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ABSTRACT
High-throughput amplicon sequencing (HTAS) of conserved DNA regions is a

powerful technique to characterize microbial communities. Recently, spike-in mock

communities have been used to measure accuracy of sequencing platforms and data

analysis pipelines. To assess the ability of sequencing platforms and data processing

pipelines using fungal internal transcribed spacer (ITS) amplicons, we created two

ITS spike-in control mock communities composed of cloned DNA in plasmids: a

biological mock community, consisting of ITS sequences from fungal taxa, and a

synthetic mock community (SynMock), consisting of non-biological ITS-like

sequences. Using these spike-in controls we show that: (1) a non-biological synthetic

control (e.g., SynMock) is the best solution for parameterizing bioinformatics

pipelines, (2) pre-clustering steps for variable length amplicons are critically

important, (3) a major source of bias is attributed to the initial polymerase chain

reaction (PCR) and thus HTAS read abundances are typically not representative of

starting values. We developed AMPtk, a versatile software solution equipped to deal

with variable length amplicons and quality filter HTAS data based on spike-in

controls. While we describe herein a non-biological SynMock community for ITS

sequences, the concept and AMPtk software can be widely applied to any HTAS

dataset to improve data quality.
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INTRODUCTION
High-throughput amplicon sequencing (HTAS) is a powerful tool that is frequently

used for examining community composition of environmental samples. HTAS has proven

to be a robust and cost-effective solution due to the ability to multiplex hundreds of

samples on a single next-generation sequencing (NGS) run. However, HTAS output from

environmental samples requires careful interpretation and appropriate and consistent use

of positive and negative controls (Nguyen et al., 2015). One of the major challenges in

HTAS is to differentiate sequencing error versus real biological sequence variation.
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Considerable progress has been made in the last several years via improved quality of

sequencing results through manufacturer upgrades to reagents as well as improved quality

filtering and “clustering” algorithms. While most algorithm development in HTAS is

focused on the prokaryotic microbiome, using the 16S subunit of the ribosomal RNA

(rRNA) array (e.g., QIIME (Caporaso et al., 2010), Mothur (Schloss et al., 2009), UPARSE

(Edgar, 2013), DADA2 (Callahan et al., 2016)), many of these same tools have been

adopted for use with other groups of organisms, such as fungi.

The internal transcribed spacer (ITS) region of the rRNA array has emerged as the

molecular barcode for examining fungal communities in environmental samples

(Schoch et al., 2012). The ITS region is multi-copy and thus easily amplifiable via PCR

even from environmental samples with low quantities of fungal DNA. The ITS region

consists of three subunits, ITS1, 5.8S, and ITS2 (Fig. 1A), and is generally conserved

within fungal species yet possess enough variability to differentiate among species in

many taxonomic groups. Because of its widespread use, public databases are rich with

reference fungal ITS sequences (Schoch et al., 2012). However, there are several properties

of fungi and the fungal ITS region that are potentially problematic for HTAS that include:

(i) fungi have variable cell wall properties making DNA extraction efficiency unequal for

different taxa and/or cell types (hyphae, fruiting bodies, spores, etc) (Vesty et al., 2017),

(ii) the number of nuclei per cell is variable between taxa (Roper et al., 2011), (iii) the

number of copies of the rRNA array are different between taxa and in some cases isolates

of the same taxa (Ganley & Kobayashi, 2007), (iv) a single isolate can have multiple ITS

sequences (intragenomic variability; (Lindner & Banik, 2011; Simon & Weiss, 2008)), (v)

the ITS region is highly variable in length (Schoch et al., 2014), (vi) ITS sequences vary in

GC content (Wang et al., 2015), and (vii) there are a variable number of homopolymer

repeats (Hart Miranda et al., 2015). Additionally, current read lengths of commonly used

sequencing platforms (Illumina Miseq currently covers ∼500 bp (2 � 300) and Ion

Torrent is 450 bp) are not long enough to cover the entire length of the ITS region, which

is typically longer than 500 bp. However, conserved priming sites exist to amplify either

the ITS1 region or the ITS2 region, which has been shown to be sufficient for taxonomic

identification. While several studies have used the ITS1 region for HTAS, the ITS1 region

contains introns in some taxa and thus to avoid potential bias it has been suggested that

ITS2 region should be the preferred region for fungi (Taylor et al., 2016). Progress has

recently been made using single-molecule DNA sequencing (e.g., PacBio) to assess fungal

communities with long read lengths (up to 3,000 base pairs), but this has not yet been

widely adopted due to cost and technical hurdles (James et al., 2016; Kennedy, Cline &

Song, 2018; Tedersoo, Tooming-Klunderud & Anslan, 2018).

Sequencing error is a known problem across NGS platforms used for HTAS. To address

issues with sequencing error and reliability of results from HTAS, it has become

increasingly common practice to use spiked-in “mock” community samples as positive

controls for the parameterization and optimization of experimental workflows and data

processing. Spike-in mock community controls for fungal ITS have been used (Amend,

Seifert & Bruns, 2010; De Filippis et al., 2017; Nguyen et al., 2015; Taylor et al., 2016;

Tonge, Pashley & Gant, 2014), and have consisted of fungal genomic DNA (gDNA)
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extracted from tissue from fruiting bodies, cultures, or spores of a number of taxa which

are then (usually) combined in equimolar amounts. Mock communities composed of

fungal gDNA from fruiting bodies, spores, and/or hyphae provide a measure of success of

extraction, PCR, and sequencing and thus are useful in the HTAS workflow. However,

such mock communities are of limited value if used to validate/parameterize data

processing workflows due to intrinsic properties of the ITS region mentioned previously

(variable copy number, intraspecific variation, variable length, etc.). Therefore, there is a

need for fungal ITS spike-in control mock communities that function to validate
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Figure 1 The fungal internal transcribed spacer (ITS) region of the rRNA array is highly variable in

length. (A) A schematic of the rRNA array highlights the conserved priming sites commonly used to

amplify either the ITS1 or ITS2 region. (B) Size distribution of full length ITS (blue), ITS1 (green), ITS2

(red) sequences in the UNITE v7.2 curated databases shown in comparison to the bacterial 16S V3/V4

amplicon from the Silva v128 database. Current sequencing technologies do not have read lengths long

enough to capture full-length ITS sequences, and thus ITS1 or ITS2 regions are used for fungal envir-

onmental community analysis. 16S V3/V4 in yellow; ITS full length in blue, ITS2 in red, and ITS1 in green.

Note that the graphs for ITS2 and ITS full-length are shifted up on the y-axis and the y-axis is divided into

two segments for visualization purposes. Full-size DOI: 10.7717/peerj.4925/fig-1
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laboratory experimental design, validate data processing steps, and compare results

between sequencing runs and platforms.

High-throughput amplicon sequencing is cost-effective due to the ability to massively

multiplex environmental samples on a single sequencing run. This process depends on

the attachment of a unique sequence identifier (referred to as a barcode, an index, or a tag,

depending on sequencing platform) to each piece of DNA to be sequenced. In recent

years, “tag-switching” (“index hopping,” “tag jumping,” “barcode jumping,” “index-

bleed,” or “barcode switching”) has been noted to occur on Roche 454 platforms as well as

Illumina platforms (Carlsen et al., 2012; Degnan & Ochman, 2012; Kircher, Heyn & Kelso,

2011; Philippe, Lejzerowicz & Pawlowski, 2015; Schnell, Bohmann & Gilbert, 2015). Tag-

switching can lead to over-estimation of diversity in environmental samples (Philippe,

Lejzerowicz & Pawlowski, 2015; Schnell, Bohmann & Gilbert, 2015) and mis-assignment

of sequences to samples. It has been noted that spike-in mock communities may be

useful to help detect tag-switching, and subsequent filters may be applied for use

with the HTAS pipeline of choice (Degnan & Ochman, 2012; Philippe, Lejzerowicz &

Pawlowski, 2015).

We hypothesized that a mock community composed of cloned fungal ITS sequences

(in plasmids) would circumvent several of the variability issues associated with using

mock communities composed of fungal DNA or fungal tissue (variable copy number,

intraspecific variation, etc), allowing for a definitive assessment of HTAS for mycobiome

studies. Subsequently, we found that current “off-the-shelf” software solutions performed

poorly using these fungal ITS community standards and thus developed AMPtk

(amplicon toolkit), a versatile software pipeline that improves results from HTAS data.

Furthermore, we designed a non-biological synthetic spike-in mock community

consisting of ITS-like sequences (SynMock) that, when coupled with AMPtk, provides

a simple method to reduce the effects of tag-switching between multiplexed samples on a

HTAS run.

MATERIALS AND METHODS
Biological mock community
To construct the biological mock community (BioMock) we selected 26 identified fungal

cultures (Table S1) from the Center for Forest Mycology Research (CFMR) culture

collection (US Forest Service, Madison, WI, USA). These cultures were purposefully

chosen to represent a taxonomic range of fungal species, including species with known

ITS paralogs, species with GC rich ITS regions, a variety of ITS lengths, and species

with a variety of homopolymers in the ITS region. To measure the sensitivity of our

bioinformatics approach, we also included two ITS sequences from Leptoporus mollis

that were cloned from the same culture as an example of intragenomic variation in the

fungal ITS region. These two sequences are more than 3% divergent (95.9% identical) and

thus would typically represent separate operational taxonomic units (OTUs) in a

clustering pipeline, despite being from the same fungal isolate. All cultures were grown on

cellophane on malt extract agar, and DNA was extracted from pure cultures following

(Lindner & Banik, 2008). Following extraction, the gDNA was PCR amplified using the
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fungal ITS specific primers ITS-1F (Gardes & Bruns, 1993) and ITS4 (White et al., 1990).

PCR products were then cloned into pGEM-T (Promega, Madison, WI, USA) and Sanger

sequenced using the ITS1-F primer following the protocol in (Lindner & Banik, 2011).

Sequences were verified via BLASTsearch and two clones of each isolate were selected and

cultured in liquid Luria-Bertani (LB) media and incubated at 37 �C for 24 h. Plasmids

were purified from the cultures in LB media using standard alkaline lysis. These plasmids

will hereafter be termed “purified plasmids.” The purified plasmids were then Sanger

sequenced with vector primers T7 and SP6 to verify the insertion of a single copy of the

appropriate ITS fragment. Purified plasmid DNA was quantified using a Qubit� 2.0

fluorometer and DNA concentrations were equilibrated to 10 nM using DNA-free

molecular grade water. Following equilibration, 5 ml of each purified plasmid were

combined to make an equimolar “BioMock” community of single-copy purified plasmids.

PCR has known biases, which are related to different sequence characteristics and are

hard to predict in mixed DNA communities of unknown composition. To illustrate the

impact of initial PCR bias on the number of reads obtained from each member of a mixed

DNA community, we generated individual HTAS-compatible PCR products from each

BioMock plasmid which were subsequently mixed (post-PCR) in an equimolar ratio. This

was accomplished by PCR amplifying each individual plasmid with the same barcoded

primer set. PCR products were purified using E-gel� CloneWellTM 0.8% SYBR� Safe

agarose gels (ThermoFisher Scientific, Madison, WI, USA), quantified using a Qubit� 2.0

fluorometer, and combined into an equimolar mixture post-amplification. This post-PCR

combined mock community can be used to examine sequencing error on NGS platforms

and is referred to as BioMock-standards.

Non-biological synthetic mock community
We used the well-annotated rRNA sequence from Saccharomyces cerevisiae as a starting

point to design ITS-like synthetic sequences. The ITS adjacent regions of small subunit

(SSU) and large subunit (LSU) of S. cerevisiae were chosen as anchoring points because of

the presence of conserved priming sites ITS1/ITS1-F and ITS4. A 5.8S sequence was

designed using S. cerevisiae as a base but nucleotides were altered so it would be

compatible with several primers in the 5.8S region, including ITS2, ITS3, and fITS7.

Random sequences were generated with constrained GC content and sequence length for

the ITS1 and ITS2 regions. Twelve unique sequences were synthesized (Genescript,

Piscataway Township, NJ, USA) and cloned into pUC57 harboring ampicillin resistance.

The SynMock sequences and the script to produce them are available in the OSF

repository (https://osf.io/4xd9r/) as well as packaged into AMPtk distributions (https://

github.com/nextgenusfs/amptk). Each plasmid was purified by alkaline lysis, quantified,

and an equimolar mixture was created as a template for HTAS library prep.

Preparation of HTAS libraries and NGS sequencing
High-throughput amplicon sequencing libraries were generated using a proofreading

polymerase, Pfx50 (ThermoFisher Scientific, Madison, WI, USA), and thermocycler

conditions were as follows: initial denaturation of 94 �C for 3 min, followed by 11 cycles of
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(94 �C for 30 s, 60 �C for 30 s (drop 0.5 �C per cycle), 68 �C for 1 min), then 26 cycles of

(94 �C for 30 s, 55 �C for 30 s, and 68 �C for 1 min), with a final extension of 68 �C for

7 min. PCR products were cleaned using either E-gel� CloneWellTM 0.8% SYBR� Safe

agarose gels (ThermoFisher Scientific, Madison, WI, USA) or Zymo Select-a-size spin

columns (Zymo Research, Irvine, CA, USA). All DNA was quantified using a Qubit�

2.0 fluorometer with the high-sensitivity DNA quantification kit (ThermoFisher

Scientific, Madison, WI, USA).

A single step PCR reactionwas used to create Ion Torrent compatible sequencing libraries

(PCR protocol described above), and primers were designed according to manufacturer’s

recommendations. Briefly, the forward primer was composed of the Ion A adapter

sequence, followed by the Ion key signal sequence, a unique Ion Xpress Barcode sequence

(10–12 bp), a single base-pair linker (A), followed by the fITS7 primer (Ihrmark et al., 2012).

The reverse primer was composed of the Ion trP1 adapter sequence followed by the

conserved ITS4 primer (White et al., 1990). Sequencing on the Ion Torrent PGM was done

according to manufacturer’s recommendations using an Ion PGMTM Hi-QTM OT2 Kit, an

Ion PGMTM Hi-QTM Sequencing Kit, an Ion PGMTM sequencing chip (316v2 or 318v2),

and raw data were processed with the Ion Torrent Suite v5.0.3 with the “–disable-all-filters”

flag given to the BaseCaller. Libraries for Illumina MiSeq were generated by a two-step

dual indexing strategy. All samples were PCR amplified with Illumina-fITS7 and Illumina-

ITS4 primers using PCR protocol described above. PCR products were cleaned and then

dual-barcoded using an eight cycle PCR reaction using the Illumina Nextera Kit and

subsequently sequenced using 2 � 300 bp sequencing kit on the Illumina MiSeq at the

University of Wisconsin Biotechnology Center DNA Sequencing Facility. All primers

utilized in this study are available via the OSF repository (https://osf.io/4xd9r/).

Data processing using AMPtk
AMPtk is publically available at https://github.com/nextgenusfs/amptk. All primary

data and data analysis done in this manuscript are available via the Open Science

Framework (https://osf.io/4xd9r/). AMPtk is written in Python and relies on several

modules: edlib (Šošic & Šikic, 2017), biopython (Cock et al., 2009), biom-format

(McDonald et al., 2012), pandas (McKinney, 2010), numpy (van der Walt, Colbert &

Varoquaux, 2011), and matplotlib modules (Hunter, 2007). External dependencies are

USEARCH v9.1.13 (Edgar, 2010) or greater and VSEARCH v2.2.0 (Rognes et al., 2016) or

greater. In order to run the DADA2 (Callahan et al., 2016) method R is required along

with the shortRead (Morgan et al., 2009) and DADA2 packages. The major steps for

processing HTAS data are broken down into (i) pre-processing reads, (ii) clustering into

OTUs, (iii) filtering OTU table, and (iv) assigning taxonomy.

Pre-processing reads

Data structures from Roche 454 and Ion Torrent are similar where reads are in a single file

and have a unique barcode at the 5′ or 3′ end of the read followed by the gene-specific

priming site; therefore, AMPtk processes reads from these two platforms very similarly.

As a preliminary quality control step, only reads that have a matching barcode sequence
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(default is to allow 0 mismatches in barcode sequence) and forward primer are retained

(default is to allow two mismatches in primer sequence). Next, reverse primer sequences

are removed and if the amplicons are barcoded on the 3′ end the reverse barcode is

identified. Finally, the reads are processed in a lossless trimming method that truncates

reads longer than the user-defined maximum length but keeps reads shorter than this

threshold if they had a valid reverse primer sequence. Data from Illumina is processed

differently because reads are most often paired-end reads and most sequencing centers

provide users with de-multiplexed by sample paired-end data (i.e., output of “bcl2fastq”).

However, AMPtk also has de-multiplexing methods for the commonly used Earth

Microbiome Project format as well as paired-end Illumina data containing barcodes

sequences. When processing Illumina data, AMPtk first trims forward and reverse

primer sequences, then merges the paired end reads using USEARCH or VSEARCH; phiX

spike-in control is removed with USEARCH, and all data are combined into a single file.

Pre-processing reads in AMPtk from any of the sequencing platforms results in a single

output file that is compatible with all downstream steps.

Clustering reads into OTUs

AMPtk is capable of running several different clustering algorithms including UPARSE,

DADA2, UNOISE2, UNOISE3, and reference-based clustering. The algorithms all start

with quality filtering using expected errors trimming and are modified slightly in

AMPtk to build OTU tables using the de-multiplexed data (not the quality filtered data)

using a 97% percent identity to OTU threshold; therefore read counts represent what

was in the sample after de-multiplexing but prior to quality filtering. This is an important

distinction, as using variable length amplicons coupled with quality filtering using

expected error trimming (Edgar & Flyvbjerg, 2015) can bias longer reads, further

distorting read abundance in the final OTU tables.

Filtering OTU tables to alleviate Tag-switching
Filtering in AMPtk works optimally when a spike-in mock community is sequenced in

the dataset. While by default AMPtk is setup to work with the SynMock described herein,

any spike-in mock community can be used. AMPtk identifies which OTUs belong to

the mock community and calculates tag-switching rate of that mock community into

other samples as well as into the mock community from samples. This calculated

tag-switching percentage is then used to filter the OTU table. Filtering is done on a per

OTU basis, such that read counts in each OTU that are below the tag-switching threshold

are set to zero as they fall within the range of data that could be attributed to tag-switching

error and read counts above the threshold are not changed.

Assigning taxonomy
AMPtk is pre-configured with databases for fungal ITS, fungal LSU, arthropod mtCO1,

and prokaryotic 16S; however custom databases are easily created with the “amptk

database” command. Several tools are available for taxonomy assignment in AMPtk

including remote blast of the NCBI nt database, RDP Classifier (Wang et al., 2007),

global alignment to a custom sequence database, UTAX Classifier (RC Edgar,
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http://drive5.com/usearch/manual9.2/cmd_utax.html), and the SINTAX Classifier

(Edgar, 2016). The default method for taxonomy assignment in AMPtk is a “hybrid”

approach that uses classification from global alignment, UTAX, and SINTAX. The best

taxonomy is then chosen as follows: (i) if global alignment percent identity is >97% then

the top hit is retained, (ii) if global alignment percent identity is <97%, then the best

confidence score from UTAX or SINTAX is used, (iii) if there is disagreement between

taxonomy levels assigned by each method then a least common ancestor approach is

utilized to generate a conservative estimate of taxonomy. AMPtk also can take a QIIME-

like mapping file that can contain all the metadata associated with the HTAS study; the

output is then a multi-fasta file containing taxonomy in the headers, a classic OTU table

with taxonomy appended, and a BIOM file incorporating the OTU table, taxonomy, and

metadata. The BIOM output of AMPtk is compatible with several downstream statistical

and visualization software packages such as PhyloSeq (McMurdie & Holmes, 2013) and the

vegan package in R (Jari et al., 2017).

Accessory scripts in AMPtk

AMPtk has several additional features that will aid the user in analyzing HTAS data.

For instance, AMPtk contains a script that will prepare data for submission to the NCBI

SRA archive by formatting it properly and outputting a ready-to-submit SRA submission

file. The FunGuild (Nguyen et al., 2016) package which assigns OTUs to an annotated

database of functional guilds is also incorporated directly into AMPtk. Additionally, users

can draw a heatmap of an OTU table as well as summarize taxonomy in a stacked

histogram.

HTAS software pipeline comparison
For comparison of software pipelines, sequencing data from the Ion Torrent PGM and

Illumina MiSeq consisted of a single SynMock library, a single BioMock library, and

16 environmental sample libraries. To compare the outputs of these pipelines, OTUs

and a corresponding OTU tables were generated using AMPtk v1.2.1, QIIME2 v2018.2,

UPARSE (USEARCH v10.0.240), and PIPITS v2.0 (Illumina data only). Read length

was set to 300 bp where appropriate for each tool and default or recommended settings

were used for each software pipeline with the following exceptions in UPARSE: for

processing the Illumina data VSEARCH was used to quality filter, de-replicate (identify

unique sequences), and generate an OTU table because the file size was too large to be

supported by 32-bit version of USEARCH. QIIME2 workflow utilized the “qiime

cutadapt” module to de-multiplex the Ion Torrent PGMdata and to remove primers from

both datasets. Clustering was done in QIIME2 using DADA2 followed by 97% clustering

using VSEARCH, which is the same methodology used in the “amptk dada2” method.

SynMock and BioMock communities were analyzed using “amptk filter” command for

each pipeline to map the OTUs to the corresponding mock communities. Error rate for

each mock community was calculated as a percent of the total number of mismatches

divided by the total number of base pairs. Scripts used for analysis are available at the

Open Science Framework repository (https://osf.io/4xd9r/).
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RESULTS
In silico analysis of the fungal ITS region
To gain baseline data on potential amplicons of the ITS1 or ITS2 regions, the ITS1 and

ITS2 regions were extracted with the “amptk database” command using priming sites

specific for each region (ITS1: ITS1-F and ITS2 primer sequences; ITS2: fITS7 and ITS4

primer sequences) from the UNITE+INSD v7.2 database (Abarenkov et al., 2010)

consisting of 736,375 ITS sequences. For comparison, the commonly sequenced V3–V4

region was extracted using the “amptk database” command from prokaryotic 16S

sequences from the Silva v128 database (Quast et al., 2013). A length histogram for

each dataset as well as summary statistics were generated (Fig. 1B; Table 1), indicating

that all three of these molecular barcodes have an average length of ∼250 bp (Table 1);

however, there was considerable variation in the lengths of the ITS region in comparison

to the V3/V4 region of 16S (Fig. 1B). Stretches of homopolymer sequences can also be

problematic for some NGS platforms (454 and PGM), and thus the number of sequences

in this dataset that contained homopolymer stretches greater than six nucleotides were

calculated using the “find_homopolymers.py” script in the AMPtk distribution (Table 1).

Given the small percentage of ITS1 and ITS2 regions that are greater than 450 bp (the

current upper limit of the Ion Torrent PGM platform), the number of taxa in the reference

database that are unlikely to sequence on the Ion Torrent due to amplicon length is

relatively small (Table 1). Illumina MiSeq is now capable of paired end 300 bp read lengths

(2 � 300); however, reads need to overlap for proper processing in NGS software

platforms and thus a ∼500 bp size limit would also be able to sequence most taxa in the

reference database using either the ITS1 or ITS2 region.

Existing data processing workflows perform poorly with
fungal ITS sequences
We cloned known ITS sequences from 26 cultures from the CFMR culture collection that

varied in length (237–548 bp), ranged in GC content (43.8–68.4%), and contained

sequences with homopolymer stretches with one sequence containing two 9 bp stretches.

These plasmids were combined into BioMock and BioMock-standards as described in

materials and methods section. The value of the BioMock-standards is that the library

was combined after PCR, and thus the standards are free from PCR-induced artifacts that

may arise from PCR amplification of a mixed community. Clustering amplicons into

OTUs is common practice in molecular ecology and there are many software

Table 1 Summary statistics of the fungal ITS molecular barcode in comparison to bacterial 16S.

Region Num seqs Avg length (bp) % HP > 6 (%) % HP > 8 (%) % >450 bp

ITS full length 696,704 488 55.07 8.66 –

ITS1 685,399 247 36.58 5.60 3.27%

ITS2 535,200 264 44.19 5.54 0.83%

16S (V3/V4) 627,247 253 23.74 1.02 –

Note:
HP, homopolymer stretches.
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solutions/algorithms (such as QIIME (Caporaso et al., 2010), UPARSE (Edgar, 2013),

Mothur (Schloss et al., 2009), and DADA2 (Callahan et al., 2016)) that have been

developed to deal appropriately with errors associated with NGS platforms. Many studies

using 16S amplicon data have focused on comparing clustering methods (Callahan et al.,

2016; Edgar, 2013), while others have focused on quality filtering reads prior to clustering

(Edgar & Flyvbjerg, 2015). At the time these data were generated (2014–2015), there

were very few options for pre-processing data from the Ion Torrent platform; thus we used

the compatible 454 method in QIIME v1.9 to de-multiplex the sequencing data

(minimum length = 100, maximum length = 550, maximum length homopolymers = 10,

maximum primer mismatch = 2). These data were then clustered using UCLUST,

SWARM, and USEARCH in QIIME v1.9 as well as UPARSE (usearch v7.0.1090). However

the number of OTUs was highly over-estimated for our mock communities and the error

rates were very high (Table S2). The best performing clustering pipeline was UPARSE;

however the number of OTUs predicted for the 12 member SynMock was unacceptably

high, resulting in 82 OTUs with the Ion Torrent PGMdata while the 38 OTUs for Illumina

MiSeq data were slightly more accurate (Table S2). Based on advances in the UPARSE

pipeline and the importance of quality trimming outlined by Edgar & Flyvbjerg (2015),

we speculated that these high error rates and inflated OTU counts could be due to the

pre-processing of reads (finding barcodes/primers and quality trimming the sequence

data) allowing errors in the data. We were unable to run our data through Mothur due to

the inability to do a multiple sequence alignment and subsequent distance matrix of

the ITS region. It is important to note that with the exception of USEARCH/UPARSE,

these software solutions have been built with 16S amplicons in mind and several have been

optimized for Illumina data.

One major difference in 16S amplicons versus those of ITS1/ITS2 is that the lengths of

16S amplicons are nearly identical, while ITS1/ITS2 amplicons vary in length (Fig. 1B).

The variable length coupled with sequence divergence of the ITS region between

diverse taxa, makes the ITS region impossible to align in many cases (Schoch et al., 2012)

and thus represents a major limitation in data processing (i.e., sequence alignment is

required for default Mothur OTU clustering). To illustrate the importance of properly

pre-processing ITS data, we clustered the ITS1 and ITS2 regions using UPARSE while

using the full length ITS1/ITS2 UNITE reference database as a benchmark (Fig. 2). Using

the UNITE database, we then explored the outcome of trimming/truncating the sequences

to different length thresholds, a common practice in OTU clustering pipelines. The

UPARSE algorithm uses global alignment and as such terminal mismatches count in the

alignment (as opposed to local alignment where terminal mismatches are ignored); thus

the UPARSE pipeline expects that reads are truncated to a set length. The original

UPARSE algorithm achieves this by truncating all reads to a set length threshold and

discards reads that are shorter than the length threshold. Therefore real ITS sequences

are discarded (Fig. 2). We then came up with two potential solutions to fix this

unintended outcome: (i) truncate reads that were longer than the threshold and keep all

shorter reads (full length), and (ii) truncate longer reads and pad the shorter reads with

N’s out to the length threshold (padding). Using the UNITE v7.2 database of curated
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sequences (general release June 28th, 2017) as input, both “full-length” and “padding”

improved UPARSE results with the “full length” method recovering more than 99%

of the expected OTUs (Fig. 2). It should be noted that the recent version of USEARCH
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Figure 2 Pre-processing ITS sequences is critically important to accurately recover OTUs using the

curated UNITE v7.2 reference database. ITS1 and ITS2 sequences were extracted from the UNITE v7.2

general fasta release database using “AMPtk database.” Identical sequences were collapsed (dereplication)

and remaining sequences were clustering using UPARSE (“cluster_otus”) to generate the total number of

UPARSE OTUs expected for the (A) ITS1 and (B) ITS2 regions. The data was then processed to five

different lengths (150, 200, 250, 300, and 350 bp) and then clustered (UPARSE “cluster_otus”) using (i)

default UPARSE truncation (longer sequences are truncated and shorter sequences are discarded), (ii)

padding with ambiguous bases (longer sequences truncated and shorter sequences padded with N’s to

length threshold), and (iii) full-length sequences (longer sequences are truncated and shorter sequences

are retained if reverse primer is found). Full-length and padding pre-processing sequences outperforms

default UPARSE truncation. Full-size DOI: 10.7717/peerj.4925/fig-2
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(versions >v8.0.1611) includes a similar method to allow reads to be padded with N’s out

to a user-defined length threshold (https://www.drive5.com/usearch/manual/cmd_fastx_

truncate.html).

Due to the intrinsic nature of the variable length ITS amplicons, we needed a data

processing solution that would be flexible enough to maintain the full length of the reads,

trim reads without data loss, prepare sequencing reads for downstream clustering

algorithms, handle a large number of sequences, and support all major NGS platforms.

Using the mock communities described herein as a means to validate the results of all data

processing steps, we wrote a flexible series of scripts for processing Illumina, Ion Torrent,

as well as Roche 454 data that are packaged into AMPtk (amplicon tool kit). A flow

diagram of AMPtk is illustrated in Fig. 3 and a more thorough description of AMPtk

is provided in the material and methods section. A manual for AMPtk is available at

http://amptk.readthedocs.io/en/latest/. After data are pre-processed with AMPtk via a

platform specific method, AMPtk then functions as a wrapper for several popular

1. Find barcode (Ion /454), relabel header

2. Find/Trim Forward and Reverse Primers

3. Merge PE reads (Illumina only)

4. Trim/Pad read to set length (optional)

5. Combine samples (Illumina only)

6. Create sample mapping file (QIIME-like map file)
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12. Map OTUs/ASVs to mock community (optional)

13. Calculate index-switching rate between samples

14. Index-switching  filter, remove counts below rate

15. Update FASTA OTUs/ASVs and OTU table

7. Quality filter reads (expected errors filtering)

8. Run “Clustering”

     - UPARSE:  97% clustering into OTUs

     - DADA2: de-noising into inferred sequences

     - UNOISE2/3: de-noising into inferred sequences

9. Reference chimera filtering (optional)

10. Map reads to OTUs and/or ASVs

11. Create OTU table

16. Pre-formatted databases for ITS, 16S, COI, and LSU can 

      be downloaded with ‘amptk install’

17. Assign taxonomy using “hybrid” approach

 - Global alignment to reference DB

 - UTAX Classifier based on trained DB

 - SINTAX Classifier based on reference DB

 - parse results and choose best taxonomy

18. Ouptut taxonomy, append to OTU table, create BIOM 

amptk funguild

amptk heatmap

amptk summarize

amptk SRA-submit

Figure 3 Overview of the commands in AMPtk. AMPtk is built to be compatible with multiple

sequencing platforms as well as contains several clustering algorithms.

Full-size DOI: 10.7717/peerj.4925/fig-3
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algorithms including UPARSE, DADA2, UNOISE2, and UNOISE3. Data presented in

Fig. 2 were generated using AMPtk v1.0.1 while the rest of the data were generated using

AMPtk v1.2.1.

AMPtk is a fast and accurate HTAS pipeline
Molecular ecology is a rapidly changing field because methods must keep pace with

technological advances in DNA sequencing. Therefore, we compared AMPtk to a handful

of currently popular HTAS software pipelines: QIIME2 (https://qiime2.org), USEARCH

(Edgar, 2013), and PIPITS v2.0 (Gweon Hyun et al., 2015). PIPITS is not a universal

HTAS pipeline as it only works with paired-end Illumina data; however, we included it

because it uses the ITSx software (Bengtsson-Palme et al., 2013) to extract the ITS region.

For analysis of the Ion Torrent PGM data AMPtk performed the best by recovering all

members of the SynMock and BioMock communities, combined with the lowest error

rate, the fastest run time (17 min), and the most read counts recovered in the OTU

table (Table 2). Both USEARCH and QIIME2 resulted in OTUs that contained either

primer or adapter sequence contamination, largely due to incomplete removal of the

reverse primer sequence (Table 2). A similar trend was found in processing the Illumina

MiSeq data; AMPtk recovered all members of the SynMock and BioMock communities,

had low error rates, and recovered the most read counts in the OTU table (Table 3).

USEARCH was slightly faster than AMPtk (55 vs 67 min, respectively), however, it had

high error rates for the SynMock community (1.047%) as well as missed a member of the

SynMock community (Table 3). The mock community members that were missed by

USEARCH or QIIME2 were those that were shorter amplicon sequences, i.e., both

pipelines missed mock6 (ITS2 region is 161 bp). All pipelines produced more OTUs in

each mock community sample than were expected; some of these OTUs are a result of

tag-switching and a few others are chimeras that slip through the chimera detection

algorithms in UPARSE or DADA2. These OTUs can be filtered out of the dataset using the

“amptk filter” command, however, for transparency and to measure the pipeline

performance, the raw data are presented (Tables 2 and 3). PIPITS was unable to identify

any members of the SynMock community because the non-biological SynMock sequences

are not identified by ITSx and thus the SynMock cannot be processed by pipelines that

use ITSx as a method to pull out the ITS1 or ITS2 regions (Table 3).

Table 2 Comparison of HTAS software pipelines on the Ion Torrent PGM sequencing platform.

Pipeline Total

OTUs

Reads

in OTU

table

SynMock

OTUs

(n = 12)

SynMock

error

rate1 (%)

BioMock

OTUs

(n = 23)

BioMock

error

rate1 (%)

Primer/adapter

contam.2 (%)

Run

time (min)3

AMPtk (UPARSE) 901 1,830,315 30 (12) 0.099 30 (23) 0.057 0.00 17

USEARCH (UPARSE) 821 1,823,711 32 (11) 1.573 32 (23) 0.054 63.63 215

AMPtk (DADA2) 814 1,822,013 30 (12) 0.099 31 (23) 0.058 0.00 42

QIIME2 (DADA2) 277 676,282 8 (5) 2.276 21 (19) 0.043 97.11 41

Notes:
1 Error rate is the percent of total mismatches/total number of nucleotides.
2 Primers and adapter contamination was measured by using the “search_oligodb” method in USEARCH v10.0.240.
3 Data were run using 10 cpus/threads on a Mac Pro OS 10.13.3 (12 core 2.4 GHz Intex Xeon processor with 64 GB of RAM).
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Read abundances do not represent community abundances:
PCR introduces bias
Next-generation sequencing platforms are quantitative if the library to be sequenced is

unbiased, as is typically the case with RNA-sequencing and whole genome sequencing

library prep protocols. However, PCR of mixed communities has long been shown to

introduce bias in NGS workflows (Aird et al., 2011; Kebschull & Zador, 2015; Pinto &

Raskin, 2012) and use of 16S mock communities resulted in read abundance bias

(Bokulich et al., 2013; Edgar, 2017; Kozich et al., 2013). For HTAS this is an important

caveat, as molecular ecologists are interested in diversity metrics of environmental

communities as well as their relative abundance. Through the use of mock communities,

several studies have pointed out that read abundance from fungal HTAS are not

representative of relative biological abundance (Amend, Seifert & Bruns, 2010; De Filippis

et al., 2017). However, it was recently reported that for a fungal ITS mock community of

eight members, abundances were meaningful (Taylor et al., 2016) and correlations

between template abundance and read abundance have been previously reported (Ihrmark

et al., 2012). Due to disagreements in the literature many studies use abundance-based

metrics to analyze HTAS, perhaps due to the unintended consequences of using

presence/absence metrics on data that suffer from tag-switching. We reasoned we

could investigate this issue using the ITS BioMock artificial community, which would not

suffer from bias associated with DNA extraction, ITS copy numbers, and intraspecific

variation. We compared the relative read abundances of BioMock-standards to three

different combinations of BioMock on both the Ion Torrent PGM and Illumina MiSeq

platforms (Fig. 4). The BioMock-standards consist of an equimolar mixture of 26 PCR

products thereby removing the PCR bias from mixed DNA samples, while the BioMock

communities consist of an equimolar mixture of 23 single-copy plasmids. These data

show that even in an extreme example of an equally mixed community of cloned ITS

sequences, read abundance does not represent actual abundance in the mock community

(Fig. 4). The majority of the bias is introduced at the initial PCR step, as the post-PCR

combined BioMock-standards result in a more equal distribution of reads, albeit not a

perfect distribution. We also tested PCR conditions, DNA concentrations, and sample

Table 3 Comparison of HTAS software pipelines on the Illumina MiSeq sequencing platform (2 � 300 bp).

Pipeline Total

OTUs

Reads in

OTU table

SynMock

OTUs (n = 12)

SynMock

error rate1 (%)

BioMock

OTUs (n = 23)

BioMock

error rate1 (%)

Primer/adapter

contam.2 (%)

Run

time (min)3

AMPtk (UPARSE) 2,007 13,636,429 33 (12) 0.063 36 (23) 0.031 0.00 67

USEARCH (UPARSE4) 1,924 12,073,312 43 (11) 1.047 33 (23) 0.029 0.00 55

AMPtk (DADA2) 1,954 13,628,802 34 (12) 0.063 42 (23) 0.032 0.00 470

QIIME2 (DADA2) 786 8,522,714 16 (10) 1.186 29 (22) 0.901 53.43 269

PIPITS (ITSx) 2,784 9,798,280 20 (0) 100 48 (22) 0.744 0.00 1,108

Notes:
1 Error rate is the percent of total mismatches/total number of nucleotides.
2 Primers and adapter contamination was measured by using the “search_oligodb” method in USEARCH v10.0.240.
3 Data were run using 10 cpus/threads on a Mac Pro OS 10.13.3 (12 core 2.4 GHz Intex Xeon processor with 64 GB of RAM).
4 VSEARCH was used for dereplication (finding unique sequences), quality filtering, and constructing OTU table due to data being too large for 32-bit USEARCH10.
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Phialocephala fusca
Ascomycete sp.
Phialocephala lagerbergii
Helotiales sp.
Aspergillus candidus
Bjerkandera adusta
Laetiporus caribensis
Trametes gibbosa
Laetiporus gilbertsonii
Gloeoporus pannocinctus
Wolfiporia dilatohypha
Schizopora sp.
Fomitopsis ochracea
Laetiporus cremeioporus
Phanerochaete laevis
Laetiporus cincinnatus
Punctularia strigosozonata
Phellinus cinereus
Antrodiella semisupina
Leptoporus mollis
Leptoporus mollis 2
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Penicillium nothofagi
Metapochonia suchlasporia
Wolfiporia cocos

Species
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Figure 4 Read abundance is an unreliable proxy for actual abundance within a mixed community. Using an equimolar mixture of cloned ITS

sequences in plasmid form (MockA, MockB1, MockB2) in comparison to equimolar mixture of individual PCR products (Stds) illustrates that the

initial PCR reaction during library preparation heavily biases the read abundance obtained after sequencing on both the Ion Torrent PGM and

Illumina MiSeq platforms. While read abundances are unreliable, all members of the mock community were recovered. MockA represents a

1:16,000 dilution and MockB1/MockB2 are replicates of a 1:32,000 dilution of the BioMock community. The Ion Torrent PGM platform has a

length threshold of approximately 450 bp; therefore longer amplicons like Wolfiporia cocos ITS2 sequence very poorly.

Full-size DOI: 10.7717/peerj.4925/fig-4
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reproducibility on the Ion Torrent PGM and in all conditions tested we still observed

unequal read abundances (Fig. S1).

While the bias via PCR is consistent between sequencing platforms, there is no obvious

correlation between length of the read, GC content, nor stretches of homopolymers

affecting efficient PCR amplification. For example, Wolfiporia dilatophya (mock11)

contains no homopolymer stretches larger than 5, has GC distribution of 54.6%, and is

near the median in length, yet it does not PCR amplify well in the BioMock community

(Fig. 4). These data also show a size limitation in the Ion Torrent PGM workflow, as

Wolfiporia cocos (mock26) sequences very poorly due to its long ITS2 region of 548 bp

(Fig. 4). Three members of the original 26 members of the BioMock community were

dropped (mock24, mock25, mock26) due to persistent problems getting them to

amplify/sequence in repeated HTAS on the Ion Torrent platform (Fig. S1). While mock26

(W. cocos) was likely difficult to sequence due to its long size, mock24 and mock25

consistently failed to amplify in the equal mixture of plasmids for unknown reasons.

In HTAS experiments, considerable effort is made to try to sequence to an equal depth

for each sample. However, in practice this rarely works perfectly and thus a typical HTAS

dataset has a 2–4� range in number of reads per sample. The depth of sequence range for

the HTAS runs presented here is within a range of 2� for each run and the smallest

number of reads per sample in any of our sequencing runs was nearly 60,000 (Table S5).

Unequal sequencing depth has been used as rationale for explaining the lack of correlation

between read abundance and actual abundance. Therefore, random subsampling of reads

in each sample prior to clustering (also called rarefying) has been widely used in the

literature, despite a compelling statistical argument that this method is flawed (McMurdie

& Holmes, 2014). Randomly subsampling reads for each sample using our BioMock

community yielded nearly identical read abundance biases (Fig. S2). Sequencing depth

has been shown to be an important variable for HTAS experiments (Smith & Peay, 2014),

therefore it has been recommended that a reads per sample cutoff be used with processing

environmental datasets (while each dataset is different and should be tested empirically,

typically we use 5,000–10,000 as a minimum number of reads per sample).

A non-biological synthetic mock community to measure
tag-switching among samples
Tag-switching is a phenomenon that has been described on Roche 454 platform (Carlsen

et al., 2012) as well as Illumina platforms (Kircher, Sawyer & Meyer, 2012; Wright &

Vetsigian, 2016). A consensus on a mechanism of tag-switching during the sequencing

run has yet to be reached. Tag-switching is a significant challenge to overcome as

sample crossover has the potential to over-estimate diversity and lead to inaccurate

representations of microbial communities, especially considering that read abundance is

an unreliable proxy for biological abundance (Fig. 4). Using our BioMock sequencing

results, we also discovered this phenomenon on both Ion Torrent and Illumina platforms.

We calculated the rate of tag-switching in our BioMock Ion Torrent sequencing run to

be 0.033% and on Illumina MiSeq between 0.233% and 0.264%. We also confirmed that

tag-switching was happening on the Illumina flow-cell by re-sequencing a subset of
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Illumina libraries that had shown high tag-switching on the first MiSeq flowcell that did

not contain the BioMock (Fig. S3). One problem that we noticed in measuring tag-

switching using a mock community of actual ITS sequences (BioMock) was that these

same taxa in the mock community could be present in environmental samples, which

would lead to inaccurate estimation of tag-switching. In our environmental data, it

was likely that at least one of the BioMock members was present in several of the

environmental samples, suggesting the calculated tag-switching could be over-estimated.

To overcome this problem, we designed a non-biological SynMock community

composed of ITS-like sequences that contained conserved priming sites (SSU and LSU

regions), ITS1 region, 5.8S region, and an ITS2 region (Fig. 5). We designed the ITS1 and

ITS2 portions of the sequences to be non-biological; that is, no similar sequences are

known to occur in nature (based on searches of known databases and based on the

infinitesimally low probability that a randomly generated sequence would match

something found in nature) and therefore these non-biological sequences can be used to

accurately track tag-switching in HTAS studies. Using the summary statistics from the

analysis of the UNITE reference database for guidance, we also varied the length, GC

content, and homopolymer stretches to be representative of real fungal ITS sequences.
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Figure 5 Schematic drawing of the 12-member non-biological synthetic mock community (SynMock). Conserved priming sites for either ITS1

or ITS2 amplicons are retained for versatility. The length distribution, GC content, and homopolymer stretches are representative of curated public

databases; however, the sequences are non-biological and thus not found in nature. Full-size DOI: 10.7717/peerj.4925/fig-5
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The SynMock was tested as a spike-in control on both the Ion Torrent and Illumina

MiSeq platforms. The raw data were processed using AMPtk and clustered using UPARSE.

These data illustrate that the synthetic sequences are able to be processed simultaneously

with real ITS sequences and provide a way to track the level of tag-switching between

multiplexed samples (Fig. 6). The increased benefit of being able to track the SynMock

sequences as they “bleed” out of the sample allows for a more accurate measurement of

tag-switching. Using default Illumina de-multiplexing (allowing one mismatch in the

index sequence), tag-switching using the SynMock community was 0.057% (Fig. 6C). To

determine if allowing mismatches in the index reads was increasing tag-switching, we

reprocessed the data with 0 mismatches and found that tag-switching was reduced to

0.036%. While tag-switching was reduced by nearly half, the tradeoff was that 0

mismatches resulted in approximately 10% fewer reads. For most datasets, a loss of

10% of the sequencing reads should not be problematic, especially if the benefit is to

reduce sample mis-assignment in the data. We noted that in our Illumina dual-indexing

library prep that there was increased tag-switching on samples that had a shared

reverse index (i7), suggesting that errors are increased at later stages of an Illumina

sequencing run (Fig. 6B). A similar pattern of increased tag-switching correlating with

relaxed primer mismatch settings was observed with Ion Torrent PGM data, although not

as drastic. Allowing one mismatch in the barcode resulted in 0.167% tag-switching while

allowing 0 mismatches in the barcode resulted in 0.156% tag-switching (Fig. 6C). While

these data would suggest that tag-switching is perhaps higher in Ion Torrent PGM

datasets, we have subsequently used the SynMock on more than 10 different HTAS Ion

Torrent PGM experiments and have since seen much lower levels of tag-switching,

occasionally approaching zero.

Many environmental samples can contain hundreds of taxa and thus a legitimate

concern is that the 12-member SynMock community does not represent a realistic

community in terms of diversity in a sample. To test if the SynMock was able to be

recovered in a more complex community, we mixed SynMock together with two

environmental samples that had more than 200 OTUs in previous sequencing runs. These

mixed samples show that SynMock could be recovered from a complex community and

the sequences behave like real ITS sequences (Fig. 6A). While many studies have set a read

count threshold to filter “noisy” data from OTU tables, this threshold has been typically

selected arbitrarily, i.e., OTUs with read counts less than 100 or less than 10% of the total,

etc. Use of the SynMock spike-in control allowed for data-driven thresholds to be

measured and moreover for the ability to filter the OTU table based on the calculated tag-

switching. The AMPtk filter command calculates tag-switching by mapping the OTUs to

the mock community and then provides a way to filter the OTU table based on this

calculated value. AMPtk filters across each OTU in the table such that if a read abundance

value for a particular sample is below the calculated tag-switching threshold it is converted

to zero, and therefore difficult to sequence or “low abundance” OTUs are not

indiscriminately dropped. Taken together, these data illustrate the utility of a non-

biological SynMock community in parameterizing data processing steps and importantly

providing a method in AMPtk to reduce tag-switching from HTAS datasets. AMPtk
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Figure 6 Tag-switching or sample mis-assignment occurs on both Ion Torrent PGM and Illumina Miseq. (A) Read counts from the SynMock

community run on the Ion Torrent PGM platform. SynMock reads can be found in environmental samples and reads from the environmental

samples are found in the SynMock sample. The data were processed allowing zero mismatches in the barcode sequence and there is no clear pattern

to tag-switching on the Ion Torrent PGM platform. (B) Data processed on the Illumina MiSeq (2 � 300) allowing zero mismatches in the

index reads show tag-switching in and out of the SynMock sample. Samples that share an index (i5 or i7) show an increase in tag-switching.

(C) Tag-switching between samples can be tracked using the SynMock spike-in control, where AMPtk will measure both tag-switching into the

SynMock as well as tag-switching into other samples. These calculated values are then used by AMPtk to filter an OTU table to remove read counts

that fall below the tag-switching threshold. Tag-switching is reduced if zero mismatches are allowed in the barcode/index sequence; however, this is

still not sufficient to eliminate tag-switching. Full-size DOI: 10.7717/peerj.4925/fig-6
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provides an easy to use method to accurately process variable length amplicons, cluster

them into OTUs or denoise sequences, generate an OTU table, filter the OTU table for

tag-switching, and assign taxonomy.

DISCUSSION
Many HTAS studies have the goal of measuring and comparing biological diversity in

environmental samples; however, there are technical limitations that need to be

understood in order to reach justifiable conclusions. Mock communities and negative

controls have been shown to have great utility for HTAS studies, and expanding upon this

concept, we present a non-biological SynMock community of ITS-like sequences for use

as a technical spike-in control for fungal biodiversity studies. Additionally, we describe

AMPtk, a software tool kit for analyzing variable length amplicons such as the fungal ITS1

or ITS2 molecular barcodes. These two tools can be coupled together to validate data

processing pipelines and reduce tag-switching from OTU tables prior to downstream

community ecology analyses. The concept of a non-biological synthetic spike-in

control can be expanded to many different genes and organisms, as was recently described

for 16S for microbiome studies (Tourlousse et al., 2017).

The ITS region is widely used as a molecular barcode in fungal biodiversity studies

as it is easy to amplify and public reference databases are robust. However, HTAS

with the ITS region presents some unique challenges due to variability in sequence

characteristics such as length and copy number. Most HTAS software development and

optimization has been focused on the 16S molecular barcode, a region that is near

uniform in length across prokaryotic taxa. Thus, there is a need for a software solution

that can more accurately account for variable length amplicons. We developed a single-

copy mock community based on cloned ITS sequences as a tool to validate and compare

different NGS platforms and data processing pipelines. Using an artificial single-copy

mock community of cloned ITS sequences in plasmids (BioMock), we determined that

the core clustering/denoising algorithms work for variable length amplicons; however,

pre-processing techniques widely used for uniform length amplicons introduce significant

error into the pipelines. Simplifying the pre-processing of sequencing reads (i.e.,

identifying unique sequence barcodes, removing forward/reverse primers, and trimming

reads to a uniform length without data loss) resulted in large improvement in downstream

OTU clustering. The pre-processing of reads prior to quality filtering is critical for variable

length amplicons and is implemented in AMPtk. It should be noted that we originally

developed AMPtk several years ago to address a need in pre-processing HTAS data from

the Ion Torrent platform, more recent versions of USEARCH have taken a similar

approach for pre-processing reads allowing for the ability to pad reads with N’s. However,

there is no documented method to remove reverse primers using USEARCH (v10.0.240).

Proper pre-processing of variable length amplicons improves clustering results

substantially. However, the BioMock results illustrated that read abundances obtained

from HTAS are not a reliable proxy for inferring biological abundance, demonstrating

additional assays such as qPCR or metagenomics are required to capture biological

abundance. Previous studies have tried to correct for relative abundance by normalization
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to rRNA copy numbers in 16S studies with minimal success (Edgar, 2017; Kembel et al.,

2012). However this is not something that is currently feasible for fungal HTAS due to lack

of knowledge in rRNA copy numbers. It has also been suggested that data transformations

(log, square-root, etc) can be used to reduce the effects of abundance bias prior to

downstream ecological analysis (Nguyen et al., 2015). While the data presented here do not

support using read abundance as a proxy for biological abundance in HTAS studies, it does

support use of presence/absence (binary) metrics as we were able to recover all members

of our mock community using AMPtk, even when they were spiked into a diverse

environmental sample. We identified the initial PCR reaction (library construction) as the

major source of read number bias, a conclusion consistent with the literature (Jusino et al.,

2017; Polz & Cavanaugh, 1998; Wu et al., 2010). To reduce PCR artifacts for any assay it is

generally accepted that one should use the fewest cycles possible, avoid samples with

low DNA quantity, and to use a proofreading polymerase (Oliver et al., 2015). We have tested

DNA concentration and PCR cycle numbers for HTAS library generation and subsequent

sequencing on the Ion Torrent PGM platform, and our results were consistent with these

general guidelines (Fig. S1). However, following these guidelines is not sufficient to reduce

the bias in read abundance from a mixed community from PCR. The Ion Torrent PGM

platform currently has an amplicon size limit of ∼450 bp, and thus some very large

ITS sequences are difficult to sequence. However, there are only a small number of

known ITS1 or ITS2 sequences that are longer than 450 bp (Table 1) and therefore either

platform, Ion Torrent or MiSeq, provided similar results under the conditions tested.

Tag-switching has recently been acknowledged by Illumina (https://tinyurl.com/

illumina-hopping), although they limit their acknowledgement to a new flow cell on the

HiSeq and NovaSeq platforms. Several studies have shown that older instruments/flow

cells have also shown tag-switching, albeit at a much lower rate (Kircher, Sawyer & Meyer,

2012; Wright & Vetsigian, 2016) and tag-switching has been identified on Roche 454

(Carlsen et al., 2012). A dual-indexing approach has been suggested to minimize the tag-

switching in datasets (Kozich et al., 2013), however the dual indexing strategy we used in this

manuscript was not sufficient to eliminate tag-switching. Tag-switching was much higher if

samples shared one of the two index sequences (Fig. 6B), suggesting that dual indexing

using unique sequences for every sample should further reduce the effects of tag-switching

on the Illumina platform. Here we report a low rate of tag-switching on both Ion Torrent

and Illumina MiSeq platforms. While the effective rate of tag-switching is low (<0.2%),

coupled with the fact that read number is not a reliable proxy of community abundance,

tag-switching in datasets being analyzed by presence-absence metrics is a problematic

scenario. To identify and combat tag-switching, we created a non-biological SynMock

community (SynMock) of ITS-like sequences that behave like real ITS sequences during the

HTAS workflow. Because the SynMock sequences are not known to occur in nature, they

can be effectively used to measure tag-switching in a sequencing run.

CONCLUSION
We propose that HTAS studies of fungal ITS communities can be improved by employing

SynMock or a similar non-biological community as a technical control. Additional
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controls such as a BioMock or a community of mixed fruiting bodies, spores, hyphae, etc.

of taxa of interest are also useful if the experiment is designed to identify the prevalence of

particular taxa. The bioinformatics pipeline presented here, AMPtk, was developed to

specifically address the quality issues that we have identified by using spike-in mock

communities and to provide the scientific community with a necessary tool to study

fungal community diversity. AMPtk is a flexible solution that can be used to study other

regions used in HTAS, such as mitochondrial cytochrome oxidase 1 (mtCO1) of insects

and the LSU of the rRNA array. The goal of AMPtk is to reduce data processing to a few

simple steps and to improve the output of HTAS studies. Due to the inherent properties of

HTAS and the ITS molecular barcode, we take the position that studies of this nature

should be used as a preliminary survey of taxa present in an ecosystem and that inferring

relative abundance from read numbers should be avoided. To understand relative

abundance of particular taxa in a community, sequence data fromHTAS studies should be

coupled with independent assays such as taxa specific qPCR or digital PCR would allow

for relative abundance determinations. However as DNA sequencing continues to become

more cost effective, relative abundance in fungal community ecology experiments can be

obtained using metagenomics.
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