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ABSTRACT
Objectives The transition from ICD- 9 to ICD- 10 coding 
creates a data standardisation challenge for large- scale 
longitudinal research. We sought to develop a programme 
that automated this standardisation process.
Methods A programme was developed to standardise 
ICD- 9 and ICD- 10 terminology into one system. Code 
was improved to reduce runtime, and two iterations were 
tested on a joint ICD- 9/ICD- 10 database of 15.8 million 
patients.
Results Both programmes successfully standardised 
diagnostic terminology in the database. While the original 
programme updated 100 000 cells in 12.5 hours, the 
improved programme translated 3.1 million cells in 38 min.
Discussion While both programmes successfully 
translated ICD- related data into a standardised format, 
the original programme suffered from excessive runtimes. 
Code improvement with hash tables and parallelisation 
exponentially reduced these runtimes.
Conclusion Databases with ICD- 9 and ICD- 10 codes 
require terminology standardisation for analysis. By 
sharing our programme’s implementation, we hope 
to assist other researchers in standardising their own 
databases.

INTRODUCTION
On 1 October 2015, the department of Health 
and Human Services updated the Interna-
tional Classification of Diseases (ICD) system 
by mandating the adoption of ICD- 10 diag-
nosis codes in electronic medical records.1 
Serving as the new standard for naming and 
categorizing patient diagnoses, the ICD- 10 
system contains over five times more codes 
than ICD- 9, posing a challenge for analysing 
longitudinal databases spanning both systems. 
Prior solutions have included the use of alter-
nate coding systems, which are updated each 
time a new ICD system is released. Current 
literature is aimed at the accuracy and scope 
of these systems,2 3 how they update with new 
ICD releases,3 4 and how systems are similar 
or different.5 6 These studies fail to address 
how to implement such a system on a large- 
scale database, where manual reference and 
cell- by- cell translation is infeasible. We sought 
to develop a programme that quickly and 

accurately standardises a dataset to one diag-
nostic coding system.

METHODS
A nationwide dataset of paediatric hospital 
discharges was examined. Originating from 
the Healthcare Cost and Utilisation Project 
(H- CUP), this Kids’ Inpatient Database (KID) 
contained administrative data on 15.8 million 
hospital discharges across 2003–2016. The 
targets of our data manipulation were 20 
columns of diagnosis codes that represented 
patient comorbidities at the time of surgery: 
while most cases in the database occurred 
during ICD- 9’s era, 3.1 million discharges 
(19.6%) occurred in the 2016 KID update, 
and thus had ICD- 10 codes. As a solution 
to this difference, H- CUP offers Elixhauser 
Comorbidity Software, which assigns diagnosis 
names to comorbidities based on the ICD- 9 
or 10 system.7 Prior to programme develop-
ment and testing, we defined a successful 
programme as one which cross- referenced all 
ICD- 10 codes to their corresponding comor-
bidity classification. The resulting database 
would contain all 15.8 million discharges 
using the same classification system.

Prior to development, a Microsoft Excel 
File was acquired from H- CUP, which listed 
ICD- 10 diagnosis codes in the first column, 
and Elixhauser diagnosis names in the first 
row. The remaining cells were marked with 
a ‘1’ if an ICD- 10 code matched a corre-
sponding comorbidity. This served as the 
‘dictionary’ for our data translation. All 
computer code was developed and executed 
on RStudio, V.4.0.2.

A programme was written to examine each 
column of comorbidity data and extract 
any ICD- 10 diagnosis codes encountered. 
Each code was individually compared with 
the ‘dictionary’: the programme scanned 
through rows until it found a matching ICD 
code, then scanned across that row until a 
‘1’ was seen (denoting it found a matching 
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diagnosis). When a match was found, the column name 
(the diagnosis) was captured, and the corresponding 
column in the KID was marked as a ‘1,’ denoting that 
patient as having this comorbidity. This process repeated 
until all diagnosis codes were translated in that patient 
row. The programme would then proceed to the next row 
in the database, and would start over on the new ICD- 10 
codes.

During development, code was tested on a random 1000 
rows of data. Once it successfully translated these rows, 
the programme was deployed on the 3.1 million patients 
with ICD- 10 codes. A duplicate of the programme was 
then created, and served as the starting point for runtime 
optimisation. In a similar fashion to the development of 
the original code, this new programme was tested on a 
random 1000 rows, then executed on the larger database.

RESULTS
Both programmes successfully translated ICD- 10 codes 
to the Elixhauser comorbidity classification. Results on 
programme runtimes for the first iteration (‘Linear’) 
and the more efficient (‘Parallelised’) code are displayed 
in table 1. When testing runtimes for the linear code, it 
updated 100 000 rows in 12–13 hours, varying slightly in 
each test. As a result, this linear code would take 16 days 
to complete the 3.1 million target rows in our dataset. 
Programme testing was stopped after 7 days due to 
impracticality of runtime.

In development of a second iteration of code, runtime 
was reduced by targeting algorithm efficiency. Complexity 
was improved through conversion of the ‘dictionary’ 
into a hash table, exponentially reducing the number of 
computer operations performed. Runtime was further 
improved by breaking the data into subsets, and trans-
lating each subset simultaneously. On a computer with a 
16- core processor, this allowed the 3.1 million discharges 
to be broken into 16 subsets of roughly 200 000 discharges. 
This parallelised code translated all 3.1 million rows in 
38 min (1.2 min/100 000 samples), a more than 600- fold 
increase in processing speed compared with the original 
programme.

DISCUSSION
For longitudinal databases spanning across the 2010s, 
researchers face the challenge of analysing data that utilises 
both ICD- 9 and ICD- 10 codes. Prior literature addressed the 

creation and accuracy of standardised classification systems, 
but failed to discuss how to implement these systems on 
large databases where manual translation is impossible.2–6 
We successfully automated the standardisation of diag-
nostic terminology for a database of 15.8 million hospital 
discharges across 2003–2016. Databases of this size often 
pose a challenge for automated programmes, as evidenced 
by our initial programme’s excessively long runtime. The 
subsequent programme we developed, however, ran more 
than 600 times faster, underscoring the significance of code 
quality in large scale data manipulation.

The largest gains in runtime can be attributed to the imple-
mentation of hash tables instead) of a ‘dictionary’ Excel file. 
When a computer iterates through an Excel dictionary of R 
rows and C columns, up to R * C comparisons are needed to 
find a match for just one comorbidity. When translating up 
to 20 comorbidities per row, for 3.1 million datapoints, these 
accumulate to roughly 62 million * R * C computer operations, 
guaranteeing excessive runtimes. A hash table is a data struc-
ture composed of a list of ‘keys,’ where each key is associated 
with one and only one ‘value’. By converting our dictionary 
into a hash table with ICD- 10 diagnosis codes as ‘keys’ and 
Elixhauser’s comorbidity names as ‘values,’ translating diag-
noses became exponentially simpler. Whereas the dictionary 
required R*C operations to find a match for a single ICD- 10 
code, a hash table requires just one action by the computer.

In addition to reducing programme complexity, code 
parallelisation also contributed to its faster runtimes. By 
splitting the data into 16 subsets to simultaneously translate, 
our programme ran 16 times faster. This parallelisation is 
possible due to multicore processors available in computers 
sold today.

Other advantages in the development of a customised 
programme include generalisability to future imple-
mentations. Our programme examines the number of 
processing cores on the computer running the algorithm, 
ensuring that data are always divided and analysed as effi-
ciently as possible. Additionally, our programme should 
be easily implemented on any ‘dictionary’ that is plugged 
into our software, so that future systems such as ICD- 11 
may also be translated. Any ‘dictionary’ of reference 
values may be used, ensuring long- term utility of our algo-
rithm in future practice of large- scale research.

CONCLUSION
Hash tables and parallelised code allowed us to stan-
dardise the coding system used by a 15.8 million patient 

Table 1 Computer program development, runtimes and relative efficiency

Program name
Time to complete 
100 000 rows

Time to complete entire 
3.1M translations Relative efficiency

Linear programme 12.5 hours 16.1 days 1×
Parallelised programme with hash table 1.2 min 38 min 610.1×

A programme was developed that successfully standardised the comorbidity coding system used in a 15.7 million patient database 
spanning 2003–2016. Parallelising this programme and implementing a hash table increased the speed by more than 600- fold, allowing 
3.1 million patient rows to be updated in under 40 min.
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database in under 40 min. We hope that by publishing our 
methods of translation on such a notably large database, 
we aid researchers in transforming other large datasets. 
When attempting to standardise data spanning multiple 
years, researchers should consider programming such as 
ours where hash tables and parallelisation allow extreme 
amounts of data review to be completed in an exponen-
tially quicker time frame.
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