
 1Osorio RC, et al. BMJ Health Care Inform 2022;29:e100532. doi:10.1136/bmjhci-2021-100532

Open access

Development of a customised
programme to standardise comorbidity
diagnosis codes in a large- scale database

Robert C Osorio ,1 Kunal P Raygor,2 Adib A Abla2

To cite: Osorio RC, Raygor KP,
Abla AA. Development of
a customised programme
to standardise comorbidity
diagnosis codes in a
large- scale database.
BMJ Health Care Inform
2022;29:e100532. doi:10.1136/
bmjhci-2021-100532

Received 15 December 2021
Accepted 09 April 2022

1School of Medicine, University
of California San Francisco, San
Francisco, California, USA
2Department of Neurological
Surgery, University of California
San Francisco, San Francisco,
California, USA

Correspondence to
Robert C Osorio;
 robert. osorio@ ucsf. edu

Implementer report

© Author(s) (or their
employer(s)) 2022. Re- use
permitted under CC BY- NC. No
commercial re- use. See rights
and permissions. Published by
BMJ.

ABSTRACT
Objectives The transition from ICD- 9 to ICD- 10 coding
creates a data standardisation challenge for large- scale
longitudinal research. We sought to develop a programme
that automated this standardisation process.
Methods A programme was developed to standardise
ICD- 9 and ICD- 10 terminology into one system. Code
was improved to reduce runtime, and two iterations were
tested on a joint ICD- 9/ICD- 10 database of 15.8 million
patients.
Results Both programmes successfully standardised
diagnostic terminology in the database. While the original
programme updated 100 000 cells in 12.5 hours, the
improved programme translated 3.1 million cells in 38 min.
Discussion While both programmes successfully
translated ICD- related data into a standardised format,
the original programme suffered from excessive runtimes.
Code improvement with hash tables and parallelisation
exponentially reduced these runtimes.
Conclusion Databases with ICD- 9 and ICD- 10 codes
require terminology standardisation for analysis. By
sharing our programme’s implementation, we hope
to assist other researchers in standardising their own
databases.

INTRODUCTION
On 1 October 2015, the department of Health
and Human Services updated the Interna-
tional Classification of Diseases (ICD) system
by mandating the adoption of ICD- 10 diag-
nosis codes in electronic medical records.1
Serving as the new standard for naming and
categorizing patient diagnoses, the ICD- 10
system contains over five times more codes
than ICD- 9, posing a challenge for analysing
longitudinal databases spanning both systems.
Prior solutions have included the use of alter-
nate coding systems, which are updated each
time a new ICD system is released. Current
literature is aimed at the accuracy and scope
of these systems,2 3 how they update with new
ICD releases,3 4 and how systems are similar
or different.5 6 These studies fail to address
how to implement such a system on a large-
scale database, where manual reference and
cell- by- cell translation is infeasible. We sought
to develop a programme that quickly and

accurately standardises a dataset to one diag-
nostic coding system.

METHODS
A nationwide dataset of paediatric hospital
discharges was examined. Originating from
the Healthcare Cost and Utilisation Project
(H- CUP), this Kids’ Inpatient Database (KID)
contained administrative data on 15.8 million
hospital discharges across 2003–2016. The
targets of our data manipulation were 20
columns of diagnosis codes that represented
patient comorbidities at the time of surgery:
while most cases in the database occurred
during ICD- 9’s era, 3.1 million discharges
(19.6%) occurred in the 2016 KID update,
and thus had ICD- 10 codes. As a solution
to this difference, H- CUP offers Elixhauser
Comorbidity Software, which assigns diagnosis
names to comorbidities based on the ICD- 9
or 10 system.7 Prior to programme develop-
ment and testing, we defined a successful
programme as one which cross- referenced all
ICD- 10 codes to their corresponding comor-
bidity classification. The resulting database
would contain all 15.8 million discharges
using the same classification system.

Prior to development, a Microsoft Excel
File was acquired from H- CUP, which listed
ICD- 10 diagnosis codes in the first column,
and Elixhauser diagnosis names in the first
row. The remaining cells were marked with
a ‘1’ if an ICD- 10 code matched a corre-
sponding comorbidity. This served as the
‘dictionary’ for our data translation. All
computer code was developed and executed
on RStudio, V.4.0.2.

A programme was written to examine each
column of comorbidity data and extract
any ICD- 10 diagnosis codes encountered.
Each code was individually compared with
the ‘dictionary’: the programme scanned
through rows until it found a matching ICD
code, then scanned across that row until a
‘1’ was seen (denoting it found a matching

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-7669-2176
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2021-100532&domain=pdf&date_stamp=2022-04-26

2 Osorio RC, et al. BMJ Health Care Inform 2022;29:e100532. doi:10.1136/bmjhci-2021-100532

Open access

diagnosis). When a match was found, the column name
(the diagnosis) was captured, and the corresponding
column in the KID was marked as a ‘1,’ denoting that
patient as having this comorbidity. This process repeated
until all diagnosis codes were translated in that patient
row. The programme would then proceed to the next row
in the database, and would start over on the new ICD- 10
codes.

During development, code was tested on a random 1000
rows of data. Once it successfully translated these rows,
the programme was deployed on the 3.1 million patients
with ICD- 10 codes. A duplicate of the programme was
then created, and served as the starting point for runtime
optimisation. In a similar fashion to the development of
the original code, this new programme was tested on a
random 1000 rows, then executed on the larger database.

RESULTS
Both programmes successfully translated ICD- 10 codes
to the Elixhauser comorbidity classification. Results on
programme runtimes for the first iteration (‘Linear’)
and the more efficient (‘Parallelised’) code are displayed
in table 1. When testing runtimes for the linear code, it
updated 100 000 rows in 12–13 hours, varying slightly in
each test. As a result, this linear code would take 16 days
to complete the 3.1 million target rows in our dataset.
Programme testing was stopped after 7 days due to
impracticality of runtime.

In development of a second iteration of code, runtime
was reduced by targeting algorithm efficiency. Complexity
was improved through conversion of the ‘dictionary’
into a hash table, exponentially reducing the number of
computer operations performed. Runtime was further
improved by breaking the data into subsets, and trans-
lating each subset simultaneously. On a computer with a
16- core processor, this allowed the 3.1 million discharges
to be broken into 16 subsets of roughly 200 000 discharges.
This parallelised code translated all 3.1 million rows in
38 min (1.2 min/100 000 samples), a more than 600- fold
increase in processing speed compared with the original
programme.

DISCUSSION
For longitudinal databases spanning across the 2010s,
researchers face the challenge of analysing data that utilises
both ICD- 9 and ICD- 10 codes. Prior literature addressed the

creation and accuracy of standardised classification systems,
but failed to discuss how to implement these systems on
large databases where manual translation is impossible.2–6
We successfully automated the standardisation of diag-
nostic terminology for a database of 15.8 million hospital
discharges across 2003–2016. Databases of this size often
pose a challenge for automated programmes, as evidenced
by our initial programme’s excessively long runtime. The
subsequent programme we developed, however, ran more
than 600 times faster, underscoring the significance of code
quality in large scale data manipulation.

The largest gains in runtime can be attributed to the imple-
mentation of hash tables instead) of a ‘dictionary’ Excel file.
When a computer iterates through an Excel dictionary of R
rows and C columns, up to R * C comparisons are needed to
find a match for just one comorbidity. When translating up
to 20 comorbidities per row, for 3.1 million datapoints, these
accumulate to roughly 62 million * R * C computer operations,
guaranteeing excessive runtimes. A hash table is a data struc-
ture composed of a list of ‘keys,’ where each key is associated
with one and only one ‘value’. By converting our dictionary
into a hash table with ICD- 10 diagnosis codes as ‘keys’ and
Elixhauser’s comorbidity names as ‘values,’ translating diag-
noses became exponentially simpler. Whereas the dictionary
required R*C operations to find a match for a single ICD- 10
code, a hash table requires just one action by the computer.

In addition to reducing programme complexity, code
parallelisation also contributed to its faster runtimes. By
splitting the data into 16 subsets to simultaneously translate,
our programme ran 16 times faster. This parallelisation is
possible due to multicore processors available in computers
sold today.

Other advantages in the development of a customised
programme include generalisability to future imple-
mentations. Our programme examines the number of
processing cores on the computer running the algorithm,
ensuring that data are always divided and analysed as effi-
ciently as possible. Additionally, our programme should
be easily implemented on any ‘dictionary’ that is plugged
into our software, so that future systems such as ICD- 11
may also be translated. Any ‘dictionary’ of reference
values may be used, ensuring long- term utility of our algo-
rithm in future practice of large- scale research.

CONCLUSION
Hash tables and parallelised code allowed us to stan-
dardise the coding system used by a 15.8 million patient

Table 1 Computer program development, runtimes and relative efficiency

Program name
Time to complete
100 000 rows

Time to complete entire
3.1M translations Relative efficiency

Linear programme 12.5 hours 16.1 days 1×
Parallelised programme with hash table 1.2 min 38 min 610.1×

A programme was developed that successfully standardised the comorbidity coding system used in a 15.7 million patient database
spanning 2003–2016. Parallelising this programme and implementing a hash table increased the speed by more than 600- fold, allowing
3.1 million patient rows to be updated in under 40 min.

3Osorio RC, et al. BMJ Health Care Inform 2022;29:e100532. doi:10.1136/bmjhci-2021-100532

Open access

database in under 40 min. We hope that by publishing our
methods of translation on such a notably large database,
we aid researchers in transforming other large datasets.
When attempting to standardise data spanning multiple
years, researchers should consider programming such as
ours where hash tables and parallelisation allow extreme
amounts of data review to be completed in an exponen-
tially quicker time frame.

Contributors Conception and design: AA, RCO and KR. Acquisition of data: AA, RCO
and KR. Analysis and interpretation of data: AA, RCO and KR. Drafting the article:
RCO and KR. Critically revising the article: AA, RCO and KR. Reviewed submitted
version of manuscript: AA, RCO and KR. Approved the final submission of the
manuscript: AA. Overall study supervision: AA.

Funding The authors have not declared a specific grant for this research from any
funding agency in the public, commercial or not- for- profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be obtained from a third party and are not
publicly available. Data are available through the Healthcare Cost and Utilisation
Project.

Open access This is an open access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY- NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non- commercially,

and license their derivative works on different terms, provided the original work is
properly cited, appropriate credit is given, any changes made indicated, and the use
is non- commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Robert C Osorio http://orcid.org/0000-0002-7669-2176

REFERENCES
 1 The switch from ICD- 9 to ICD- 10: when and why. Available: https://

icd.codes/articles/icd9-to-icd10-explained [Accessed 23 Oct 2021].
 2 Feudtner C, Feinstein JA, Zhong W, et al. Pediatric complex chronic

conditions classification system version 2: updated for ICD- 10 and
complex medical technology dependence and transplantation. BMC
Pediatr 2014;14:199.

 3 Glasheen WP, Cordier T, Gumpina R, et al. Charlson Comorbidity
Index: ICD- 9 Update and ICD- 10 Translation. Am Health Drug Benefits
2019;12:188- 197.

 4 Glasheen WP, Renda A, Dong Y. Diabetes Complications
Severity Index (DCSI)- Update and ICD- 10 translation. J Diabetes
Complications 2017;31:1007–13.

 5 Hua- Gen Li M, Hutchinson A, Tacey M, et al. Reliability of comorbidity
scores derived from administrative data in the tertiary hospital
intensive care setting: a cross- sectional study. BMJ Health Care
Inform 2019;26:e000016.

 6 Brusselaers N, Lagergren J. The Charlson comorbidity index in
registry- based research. Methods Inf Med 2017;56:401–6.

 7 Elixhauser comorbidity software, version 3.7. Available: https://
www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp
[Accessed 27 Oct 2021].

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-7669-2176
https://icd.codes/articles/icd9-to-icd10-explained
https://icd.codes/articles/icd9-to-icd10-explained
http://dx.doi.org/10.1186/1471-2431-14-199
http://dx.doi.org/10.1186/1471-2431-14-199
http://www.ncbi.nlm.nih.gov/pubmed/31428236
http://dx.doi.org/10.1016/j.jdiacomp.2017.02.018
http://dx.doi.org/10.1016/j.jdiacomp.2017.02.018
http://dx.doi.org/10.1136/bmjhci-2019-000016
http://dx.doi.org/10.1136/bmjhci-2019-000016
http://dx.doi.org/10.3414/ME17-01-0051
https://www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp

	Development of a customised programme to standardise comorbidity diagnosis codes in a large-scale database
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	References

