter estimates are usually derived by fitting the model 
to a single source of data using techniques such as maximum 
likelihood. For a defined statistical model and a given data-
set, the parameter estimates resulting from the fitting process 
are typically unique. Under certain circumstances, statistical 
models also can be used to generate causal inferences and to 
assess the impact of interventions. One approach to accom-
plishing this goal is the g-computation algorithm, which 
serves as a conceptual connector between statistical and 
mechanistic models. We describe the g-computation algo-
rithm below using the analysis conducted by Stoner et al. for 
this supplement, as an example [22].

Regression Models

The goal of a statistical regression model is to characterize 
explained and unexplained variation in one or more outcome 
variables Y based on data drawn from a target population. 
The explained variation is assumed to depend, through a 
regression function, on a set of predictor or explanatory 
variables X; for example, a regression model can be used to 
characterize variation in a disease outcome as a function of 
multiple explanatory risk factors such as age, gender, risk 
behaviors and factors related to SODH. Regression models 
provide estimates of the association between the explana-
tory variables and disease outcomes in the form of differ-
ences in means or risk, risk ratios, odds ratios, and hazard 
ratios, and can also be used to assess the potential impact 
of determinants via measues such as population attributable 
fraction. Regression models can be used to assess the effect 
of an SDOH or policy at the individual level as well as the 
community level.

An example of this kind of analysis is given by Kemp 
et al., who use a multilevel regression model to demonstrate 
the impact of ongoing experiences of HIV stigmatization 
on increased viral load among African-American women 
in primary HIV care [23]. Multilevel models are generali-
zations of standard regression models in that they build in 
error terms at each level of a clustering hierarchy; they are 
sometimes called random effects models, mixed effects mod-
els, or mixed models. They also can be used to estimate 
separately the effect of a covariate at each level of the hierar-
chy. By using a multilevel model that decomposes the over-
all effect of stigma on viral load, Kemp et al. were able to 
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show that within-person changes in stigma over time do not 
lead to subsequent changes in viral load (within-individual 
effect), but that individuals having higher levels of stigma 
on average also have higher viral load on average (between-
individual effect) [23]. This distinction between within- and 
between-individual effects is critical not only to understand-
ing the mechanism by which SDOH might operate, but also 
for understanding how interventions might be designed.

The analysis conducted by Jahagirdar et al. in this vol-
ume borrows techniques from both regression modeling 
and mechanistic modeling [16]. In their model, simulated 
rates of HIV infection in over 40 countries in Sub-Saharan 
Africa, derived from the EPP-ASM model described above, 
are used as the outcome in a multilevel regression model to 
assess the impact of individual- and community-level SDOH 
on HIV risk [16]. The incidence rates predicted from EPP-
ASM showed an overall decline in HIV incidence between 
2000 and 2015. They then use a multilevel regression model 
to characterize variation in the predicted HIV incidence 
over time accounting for both between- and within-country 
variation in incidence, and the dependence of incidence on 
country-level SDOH covariates. Jahagirdar et al. use this 
approach to identify SDOH and other variables that explain 
the highest percentage of variation in country-specific HIV 
incidence rates. Average number of education years per 
capita and country-specific spending on HIV emerge as the 
factors explaining the greatest amount of variation in HIV 
incidence rates between countries [16].

Causal Models Derived From Regression Models

While regression models are formulated to capture the effect 
of predictor variables on an outcome of interest, the effect 
cannot generally be interpreted as causal. In this section, we 
discuss the construction and interpretation of causal struc-
tural models, and illustrate the use of one such model by 
Stoner et al. in this supplement to quantify the effect of child 
support grants (CSG) on HIV incidence among adolescent 
girls and young women [22].

Causal structural models are specified in terms of ran-
dom variables called potential outcomes. For a two-level 
exposure or intervention, such as receipt of cash transfer or 
not, a causal model assumes that each individual has two 
potential outcomes: the outome that would be realized if the 
intervention is received, and the other that would be real-
ized if not received. Unlike with other sorts of models, the 
potential outcomes formulation of the causal model assumes 
that both variables exist for each individual, even though 
only one can be observed [24]. (Potential outcomes are 
sometimes referred to as counterfactuals because for each 
individual, we can only observe the potential outcome cor-
responding to the actual exposure received; the other one 
is counterfactual.) From a statistical perspective, the goal 

is to draw inference about the difference or ratio of means 
between these two potential outcomes using observed data. 
The fundamental challenge is that, for each individual, only 
one of the potential outcomes can be observed. The process 
for drawing inference about causal effects from observed 
data can be driven either by design—i.e. by randomizing 
individuals to exposure or no exposure in a clinical trial 
design—or by analytic methods that are designed to balance 
confounding variables that make selection into the exposed 
and unexposed groups systematically different.

A design-based approach to causal inference is to rand-
omize individuals to the exposure. Under randomization, 
for each individual, we are equally likely to observe either 
outcome and we can use the observed outcomes under each 
condition to estimate differences or ratios of the outcome of 
interest at the population level. If data were collected in an 
observational study instead, it is important to remember that 
girls and women who are at higher risk for HIV infection 
may also be more likely to receive cash transfers. Statistical 
methods used to estimate causal effects in settings where the 
exposure is not randomized are therefore designed to mimic 
randomization in some way by accounting for possible con-
founder imbalance. This can be accomplished by reweight-
ing the sample according to inverse probability of receiving 
treatment [25, 26], matching those who receive treatment 
to control individuals with similar observed characteristics 
[27, 28], or making model-based adjustments.The propensity 
score, a summary of the probability of being exposed as a 
function of covariates, plays a fundamental role in many of 
these approaches [29]. There is a vast literature describing 
these methods and many others; a full review is beyond the 
scope of this discussion. Instead we focus on the g-formula 
method [30] used here by Stoner and colleagues.

Stoner et al. investigate the causal effect of cash transfer 
on HIV infection among adolescent girls and young women 
(AGYW) [22]. In the simplest formulation of their causal 
model, there are two potential outomes for each person: HIV 
infection status under the scenario that CSG is received, and 
HIV infection status under the alternate scenario that CSG is 
not received. Stoner et al. use a more complex version where 
CSG can vary over time, and have different intensities [22].

Implementation of the g-formula has many similarities 
to agent-based modeling [31]. The g-formula can be used to 
simulate potential outcomes under different versions of an 
intervention that are fixed by the investigator; the outcomes 
simulated under different scenarios are then used to quantify 
intervention effects. The process of simulation in the para-
metric g-formula bears similarity to how simulation-based 
inferences are generated in mechanistic models in the sense 
that individual component models are used to generate simu-
lated outcomes of interest, such as HIV incidence, under 
different versions or intensities of an intervention. A key 
difference is that for the g-formula, the component models 
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used to generate simulated potential outcomes are statistical 
models2—oftentimes regression models—that have been fit 
to a single source of observed data drawn from a popula-
tion of interest. In practice, therefore, simulations from the 
g-formula typically derive from component models that are 
less mathematically complex but have closer fit to a repre-
sentative sample of observed data. Mechanistic models are 
more complex representations of disease dynamics, but the 
data come from sources that may be less representative of a 
specific population.

Stoner et al. use the g-formula to examine receipt of CSG 
and other interventions [22]. At each time point, there are 
data available on HIV incidence (Y), receipt of CSG (A), and 
confounding variables (X). In this example, implementation 
of the g-formula proceeds in three steps: first, for each time 
point, fit a regression of HIV incidence as a function of CSG 
(yes/no) and the confounders. This regression, which can 
be represented in the format Y = M(X,A,θ, ε) where X are 
the confounders and A is the intervention, is the component 
model on which simulations of potential outcomes under dif-
ferent intervention combinations will be generated. Second, 
once the models are fitted to observed data, fix covariate 
values X to represent the population of interest, and fix the 
intervention sequence (the value of A at each time point) for 
which HIV incidence is to be estimated. Third, for this fixed 
version of the intervention sequence, generate simulated or 
predicted values of HIV incidence from the fitted regression 
models. In this way, the fitted regression models are playing 
the same role as the mechanistic models when it comes to 
simulating outcomes under different intervention scenarios.

Using this basic approach, Stoner et al. [22] can compare 
various intensities of CSG, such as all-versus-none receipt 
of CSG and all-versus-observed receipt of CSG. The latter 
comparison quantifies the effect of increasing the observed 
CSG coverage (around 75%) to having everyone receive 
CSG. With suitably rich data, this general strategy can be 
used to quantify the impact of more complex interventions 
or, as Stoner et al. do, to compare the interactive effect of 
interventions with other factors [22]. Their analysis shows 
the potential for combining monthly child support grants 
with interventions to increase parental care and reduce 
depression can lead to substantial reductions in HIV inci-
dence among AGYW, and that these effects are not realized 
through cash grants alone [22].

Discussion

As both the decades-old HIV global pandemic and the more 
recent SARS-CoV-2 pandemic demonstrate, SDOH can play 
a central role in the transmission, morbidity and mortality 
of an infectious disease. The models described here offer 
a range of tools that can help to elucidate the interplay 
between social and structural determinants and the expres-
sion of an infectious disease among individuals as well as 
the public health burden in the population. The presentation 
here is a broad overview of different established approaches 
to modeling disease outcomes, with examples that focus on 
HIV and SDOH. This is not meant to be a comprehensive 
toolbox. Models can offer insights into how an interven-
tion might function at an individual level such as the causal 
model shared by Stoner et al. [22] as well as the societal 
level, such as the hybrid model developed by Jahagidar and 
colleagues [16], using information from mechanistic models 
as inputs to a statistical regression analysis of country-level 
exposures. These models allow for a simulation of outcomes 
under different versions of, intensity of, or combination of 
interventions that would be difficult to gain through designed 
studies such as randomized trials. While the ultimate goal 
of all the models discussed in this paper is to better under-
stand the causal relationship between exposures and out-
come, models that implement simulations of outcomes under 
various exposures address causality more directly compared 
to simpler regression models. In the case of Stoner et al., 
the availability of high quality individual-level data from 
an intervention trial allowed the investigators to examine 
complex versions of a time-varying intervention and its 
potential interaction with other factors [22]. For Jahagidar 
et al., the generation of country-level comparisons offered 
insights into the impact of programs and policies far beyond 
the potential scope or feasibility of any designed interven-
tional study [16].

Many factors contribute to the validity of model-based 
inferences about SDOH. In this paper we have focused on 
model specification, model inputs (i.e. the data or informa-
tion used to generate outputs from the model), and the use 
of models to assess the impact of interventions. Both mecha-
nistic and statistical models rely on a representation of the 
underlying data generating process given in mathematical 
and probabilistic terms. Many compartmental models, for 
example, are written in terms of differential equations that 
describe the probability of transition from one compartment 
or disease state to the next; regression models describe vari-
ation of an outcome in terms of explained and unexplained 
variation, where explained variation is the regression func-
tion and unexplained variation, quantified by the error term, 
follows a probability model such as the normal distribution.2 Strictly speaking, the g formula does not require the component 

models to fitted statistical models. However in epidemiologic practice 
this is the most common method of applying the g formula.
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In nearly all cases, even the most complex model will not 
be an accurate or complete representation of the system or 
phenomenon that it is being studied. The models described 
in this paper, for example, are designed to characterize out-
comes such as HIV infection as a function of SDOH and 
possible interventions, but do not address the dynamic pro-
cesses that give rise to the SDOH themselves. However, 
models offer a useful insight into the potential impacts of 
selected factors, including various SDOH, on disease out-
comes. Models must strike a difficult balance between inter-
pretability, face validity, and fidelity to an observed-data 
process. The first two of these criteria are largely subjective. 
Regarding fidelity to observed-data processes, mechanistic 
models and statistical causal models are themselves built 
up from smaller submodels. While these submodels can 
be checked for lack of fit against observed data, the larger 
model relies on assumptions that tie the submodels together 
and typically cannot be validated against a single sample 
of data.

The validity of model-based inferences also depend on 
inputs. Parameter values for mechanistic models typically 
are informed by multiple sources that may even be derived 
from different populations. Statistical models tend to rely 
on single samples of data drawn from the target population. 
This distinction can be important. As Murray et al. demon-
strate in a comparison of agent-based and statistical models 
for estimating causal effects, even when both models are per-
fect representations of the underlying system, using inputs 
from different populations—as is done with ABM and other 
mechanistic models—can induce unintended confounding 
and biased estimates of causal effects [31]. This is an espe-
cially important consideration when estimating effects of 
SDOH, particularly if the SDOH inputs are derived from 
substantively different populations than the confounding 
variables.

Uncertainty associated with model-based inferences 
has many sources. In statistical models, the most obvious 
is sampling variation, captured in terms of standard errors 
and confidence intervals. For mechanistic models, param-
eter inputs derived from published studies carry uncer-
tainty because they usually correspond to estimates from 
other studies, which themselves have associated standard 
errors. This uncertainty can be represented by using distri-
butions instead of fixed parameter values as model inputs, 
as is done for the Thembisa model of the HIV epidemic 
in South Africa [32]. The Bayesian approach to inference 
treats the model parameters as random variables. It requires 
specification of a probability model for the outcomes (what 
we have been referring generically to as M(X, θ, ε)) and 
prior distributions for the parameters θ in the probability 
model; inference is based on the posterior distribution of 
the parameters given the observed data. Posterior variation 
in the parameter values and model predictions reflects both 

the prior uncertainty about parameter values and sampling 
variability in the observed data. Bayesian methods can be 
used to fit both mechanistic and statistical models; however, 
they are particularly useful for mechanistic models that can 
be specified in terms of a likelihood function because they 
provide a formal way to encode existing information about 
model parameters via the prior distribution. An outstand-
ing and timely example is the Bayesian model developed by 
Flaxman et al. [33] to quantify the impact of non-pharma-
ceutical interventions on COVID-19 in Europe.

Untestable assumptions are an often overlooked source 
of uncertainty. Statistical causal models rely by necessity 
on the assumption that all relevant confounders have been 
measured (the ‘no unmeasured confounding’ or ‘treatment 
ignorability’ assumption), but there is no way to verify 
whether or not this assumption holds. Uncertainty about 
untestable assumptions should be examined in sensitivity 
analyses, which serve to quantify the robustness of infer-
ences from causal models—whether statistical or mechanis-
tic. Sensitivity analyses can take many forms [34, 35], and 
a critique of assumptions about both mechanisms and con-
founding can be guided by the use of a graphical model [36].

Finally an often overlooked source of uncertainty is the 
quality of measurement and design. The value of any given 
model is tied to the quality of its input and the rigor of its 
design [37]. The interpretation of modelled epidemiological 
scenarios must include a critical assessment of the accuracy 
of measurement and ascertainment of exposure and out-
comes, and how any data source is calibrated and considered 
against other inputs.

On a more general note, as Geffen and Welte explain, 
the nature of a model world, namely a “conceptual realm”, 
which is constructed around an understanding of “real world 
processes," should be comprehensible [38]. They argue that 
while the technical construction of a model may be complex 
and understood by relatively few, model worlds should be 
accessible to all that work within that domain [38]. For com-
partmental or micro-simulation models, users should under-
stand the basic rationale behind the mathematical model 
used to represent population dynamics and the validity of 
parameter values that populate the model. A full systematic 
reporting of the evidence synthesis and model assumptions 
is critical for models to be useful tools for policy decision 
making [14]. For causal models, users should understand 
the nature of key assumptions such as ‘no unmeasured con-
founding’ and how they are applied in the specific context.

One way to ensure that models are comprehensible and 
that they reflect a theoretically valid model world is to fur-
ther integrate the technical development of models with 
longstanding and rigorous research on the SDOH. The rich 
theoretical foundation of research on the SDOH and their 
association with disease processes and outcomes should 
also be reflected in any mathematical or statistical model 



S223AIDS and Behavior (2021) 25 (Suppl 2):S215–S224 

1 3

development. This integration of theoretical research in 
sociology, especially of more complex concepts such as 
systemic racism and discrimination, with statistical model 
development presents a real challenge. Developing valid 
measurement of SDOH at both the individual level, assess-
ing exposure to and impact of social determinants, as well 
as quantifying differences at the community level, such as 
police or justice system discrimination, are critical. Mod-
els of SDOH will also be strengthened by the use of high-
quality inputs. Collaborations with investigators working in 
social behavioral science can ensure that modellers use well 
regarded measures and inputs as ingredients in the models 
they construct. There is a broad need then for models that are 
grounded in social behavioral theory and draw on data from 
a diversity of sources with indicators that are appropriate for 
the model’s proposed context and use. As epidemics unfold 
and mature, there is a significant opportunity for the appli-
cation of models as we work to understand how communi-
ties and policies impact disease outcomes and how shifting 
realities in individual circumstance may support or hinder 
optimal outcomes.
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