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Most systems can be represented as networks that couple a series of nodes to each other via
one or more edges, with typically unknown equations governing their quantitative behaviour.
A major question then pertains to the importance of each of the elements that act as system
inputs in determining the output(s). We show that any such system can be treated as a
‘communication channel’ for which the associations between inputs and outputs can be
quantified via a decomposition of their mutual information into different components
characterizing the main effect of individual inputs and their interactions. Unlike variance-
based approaches, our novel methodology can easily accommodate correlated inputs.
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1. INTRODUCTION

The analysis of networks represents a crucial focus of
modern systems biology (Barabási & Oltvai 2004;
Hwang et al. 2005; Kitano et al. 2005; Klipp et al.
2005;Wagner 2005; Alon 2006; Davidson 2006; Doyle &
Stelling 2006; Kell 2006a,b; Palsson 2006). For many
areas of interest, models of complex networks can be
taken to have the form of a deterministic mapping from
a set of n inputs to one or more output(s) (figure 1). The
outputs can be considered separately so that for each
output Yk there is a map

fk : ðX1;.;XnÞ1Yk :

Usually, the input–output mapping is not available in
explicit form but can be evaluated numerically for any
given inputs.

Global sensitivity analysis aims to rank the inputs
X1, ., Xn according to the degree to which they
influence the output, individually and conjointly. Here,
‘inputs’ may also refer to intrinsic model parameters
whose influence on the output is to be determined as in
figure 1b. This type of global sensitivity analysis is
commonly performed in a probabilistic manner by
evaluating the model for multiple sets of randomly and
independently selected input values drawn, for instance,
from uniform distributions over suitable intervals. The
output, being a function of the randomized inputs, thus
also becomes a random variable. If the inputs are
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sampled independently, the variance of the output
distribution can be decomposed into contributions by
individual inputs, pairs, triplets and so forth. This
procedure is well known in statistics as ‘analysis of
variance’ (ANOVA; e.g. Box et al. 1978), and several
authors have contributed to improve its computational
efficiency for sensitivity analysis (e.g. Rabitz & Aliş
1999; Sobol 2001).

Rather than analysing the variance of the output
distribution, we take a different route measuring output
uncertainty in terms of Shannon’s entropy (Shannon &
Weaver 1949). Our starting point is the concept of the
‘communication channel’ (Cover & Thomas 2006),
which enables us to view the model as a transmitter
of information between inputs and outputs (figure 1b).

The mutual information of two variables is a
quantity that measures their mutual dependence
(Cover & Thomas 2006). Determining the mutual
information I(Xi;Y ) between random sampling
sequences of individual inputs Xi and their output
counterpart can elucidate first-order input–output
relations. Mutual information provides a general
measure of association that is applicable regardless of
the shape of the underlying distributions and—unlike
linear- or rank-order correlation—insensitive to non-
monotonic dependence among the random variables.
Further insight can be obtained by unravelling
conditional dependencies among the system inputs.
Here, we define novel and general sensitivity measures
of second and higher order by evaluating input
correlations induced by conditioning on the output.
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Figure 1. Complex systems with multiple inputs and outputs.
This is a typical situation in systems biology. For instance,
pathway models (a) are described by sets of coupled nonlinear
ODEs (deterministic or stochastic). Input–output relations
can only be elucidated by numerical evaluation of the system
output, e.g. a flux, for various configurations of the input
parameters. Global sensitivity analysis aims to determine the
degree to which these inputs control the output, and how they
interact. In most applications, the input–output mapping is
nonlinear and not given in closed form; hence, the system is a
‘black box’ (b).

224 Credit assignment in complex networks N. Lüdtke et al.
To our knowledge, only a first-order information-based
analysis has been discussed in the literature to
date (Critchfield et al. 1986; Dalle Molle & Morris
1993, pp. 402–407).

While variance adequately quantifies the variability
of distributions that are symmetrical and unimodal,
entropy is calculated directly from the probability
distribution function and thus provides a more general
measure of output variability. Therefore, we further
develop an information-theoretic framework for the
sensitivity measures thus derived, based on the
observation that their sum is bounded from above by
the output entropy H(Y ). From this viewpoint, the
(information-theoretic) sensitivity indices quantify the
amount of output uncertainty removed by the knowl-
edge of individual inputs and combinations thereof.

Sensitivity analysis of this kind is also an analysis of
the total mutual information I(X1,.,Xn;Y ), which
subsumes all input–output associations including
interactions. The resultant summation theorem for
the sensitivity measures is an information balance in
which the sum equals I(X1,., Xn;Y ). Although in
practice only effects of up to third- or fourth-order can
easily be calculated explicitly, the joint impact of all
higher order terms is provided by the remaining
difference to I(X1, ., Xn;Y ). We can therefore assign
credit or influence fully to all the parameters of a
system over a wide range of operating conditions.

For all variance-based approaches, the absence of
input correlations is a critical prerequisite for the
uniqueness of the variance decomposition (Saltelli
et al. 2000, 2004). As will be demonstrated in our
J. R. Soc. Interface (2008)
methodology, independent inputs merely simplify the
analysis. If input correlations exist (e.g. due to non-
orthogonal sampling), their effect can easily be taken
into account. We apply the methodology successfully to
a model of the NFkB signalling pathway and thereby
define how to modify its behaviour to provide a
designed maximum effect.
2. METHODS

By randomly sampling the input space, a genuinely
deterministic system can be analysed in stochastic
terms. Random perturbation of the inputs creates a
randomized output Y with a probability density p(y).
Rather than attempting to find some parametric model
of p(y), the output density is approximated by a
histogram, and the output becomes a discrete random
variable. The corresponding entropy

HðY ÞZK
X
y

pðyÞlog2 pðyÞ ð2:1Þ

measures a (hypothetical) receiver’s uncertainty about
Y due to input perturbation. For instance, if one input
Xi is fixed, the receiver’s remaining uncertainty can be
quantified by the conditional entropy

HðY jXiÞZ
X
x

pðxÞHðY jXi Z xÞ; ð2:2Þ

which is the average uncertainty in Y over all possible
discrete values x that the input variable Xi can assume.
The discretization of Xi and Y is, of course, arbitrary
and should be chosen in relation to the number of
system evaluations (simulation runs).

The mutual information is defined as the difference
in output uncertainty with and without knowledge of
Xi , and characterizes the influence Xi exerts on Y:

I ðXi;Y ÞZHðY ÞKH ðY jXiÞ: ð2:3Þ

The link between uncertainty and association estab-
lished by equation (2.3) is one of the fundamental
concepts of Shannon’s information theory and forms
the basis of our framework for sensitivity analysis.
Calculating the mutual information I(Xi;Y ) for each Xi

constitutes a form of first-order sensitivity analysis,
assessing only the influence of individual inputs.
2.1. An information-theoretic first-order
sensitivity index

Critchfield et al. (1986) defined the mutual information
index (MII), which in our notation is the mutual
information normalized by the entropy of the output
variable:

si Z
I ðXi;Y Þ
HðY Þ : ð2:4Þ

A first-order sensitivity analysis can be performed by
calculating the MII of all inputs, where the mutual
information is obtained by computing

I ðXi;Y ÞZ
X
xi

X
y

pðxi; yÞlog2
pðxi; yÞ
pðxiÞpðyÞ

: ð2:5Þ
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Though Xi and Y are continuous variables, equation
(2.5) contains discrete sums, indicating that, in
practice, the probability densities are evaluated via
the joint histogram and the marginal histograms of the
input and output sequences.
2.2. Pairwise interactions

If we assume that, by design of the simulation, random
input values are drawn independently, there will be no
a priori correlations among the sequences of input
values. However, if inputs interact in their influence on
an output, one would expect to find associations in
input sequences when conditioning on a particular
value of that output. We show that the output-induced
conditional dependence among two inputs, charac-
terized by the conditional mutual information

I ðXi;Xj jY ÞZ
X
y

pðyÞ
X
xi ;xj

pðxi; xj jyÞlog2
pðxi; xj jyÞ

pðxijyÞpðxj jyÞ
;

ð2:6Þ

provides a measure of the joint influence of the pair
(Xi , Xj) on the output Y, on average.

To understand why this is indeed an appropriate
measure, we consider the degree of association among
(Xi ,Xj) and Y, that is the mutual information
I(Xi ,Xj;Y ). Since this quantity subsumes first- and
second-order effects, one has to subtract the influence of
the individual inputs, I(Xi;Y ) and I(Xj;Y ), in order to
obtain the pure second-order effect of Xi and Xj on Y.
Using an auxiliary formula proved in appendix A.3,
one obtains

I ðXi;Xj ;Y Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
firstCsecond-order

KI ðXi;Y ÞKI ðXj ;Y Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first-order

Z I ðXi;Xj jY Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
second-order

K I ðXi;XjÞ|fflfflfflfflffl{zfflfflfflfflffl}
input correlation

:
ð2:7Þ

The second term on the right-hand side subtracts the
effect of any a priori input associations due to the
applied sampling scheme. If inputs are sampled
independently, the term vanishes and the conditional
mutual information by itself captures the joint effect
of Xi and Xj on Y. Note, the simple structure of
equation (2.7) makes it possible to apply arbitrary
input sampling schemes, without having to be
concerned about statistical independence. This reveals
a considerable advantage of the information-theoretic
approach over variance-based methods, which are not
easily extended to non-orthogonal samples (Saltelli
et al. 2000).
2.3. Higher order interactions

Capturing interactions among three or more inputs in
information-theoretic terms requires generalizing the
concept of mutual information beyond two variables.
To characterize the genuine three-way interaction of
input triplets, we apply the same rationale as in §2.2
and consider a decomposition of the mutual infor-
mation of an input triplet (X1, X2, X3) and the output
J. R. Soc. Interface (2008)
(derivation provided in appendix A.3)

I ðX1;X2;X3;Y Þ
Z I ðX1;Y ÞCI ðX2;Y ÞCI ðX3;Y Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first-order

CI ðX1;X2jY ÞCI ðX1;X3jY ÞCI ðX2;X3jY Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second-order

CI ðX2;X3jX1;Y ÞKI ðX2;X3jY Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
third-order

: ð2:8Þ

Having identified the first- and second-order terms on
the right-hand side, the decomposition suggests inter-
preting the remainder as the genuine third-order
sensitivity measure. Using the notation I3, we define

I3ðX1;X2;X3jY ÞZdef I ðX2;X3jX1;Y ÞKI ðX2;X3jY Þ:
ð2:9Þ

This quantity is the conditional form of what McGill
(1954) called ‘interaction information’. McGill also
showed that interaction information is symmetric with
respect to permutations of its arguments, meaning for
the conditional form that

I3ðX1;X2;X3jY ÞZ I ðX1;X2jX3;Y ÞKI ðX1;X2jY Þ

Z I ðX2;X3jX1;Y ÞKI ðX2;X3jY Þ

Z I ðX1;X3;X2;Y ÞKI ðX1;X3jY Þ:
ð2:10Þ

Note that interaction information can be negative. By
virtue of equation (2.10), this can only happen when all
three pairwise interactions have non-zero conditional
mutual information. Negative interaction information
then indicates an inner redundancy of the triplet
(X1,X2,X3), in the sense that the pairs (X1,X2),
(X2,X3) and (X1,X3) do not provide entirely indepen-
dent pieces of information about Y. This situation
rarely occurs in natural systems, although appendix
A.1 presents a contrived and artificial example with
negative interaction information.

Generalizing the definition of I3, one can analogously
quantify the fourth-order sensitivity via the fourth-
order conditional interaction information

I4ðX1;X2;X3;X4jY Þ

Z I ðX1;X2jX3;X4;Y ÞKI ðX1;X2jX3;Y Þ: ð2:11Þ

Higher order interactions can be defined accordingly.
2.4. The information balance: a summation
theorem for sensitivity indices

Having identified measures for first-, second- and higher
order sensitivities, we consider a decomposition of the
total mutual information for arbitrary number of
inputs. Generalizing equation (2.3), one obtains the
general form of the information balance for a system
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with n inputs

I ðX1; :::;Xn;Y ÞZHðY ÞKHðY jX1; :::;XnÞ: ð2:12Þ

In addition to H(Y ), which is straightforward to
compute, the ‘noise entropy’ H(Y jX1,., Xn) has to
be evaluated. In a deterministic system, this quantity
vanishes for continuous random variables. However,
computing information-theoretic quantities in a
continuous fashion would require parametric models
of all random variables. Since the input–output
mapping is often not given in closed form, it will
generally be impossible to derive such models analyti-
cally. Moreover, there is no general parametrization
scheme that can be fitted to the multitude of possible
empirical distributions arising in various systems.
Rather, the parametric distributions must be selected
on a case-by-case basis, with no guarantee of obtaining
a close fit. In our experience, it proved very difficult to
match the heavy-tailed output histograms arising in
our particular application (cf. §3) with any standard
distribution function.

Hence, to make the information-theoretic quan-
tities measurable, we choose to discretize all variables.
The noise entropy then takes the role of the residual
uncertainty in Y that persists, given all inputs with a
finite precision determined by the imposed discretiza-
tion. We shall refer to this residual uncertainty as
the discretization entropy, denoted by HD. In §3.4,
we show how HD can be estimated via Monte
Carlo simulation.

Normalizing by H(Y )KHD—the maximum amount
by which the output uncertainty can be reduced by the
parameters—one can rewrite the information balance
for a discretized deterministic system as

I ðX1; :::;Xn;Y Þ
HðY ÞKHD

Z 1: ð2:13Þ

Equation (2.13) provides the basis for a summation
theorem, since it is possible to express the left-hand side
in terms of the previously defined sensitivity indices, as
shown in appendix A.3. Decomposition up to third
order yields

1

HðY ÞKHD

X
i

I ðXi;Y ÞC
X
i!j

I ðXi;Xj jY Þ
(

C
X
i!j!k

I3ðXi;Xj ;Xk jY ÞCDI

)
Z 1:

ð2:14Þ

Here, summations extend over all index combinations
excluding permutations. While related decompositions
of the information of an ensemble of variables have been
considered previously (Watanabe 1960; Fano 1961;
Panzeri et al. 1999; Amari 2001; Schneidman et al.
2006), they have never been applied in the context of
sensitivity analysis (see appendix A.1 for a discussion of
alternative decompositions).

Calculation of the conditional mutual information
requires knowledge of the underlying marginal and
joint probability density functions. In practice, these
J. R. Soc. Interface (2008)
densities must be estimated empirically by means of
marginal and joint histograms. Particularly, the
empirical estimate of a joint density can be problematic
when the amount of available data is insufficient to
populate all the bins in its joint histogram. This leads to
a systematic error (‘bias’) in the limited-sampling
estimation of information; the higher the dimension-
ality of the histograms to be sampled, the larger the
bias. Thus, the estimation of higher order interactions
is particularly difficult. However, reliable correction of
the sampling bias is possible using advanced statistical
techniques (Panzeri & Treves 1996; Nemenman et al.
2004; Montemurro et al. in press). Given the amount of
simulations we could produce in the particular appli-
cation presented below, these techniques allowed
an accurate elimination of the bias for up to third-
order interactions. Only the first-order quantification
would have been possible without using such bias
reduction techniques.

Even though, for the practical reasons described
above, sensitivity indices can only be evaluated up to
a certain order, the remainder DI—the combined
effect of all higher order interactions—can be assessed
since all other terms in the equation are known. If the
lower order sensitivity indices capture the essence of
the dependence structure, the remainder will be a
small fraction of H(Y )KHD. A significant value of DI
would indicate that important higher order
interactions exist, which is generally not expected in
most simple systems (Rabitz & Aliş 1999). In large
networks, higher order interactions require an extreme
number of connections, unless the degree of connec-
tivity varies strongly across the network. Hence, one
would expect to find a small number of local ‘hubs’
forming highly connected subnetworks. While this is
still the subject of debate, we note that the complex
networks arising in biological systems do indeed tend
to have sparse intrinsic connectivity patterns
(Wagner & Fell 2001; Barabási & Oltvai 2004;
Csete & Doyle 2004).
2.5. Total sensitivity indices

A very useful concept in variance-based sensitivity
analysis is the so-called total sensitivity index
(Saltelli et al. 2005), which measures the overall
influence that a particular input exerts on the
output, comprising main effects and all interactions.
In the ANOVA framework, the total sensitivity
expresses the remaining output variance when all
other inputs are kept fixed. The idea is to calculate
this quantity without relying on the other sensitivity
indices (first, second, third-order and so forth). If a
total sensitivity index is zero, the corresponding
input is irrelevant; if not, it is interesting to relate it
to the other indices. For instance, comparing the
total sensitivity index of an input with its first-order
index reveals the degree to which the input is
interacting with others.

This concept can be readily applied to information-
based sensitivity analysis. The information-theoretic
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total sensitivity index for variable Xi is given by

stotal;i Z
HðY jfX1;.;XngnXiÞ

HðY ÞKHD

: ð2:15Þ

The total sensitivity index can also be expressed as the
sum of all sensitivity indices involving Xi:

stotal;i Z
1

HðY ÞKHD

I ðXi;Y ÞC
X
j

jsi

I ðXi;Xj jY Þ

8>>><
>>>:

C
X
j;ksi

j!k

I3ðXi;Xj ;Xk jY ÞC.

9>>>=
>>>;:

ð2:16Þ
Note, the sum of all total sensitivity indices is generally
greater than 1 since expansions for different input
variables will share certain sensitivity indices if the
variables interact.
IκBα Iκ

Figure 2. Schematic of the NFkB signalling pathway (isoforms
of IkBa not shown). Solid arrows denote reactions and dashed
arrows indicate translocation. In the model, an external
stimulation suddenly raises the concentration of IKK, which
catalyses the degradation of IkBa, leading to the release of
NFkB that can then translocate to the nucleus. In the nucleus,
NFkBregulates the expression of genes leading to a resynthesis
of the IkBa inhibitor proteins. The newly synthesized IkBa
binds to the nuclear NFkB forming an IkBa–NFkB complex,
whereby NFkB is shuttled back to the cytoplasm thus
initiating a negative feedback loop.
3. INFORMATION-THEORETIC SENSITIVITY
ANALYSIS OF A MODEL OF THE NFkB
SIGNALLING PATHWAY

As an example, we apply our methodology to parameter
sensitivity analysis in systems biology. We consider a
model of the (IkB)/NFkB signalling pathway
(Hoffmann et al. 2002) and investigate the interdepen-
dencies among intrinsic parameters (in this case 64
reaction rate constants) with respect to their influence
on the time course of the concentration of a particular
metabolite, the nuclear transcription factor NFkB,
which is a key component in early immune response.

In a nutshell, the pathway model works as follows.
There are three main components: NFkB, IkB inhibi-
tory proteins (IkBa and its isoforms IkBb and IkB3)
and the IkB kinase (IKK). The model describes the
kinetics of interaction between these components, their
transport between nucleus and cytoplasm, the inhibitor
IkB degradation, as well as the NFkB-regulated gene
expression and subsequent resynthesis of the inhibitors
(figure 2). NFkB is normally bound in an IkB–NFkB
complex. Following a step increase in the concentration
of IKK, which models the effect of an extracellular
stimulus (e.g. tumour necrosis factor (TNFa)), NFkB is
released from the IkB–NFkB complex and enters the
nucleus. The IkBs are rapidly degraded. In the nucleus,
NFkB regulates the expression of genes leading to a
resynthesis of the IkB inhibitor proteins. The newly
synthesized IkB binds to the nuclear NFkB forming an
IkB–NFkB complex and subsequently shuttles NFkB
back to the cytoplasm, thus initiating a negative
feedback loop. The cycle is repeated until all IKK has
decayed. As a result of the delayed negative feedback,
the concentration of nuclear NFkB exhibits an oscil-
latory behaviour (figure 3) that can be characterized in
terms of features such as peak amplitude, frequency or
phase (Nelson et al. 2004; Kell 2006a).

To exemplify the sensitivity analysis, we select one
feature as output Y, namely the time difference
J. R. Soc. Interface (2008)
between the first two peaks of the nuclear NFkB
oscillation, P1ZT2KT1. Evaluating the input–output
function thus involves numerically solving a system of
24 ordinary nonlinear differential equations (ODEs)
corresponding to the reaction equations and sub-
sequently determining the first two maxima in one
component of the solution. The entire analysis is
performed with respect to the selected feature, based
on 680 000 simulations, which yield sufficiently
accurate information measures up to third order. All
parameters were varied simultaneously, each drawn
independently from a uniform distribution over the
interval from 0.9 to 2.0 times the nominal value, and
discretized into 15 bins. The lower bound of the
sampling interval is dictated by the empirical obser-
vation that oscillations are only guaranteed to occur for
parameter values above about 0.9 of the nominal values
given in Hoffmann et al. (2002).
3.1. First-order sensitivity indices

The first-order analysis reveals that only a small subset of
about eight parameters out of 64 (or at most 11, if one
includes parameters 1, 19 and 37) significantly influence
the output feature P1 (figure 4). The parameters thus
identified either directly affect the amount of available
NFkB (9, cytoplasmic release; 19, nuclear import; 1,
IkBa–NFkB association) or control the strength of the
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negative feedback, which depends on the production
of the inhibitor protein IkBa (28, transcription; 36,
constitutive translation), its transport into nucleus (38,
nuclear import of IkBa), its destruction (37, degradation;
29, IkBa mRNA degradation; 62, IKK–IkBa catalysis).
In addition, the feedback is indirectly affected by the IkB
kinase (IKK). Therefore, its decay rate (61) and the rate
of binding IKK to the IkBa–NFkB complex (52), a step
prior to the release of NFkB, are also important.
Parameters specifically relating to the inhibitor isoforms
IkBb or IkB3 are insignificant, which is in accordance
with experiments indicating that only the knockout of
IkBa is lethal (Gerondakis et al. 1999).

The result is consistent with previous local sensi-
tivity analyses of a different output feature (Ihekwaba
et al. 2004, 2005) and in accordance with global
sensitivity analysis of the overall time course of the
nuclear NFkB concentration (Yue et al. 2006).
parameters only a few exert significant influence on the feature.
3.2. Second-order sensitivity indices

At the level of pairwise interactions, a rather small
number of relevant pairs emerge (figure 5). No signi-
ficant synergies are observed, meaning that only those
pairs wherein at least one partner is individually relevant
have significant interactions. The predominant contri-
butions are by pairs where both partners have significant
individual impact. The degree of interactivity, that is the
number of relevant pairs in which a parameter appears,
varies strongly. For instance, parameter 29 (the IkBa
mRNA degradation rate) seems to play the role of a
‘super parameter’, in the sense that it is involved in
most, and the strongest, interactions. Note that pairs
with very small yet statistically significant sensitivities
are not visualized in the interaction matrix (figure 5),
due to limited diagram resolution.
J. R. Soc. Interface (2008)
Statistical significance can be assessed via a boot-
strap test, which involves repeated random shuffling of
the parameter sampling sequences and recalculation of
the conditional mutual information from these shuffled
sequences. Several hundred repetitions produce a bell-
shaped distribution of random sensitivity values, the
mean and standard deviation of which characterize the
range of ‘chance values’ of the particular sensitivity
index under consideration. If the index calculated from
the original non-shuffled data is two or three standard
deviations above its bootstrap mean, it can be
considered statistically significant.

While the particular parameter set identified as
most relevant is very biologically plausible, the
strongly varying degree of parameter interactivity is
surprising. For instance, it is not obvious why the
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Figure 6. Third-order sensitivity indices. A sparse dependence
structure is also found at the level of tripletwise interactions.
The horizontal line marks the significance threshold (boot-
strap mean plus 3 standard deviations, cf. §3.2).
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degradation of the IkBa mRNA transcript (parameter
29) should play such a predominant role when
compared with transcription (parameter 28) and
translation (parameter 36). In fact, it has been
suggested (P. Paszek & M. R. H. White 2007,
personal communication) that this result might be
an artefact of the model. The arising debate illustrates
the usefulness of a detailed sensitivity analysis as a
means of highlighting potential design flaws in
complex models.
3.3. Third-order interactions

The sparseness of the interaction structure continues at
the third order (figure 6). It is again the combinations of
individually relevant parameters that exhibit the
strongest tripletwise interactions. The assessment of
statistical significance is analogous to the procedure
described in §3.2. All third-order indices are positive.
3.4. Monte Carlo estimation of discretization
entropy

Let n be the number of system inputs. Assume a
discretization scheme where each input range is
partitioned into the same number of bins, denoted by
nbins. Let j1,., jn be the bin indices of the inputs
X1, ., Xn, with j1Z1, ., nbins; j2Z1, ., nbins and
jnZ1, ., nbins; and let Dx1,., Dxn be the correspond-
ing bin widths. Then the bins are defined as

Bj1 Z x1;min C ½ðj1K1ÞDx 1; j1Dx1�
«

Bjn Z xn;min C ½ðjnK1ÞDxn; jnDxn�:
ð3:1Þ
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The discretization entropy is the averaged conditional
entropy of Y, for which uniformly distributed input
values is simply

HD Z
1

nbins

� �n Xnbins
j1;.;jnZ1

HðY jX1

Z x 12Bj1 ;.;Xn Z xn2Bjn1Þ: ð3:2Þ

The summation extends over the total number of input
bin combinations,which is (nbins)

n. Since this number can
be very large, equation (3.2) cannot be generally
evaluated. However, Monte Carlo estimates can provide
excellent approximations. Figure 7 shows the estimated
discretization entropy as a function of the number of bin
combinations used to compute the average. Only several
hundred bin combinations are required to obtain a
reliable estimate. For each bin combination, about 100
evaluations of the feature Y were performed to estimate
the local conditional histogram from which the con-
ditional entropy H Y jX1Zx12Bj1 ;.;XnZxn2Bjn1

� �
in equation (3.2) is computed. The figure can be
understood as a consequence of the output/feature
uncertainty being small, for reasonably fine input
discretization. Hence, the conditional histograms
approximating p Y jX1Zx12Bj1 ;.;XnZxn2Bjn1

� �
tend to have only very few bins with non-vanishing
probability. In our case, the output is discretized into 15
bins out of which usually only one or two have non-zero
counts, which can therefore be estimated properly with
about 100 data. Thus, 600!100Z60 000 evaluations
provide a reasonably accurate estimate of the discretiza-
tion entropy.
3.5. Information balance

The block diagram of the information balance (figure 8)
shows that higher order interactions do contribute
significantly to the total sensitivity. Moreover, only a
small subset of parameter pairs and triplets interact
significantly (figures 5 and 6), and we expect such
sparse connectivity to continue at higher orders.
3.6. Total sensitivity indices

Total sensitivity indices consist of conditional entropies
of the type H(Y j{X1, ., Xn}\Xi), which therefore can
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Figure 7. Example of a Monte Carlo estimate of the
discretization entropy as a function of the number of bin
configurations, computed for the feature P1 of the nuclear
NFkB concentration. The graph shows a rapid convergence of
the cumulative average over the regional output entropies
computed from randomly selected input bin configurations,
even though the total number of possible bin configurations
(1564) vastly exceeds the number of actually sampled bins (up
to 800). For each bin configuration, the input–output map
was evaluated 100 times, which resulted in an accurate
calculation of the corresponding conditional entropy.
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Figure 8. Block diagram of the information balance for a
particular feature (P1) in the NFkB oscillation (cf. figure 3).
The height of the entire block equals the output uncertainty
(entropy). All contributions are normalized with respect to
the total information, the amount of output uncertainty the
inputs account for. The remainder HD is the uncertainty due
to the discretization of input values (c.f. §2.4). Obviously in
this case, fourth- and higher order terms contribute a
significant portion of the output entropy, indicating a high
degree of parameter interaction. This result is supported by
the high total sensitivity indices observed in the eight most
significant parameters (cf. figure 9).
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be estimated in a similar fashion to the discretization
entropy, except that the value of the input Xi under
consideration is allowed to vary over its entire range.
All other inputs are evaluated within their bins, and the
conditional entropy is again averaged over (in theory)
all bin combinations. For the system under investi-
gation, the Monte Carlo estimates exhibit a conver-
gence comparable to that in figure 7.

Figure 9 shows the estimated total sensitivity indices
of the eight most relevant parameters of the NFkB
pathway model next to their first-order indices,
revealing the different degrees of interaction. The
diagram leads to two main conclusions. First, par-
ameter 29 stands out in terms of its overall significance,
since it has the strongest individual impact and also the
highest degree of total impact, in the sense that almost
80% of the output uncertainty is removed by the
information contributions of 29 and its interactions.
Second, the fractional contribution of the interactions
to the total sensitivity is higher in the other parameters,
but, with the exception of parameter 36, their
interaction impact (the difference of total and first-
order sensitivity) is lower than that of 29.

A total sensitivity index equalling unity would
indicate that the corresponding input quantity is
‘fully connected’, in the sense that it participates in
all relevant interactions; sensitivity indices not invol-
ving this parameter would be irrelevant. For parameter
29, this is almost the case.
4. CONCLUSIONS

With the advent of advanced estimation techniques,
mutual information has become a viable means of
characterizing input–output interactions in complex
networks. The framework developed in this paper lays
J. R. Soc. Interface (2008)
the theoretical foundations for an information-theoretic
sensitivity analysis that assigns credit or influence to
input variables in terms of their overall contribution to
a system’s output entropy. However, our method is far
more than a replacement of analysis of variance by
analysis of entropy. The information-theoretic
approach does not rely on implicit assumptions of
normally distributed outputs and is easily generalized
to include non-orthogonal input sequences. Moreover,
the information-theoretic approach lends itself well to
the analysis of systems with an intrinsically stochastic
structure, such as biochemical reactions with small
numbers of molecules (Wilkinson 2006). In this case,
the noise entropy provides a combined representation
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of the output uncertainty due to discretization and all
sources of intrinsic stochasticity.
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Figure 10. Graphs of the sigmoid pulse functions gl and hl.
A.1. The sign of interaction information

In this section, we discuss the possibility of negative
conditional interaction information (CII) and examine
the conditions under which this can occur. Most maps
do not seem to have this property, but we provide a
carefully constructed example of a simple system with
three parameters that can exhibit negative conditional
interaction information. Consider the function

Y Z f ðX1;X2;X3Þ
Z glðX1ÞglðX2ÞglðX3ÞChlðX1ÞhlðX2ÞhlðX3Þ;

ðA 1Þ

where X1;X2;X32½0;2�, the components gl and hl are
the functions

glðxÞZ
1

2
ftanh½lx�Ktanh½lðxK1Þ�g;

and

hlðxÞZ
1

2
ftanh½lðxK1Þ�Ktanh½lðxK2Þ�g:

Figure 10 shows a plot of the auxiliary functions. The
control parameter l determines the ‘steepness’ of the
sigmoid components. For l/N, gl and hl become
‘square-wave pulses’. Symbolically, one can write

Y  =  X 1  * X 2  * X 3   +  X 1  * X 2  *  X 3  .

Hence, the random variables are weighted by

indicator functions that respond to their values being
either in the lower or upper half of their interval.

Figure 11 shows a schematic visualization of the two
possible scenarios (different l). If all the information-
theoretic sensitivity measures capturing first-, second-
and third-order effects have positive sign, these
contributions—together with the discretization
entropy—sum up to the output entropy (figure 11a).
Under certain circumstances, the sum of first- and
second-order indices exceeds the output entropy
(figure 11b), where the pairwise interactions are not
providing independent pieces of information. In this
case, the excess information is compensated by a
negative third-order contribution. Although the sum
of all sensitivity indices does equal the output entropy,
a meaningful interpretation of the components as
second- or third-order sensitivity measures is no
longer justified.

Table 1 shows the information balance of the system
for two choices of l. Owing to symmetry in the inputs,
the information measures within each order of
interaction are the same. Therefore, only the sums of
first- and second-order terms are provided.
J. R. Soc. Interface (2008)
Apparently, the combination of non-monotonicity
and point symmetry of the system (A 1) leads to the
negative information measure. Choosing a smaller
value of the control parameter l destroys the sym-
metry, and consequently the CII becomes positive.
Exact point symmetry is not likely to be a feature of
natural systems such as our example from systems
biology, since it would require an extreme degree of
regularity. Therefore, we conclude that the example
presented is a rare exception.

One potential alternative scheme that could pro-
vide an information decomposition based solely on
non-negative quantities is the maximum entropy
approach (Jaynes 1957; Amari 2001; Schneidman
et al. 2006). For instance, Amari’s elegant method of
information geometry (Amari 2001) requires the
calculation of surrogate maximum entropy distri-
butions, referred to as p(2), p(3), etc. Here, p(2) has
the same pairwise marginals as the joint density (p(3),
the same tripletwise marginals) but contains no higher
order correlations. The Kullback–Leibler divergence of
p(2) and p(1) can be taken to represent the total
entropy attributable to second-order interaction and
so on. However, at present, the maximum entropy
approach is only fully developed with respect to a
decomposition of the joint entropy of a set of variables
(Amari 2001; Schneidman et al. 2006). We are
currently investigating how to extend this approach
to obtain a decomposition of the total information for
an input–output relation. One practical concern in
using a maximum entropy formalism for sensitivity
analysis of complex systems with tens of parameters is
that the maximum entropy method is (at present)
computationally prohibitive and data-intensive. The
maximum entropy densities are high-dimensional and
suffer from a larger sampling bias than our approach,
which is based on pair- and tripletwise contributions
that can easily be corrected for the bias. In addition,
in order to become useful for sensitivity analysis, the
maximum entropy methodology needs to be extended
to provide an information decomposition that

http://www.mcisb.org
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Figure 11. Schematic visualization of information-theoretic
sensitivity indices by a block diagram. (a) Block diagram of an
information balance with positive conditional interaction
information (CII). Its components are the discretization
entropy HD, the first-order sensitivity indices, the second-
order indices and the third-order index given by the
conditional interaction information. In this example, the CII
is positive and hence an integral component of the output
entropy, i.e. the sum of sensitivity indices is less or equal to
the output entropy, with equality being reached once all
relevant terms have been added. (b) Block diagram with
negative CII. Here, the sum of discretization entropy plus
first- and second-order terms exceeds the output entropy. The
magnitude of the negative CII equals the information excess.
The sum of all indices does equal the output entropy, but the
sensitivity indices have different signs. In this case, an
interpretation of the CII as a third-order sensitivity index is
not meaningful, since the input pairs do not contribute
independent pieces of information, yielding non-orthogonal
information decomposition.

Table 1. Information balances of the example system defined
in (A 1) for two different values of the control parameter l.
(a) Apart from a small numerical error, the sum of sensitivity
measures equals the output entropy. (b) For large l, the first-
order terms are virtually irrelevant, whereas the second-order
exceeds the output entropy corrected for discretization effects
(H(F )KHD). This information excess is compensated by a
negative third-order term.

absolute
information

fraction of
H(F)KHD

(a) lZ10 (15 bins)
HD 0.7257
first order 0.3238 22.92%
second order 1.0338 73.17%
third order 0.0402 2.85%
sum 2.1235 bits 98.94%
H(F) 2.1385 bits

(b) lZ1000 (15 bins)
HD 0.1191
first order 0.0067 0.92%
second order 0.8178 112.66%
third order K0.1031 K14.20%
sum 0.8405 bits 99.38%
H(F) 0.8450 bits
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explicitly identifies the particular most relevant
parameter interactions.

Future research will also be directed at further
illuminating the relation between properties of the
input–output map (e.g. monotonicity) and the sign of
higher order sensitivity indices.
A.2. Bias corrected estimates of mutual
information

Mutual information I(X;Y ) between an input variable
X and an output variable Y is a functional of the
probability densities of input and output. In practice,
these probabilities are usually not known a priori and
can only be estimated empirically from a limited
number N of independent joint observations (‘trials’)
of X and Y. The statistical errors made in measuring
the probabilities owing to limited sampling leads to a
severe systematic error (bias) in the information
measures. This section is devoted to explain how we
corrected the bias problem. For brevity, we focus on
I(X;Y ), which we shall simply refer to as I, but these
considerations would straightforwardly apply to other
information quantities used in this paper, such as the
conditional mutual information. For the sake of
explanation, we suppose that X is an n-dimensional
variable XZ{X1, ., Xn}.
J. R. Soc. Interface (2008)
The bias due to sampling with N trials is defined as
the difference between the limited sampling average
value of information hI iN (h.iN being a probability-
weighted average over all possible (X, Y ) outcomes
with N trials) and the true value of information I.
Subtracting the bias from the limited sampling
estimate allows for a much more accurate estimation
of the true information I. We observe that I(X;Y ) can
be written as the difference between two entropies

I ðX ;Y ÞZHðXÞKHðX jY Þ:

The bias of I is the difference between the biases of the
two entropies. It is well known (Miller 1955) that
entropies are biased downward (i.e. their bias is
negative). H(X ) depends only on the marginal distri-
bution p(X ). Its bias is much lower than that of
H(XjY ), which depends on p(x, y), which is obviously
much harder to sample than p(x). As a result, I is biased
upward. Analytical considerations (Panzeri & Treves
1996) show that the bias decreases approximately
linearly when increasing the number of trials, and
increases approximately exponentially when increasing
the number of dimensions n of the X-space. This makes
it difficult to estimate I for large n.

Fortunately, the bias of the entropy can be
computed approximately and eliminated by means of
a number of techniques. In our experience, one of the
most effective is the Bayesian technique of Nemenman
et al. (2004), which uses a family of prior distributions
that are weighted to produce a uniform expectation of
entropy before any data are sampled. As (X, Y ) data
become available, the entropy estimation is updated as
an average over all the possible hypothetical prob-
ability distributions weighted by their conditional
probability given the data. The algorithm converges
to the true value of entropy quite rapidly with the
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number of trials N. Unless the dimensionality of the
space n is too large, residual errors left after this bias
reduction are small. Since the uncorrected estimate of I
is biased upward, residual errors in the estimation of I
tend to be upward as well (Montemurro et al. in press).

To check whether any residual error is small, we
have developed a different way to estimate information
that is biased downward rather than upward
(Montemurro et al. in press). This allows one to check
the reliability of information-based sensitivity
measures by assessing the proximity of the upper and
lower bounds. To produce a downward-biased estimate
of I, we used the following procedure (Montemurro
et al. in press). We considered the entropy that would
be obtained if the input was independent at fixed
output, that is p(x jy)ZPip(xijy). The corresponding
entropy of this ‘independent’ distribution is called
Hind(X jY ) and typically has a very small bias because
only marginal probabilities have to be sampled.

Alternatively, correlations between input variables
can be removed by ‘shuffling’ the data at fixed Y, thus
creating pseudo X-vectors obtained by randomly
combining xi values from different trials in which the
value Y was observed. The resulting entropy, called
Hsh(X jY ), has the same asymptotic value of Hind(X jY )
for an infinite number of trials, but has a much higher
bias than Hind(X jY ) for finite N. Following the
mathematical analysis of Panzeri & Treves (1996),
Montemurro et al. showed that the bias of Hsh(X jY ) is
of the same order of magnitude as the bias of H(X jY )
but typically slightly larger. This observation suggests
computing I in the following way:

Ish ZHðXÞKHindðX jY ÞCHshðX jY ÞKHðX jY Þ:

Owing to the bias cancellation created by the entropy
terms added to the r.h.s., Ish has the same value of I for an
infinite number of trials, but amuch smaller bias for finite
N. Moreover, since Hsh(X jY) is more downward biased
than H(X jY), the resulting bias of Ish is negative
(Montemurro et al. in press). Thus, in cases when the
upward-biased estimator I and the downward-biased
estimator Ish coincide, we can be confident that our
information estimate is unbiased. If they do not coincide,
their difference provides an idea of the order ofmagnitude
of our uncertainty in the information estimation.
A.3. Decomposition of the total mutual
information

The following three equations are elementary formulae,
proofs of which can be found in standard textbooks (e.g.
Cover & Thomas 2006):

HðX ;Y ÞZH ðXÞCHðY jXÞ; ðA 2Þ

I ðX ;Y ÞZHðXÞKHðX jY ÞZHðY ÞKHðY jXÞ;
ðA 3Þ

I ðX ;Y ÞZHðXÞCHðY ÞKHðX ;Y Þ: ðA 4Þ
We next derive a decomposition of the total mutual
information of three variables, which will serve as an
auxiliary formula in the general decomposition with an
arbitrary number of variables.
J. R. Soc. Interface (2008)
A.3.1. Decomposition with three variables. By means of
theorem (A 4), the total mutual information of a pair of
random variables (X, Y ) and a third variable Z can also
be expressed in terms of entropies:

I ðX ;Y ;ZÞZHðX ;Y ÞCHðZÞKHðX ;Y ;ZÞ

ZHðXÞCH ðY jXÞCHðZÞKHðX ;Y ;ZÞ

ZHðXÞCH ðY ÞKI ðX ;Y ÞCHðZÞ

KHðX ;Y ;ZÞ;

where we have applied (A 2) in the second step and
(A 3) in the third. Expressing H(X ) and H(Y ) in terms
of mutual information with respect to Z by means of
(A 3) we obtain

I ðX ;Y ;ZÞZ I ðX ;ZÞCHðX jZÞCI ðY ;ZÞCHðY jZÞ

CHðZÞKHðX ;Y ;ZÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}KI ðX ;Y Þ:

Rearranging terms and using the relation H(Z )K
H(X, Y, Z)ZKH(X,YjZ) yields

I ðX ;Y ;ZÞZI ðX ;ZÞCI ðY ;ZÞ

CHðX jZÞCHðY jZÞKHðX ;Y jZÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I ðX ;Y jZÞ

KI ðX ;Y Þ;

where by virtue of (A 4) the remaining entropy terms
amount to the conditional mutual information of X and
Y given Z.

Hence,

I ðX ;Y ;ZÞZI ðX ;ZÞCI ðY ;ZÞCI ðX ;Y jZÞKI ðX ;Y Þ:
ðA5Þ

By conditioning on a fourth variable W, one also
obtains

I ðX ;Y ;Z jW ÞZ I ðX ;Z jW ÞCI ðY ;Z jW Þ

CI ðX ;Y jZ ;W ÞKI ðX ;Y jW Þ:
ðA 6Þ

The decomposition (A 5) has previously been applied in
computational neuroscience (Adelman et al. 2003).
A.3.2. Decomposition with arbitrary number of
variables. The general decomposition with an arbitrary
number of input variables can be derived by repeated
application of (A 5) and (A 6). Assuming independent
inputs X1, ., Xn, the total mutual information can
be expanded using (A 5) by setting XZX1 and
YZX2, ., Xn:

I ðX1;fX2.;Xng;FÞ

ZI ðX1;FÞCI ðX2;.;Xn;FÞCI ðX1;X2;.;XnjFÞ

KI ðX1;X2;.;XnÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z0; if independent

Z I ðX1;FÞ|fflfflfflfflffl{zfflfflfflfflffl}
first-order term

CI ðX2;.;Xn;FÞ

CI ðX2;fX3;.;Xng;X1jFÞ:
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Thus, a first-order term has been separated. Applying
(A 6) to the last term separates a second-order term

I ðX1;X2.;Xn;FÞ

Z I ðX1;FÞC I ðX1;X2jFÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
second-order term

CI ðX2;.;Xn;FÞ

CI ðX3;.;Xn;X1jFÞCI ðX2;X3;.;XnjX1;FÞ

KI ðX2;X3;.;XnjFÞ:
Expanding the last two terms, again using (A 6),
produces a third-order term

I ðX1;X2;.;Xn;FÞ
ZI ðX1;FÞCI ðX1;X2jFÞCI ðX2;.;Xn;FÞ

CI ðX3;.;Xn;X1jFÞCI ðX3;X2jX1;FÞKI ðX3;X2jFÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ZI3ðX1;X2;X3jFÞ; third-order term

CI ðX4;.;Xn;X2jX1;FÞKI ðX4;.;Xn;X2jFÞ
CI ðX3;X4;.;XnjX2;X1;FÞKI ðX3;X4;.;XnjX2;FÞ
KI ðX3;X4;.;XnjX1;FÞCI ðX3;X4;.;XnjFÞ:

Similarly, the remaining terms can be expanded further
using auxiliary formulae (A 5) and (A 6), thus splitting
up more and more terms of ever higher order, and
yielding all possible combinations of input variables for
each order.
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