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A variety of biological networks can bemodeled as logical or Boolean networks. However,

a simplification of the reality to binary states of the nodes does not ease the difficulty

of analyzing the dynamics of large, complex networks, such as signal transduction

networks, due to the exponential dependence of the state space on the number of nodes.

This paper considers a recently introduced method for finding a fairly small subnetwork,

representing a collection of nodes that determine the states of most other nodes with

a reasonable level of entropy. The subnetwork contains the most determinative nodes

that yield the highest information gain. One of the goals of this paper is to propose

an algorithm for finding a suitable subnetwork size. The information gain is quantified

by the so-called determinative power of the nodes, which is obtained via the mutual

information, a concept originating in information theory. We find the most determinative

nodes for 36 network models available in the online database Cell Collective (http://

cellcollective.org). We provide statistical information that indicates a weak correlation

between the subnetwork size and other variables, such as network size, or maximum

and average determinative power of nodes. We observe that the proportion represented

by the subnetwork in comparison to the whole network shows a weak tendency to

decrease for larger networks. The determinative power of nodes is weakly correlated to

the number of outputs of a node, and it appears to be independent of other topological

measures such as closeness or betweenness centrality. Once the subnetwork of the

most determinative nodes is identified, we generate a biological function analysis of its

nodes for some of the 36 networks. The analysis shows that a large fraction of the

most determinative nodes are essential and involved in crucial biological functions. The

biological pathway analysis of the most determinative nodes shows that they are involved

in important disease pathways.

Keywords: Boolean networks, signal transduction network, determinative power, mutual information, simulations,

cell collective, gene essentiality, statistical analysis

1. INTRODUCTION

Boolean networks have gained popularity as models for a variety of real networks where the node
activity can be described by two states, 1 and 0, “ON and OFF”, “active and non-active,” and where
each node is updated based on logical relationships with other nodes (e.g., Albert and Thakar,
2014; Abou-Jaoudé et al., 2016). Applications of such models include signal transduction in cells
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(e.g., Helikar et al., 2008; Conroy et al., 2014; Abou-Jaoudé et al.,
2015; Mendéz and Mendoza, 2016), genetic regulatory networks
as well as other biological processes (e.g., Kauffman, 1993;
Klemm and Bornholdt, 2000; Shmulevich et al., 2002; Albert
and Othmer, 2003; Shmulevich and Kauffman, 2004; Saadatpour
et al., 2013).

However, even such a simplification of reality can pose
challenges in assessing the dynamics of the network due to the
exponential dependence of the state space on the number of
nodes. One way to ease the computational burden is to reduce
the network to a fairly small subset of nodes that can capture
the dynamics of the whole network to a large extent. Some
approaches deal with the elimination of nodes that become
part of an attractor in the long run, and may also consider
removing nodes that are not inputs to any other nodes (Bilke
and Sjunnesson, 2001; Richardson, 2004). One can also consider
merging or collapsing mediator nodes with one input and one
output (Saadatpour et al., 2013). Yet, other approaches consider
eliminating irrelevant nodes that are frozen at the same value on
every attractor, together with nodes whose outputs go only to
irrelevant nodes (Socolar and Kauffman, 2003; Kaufman et al.,
2005; Kaufman and Drossel, 2006). In Veliz-Cuba (2011) the
author uses a “steady-state approximation” by replacing variables
in the Boolean functions governing the nodes’ dynamics with
their own Boolean expressions, thus reducing the network to a
much smaller size that can be used to infer properties about the
original network and to gain a better understanding of the role
of network topology on the dynamics. In Naldi et al. (2009b)
the authors introduce a general method for eliminating nodes
sequentially by directly connecting the inputs of a removed node
to its output nodes in a manner similar to Veliz-Cuba (2011). Of
course, one needs to pay attention and possibly keep nodes that
are or may become self-inputs upon elimination of other nodes.
The order in which nodes are removed is also important. It is
shown that stable states are preserved. In general, attractors may
not be preserved. However, the method presented in Saadatpour
et al. (2013) is shown to preserve attractors as well.

We consider a recently proposed method for identifying
the most powerful nodes in a Boolean network (Heckel et al.,
2013; Matache and Matache, 2016). This is done by finding
the nodes with the highest determinative power. For a given
node, the determinative power is obtained via a summation
of all mutual information quantities over all nodes having the
given node as a common input. The more powerful the node,
the more the information gain provided by the knowledge
of its state. The mutual information, as a basic concept in
information theory, allows one to represent the reduction of
the uncertainty or entropy of the state of a node due to the
knowledge of any of its inputs. The entropy has been used
in the literature to find the average mutual information of
a random Boolean model of regulatory network as a way to
quantify the efficiency of information propagation through the
entire network (Ribeiro et al., 2008). On the other hand, the
entropy of the relevant components of the network, which are
comprised of nodes that eventually influence each other’s state,
has been used as a measure of uncertainty of the future behavior
of a random state of the network (Krawitz and Shmulevich,
2007a,b).

In Heckel et al. (2013) it is shown that the knowledge of
the states of the most determinative nodes in the feedforward
regulatory network of E. coli reduces the uncertainty of the
overall network significantly. Similar results are observed in
Matache and Matache (2016) for a model of general cell signal
transduction. It is our goal to explore other models of biological
processes obtained from the Cell Collective (http://cellcollective.
org), to identify any similarities or differences with respect to
previous observations, and to possibly identify any correlations
with other network variables or trends in the observed network
data. At the same time, we show that the majority of nodes
with the most determinative power are essential. Cell Collective
provides a variety of gene networks. Essential genes are those
genes of an organism that are thought to be critical for its survival
and are involved in crucial biological functions.

In section 2, we provide the basic mathematical framework
and definitions. We present the algorithm for finding a suitable
subnetwork size in section 3. In section 4 we describe the
networks under consideration and we provide the results of our
simulations paired with a statistical analysis of the data. Then
we focus on the analysis of the biological relevance of the most
determinative nodes. We provide a discussion of the results in
section 5. Conclusions and further directions of research are in
section 6.

2. DETERMINATIVE POWER

In this section, we provide the main concepts leading to the
determinative power of nodes in a Boolean network.

DEFINITION 1. Let �n = {0, 1}n. A Boolean network (BN) is
modelled as a set [n] : = {1, 2, . . . , n} of n nodes, each node being
ON (in state 1) or OFF (in state 0). Then any ω ∈ �n is a possible
state of the network. Each node i ∈ [n] has an associated Boolean
function fi : �

n → � that governs the dynamics of the node.

We are usually interested in how the network evolves by
iterating the map F = (f1, f2, . . . , fn) a large number of times.

In this paper, a subnetwork refers to a subset of nodes
of the network. One recent approach for finding subnetworks
whose nodes determine the states of most other nodes with
a reasonable level of entropy focused on the nodes with the
most determinative power (DP) (Heckel et al., 2013; Matache
and Matache, 2016). The DP is obtained via concepts from
information theory. We recall the main definitions and concepts
from Cover and Thomas (2006) and Heckel et al. (2013). These
include the notion of entropy of random variables, which is a
measure of uncertainty, and the mutual information, which is
a measure of dependence between two random variables and is
defined in terms of the entropy.

DEFINITION 2. Let X and Y be discrete random variables. The
(Shannon) entropy of X is defined as

H(X) = −
∑

x

px log2 px = −E[log2 P(X)]

where x are the values of the random variable X, px = P(X = x),
and E[log2 P(X)] is the expected value of the random variable
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log2 P(X). In binary this reduces to the function

h(p) = −p log2(p)− (1− p) log2(1− p),
p = P(X = 1), h(0) = h(1) = 0.

The conditional entropy of Y conditional on the knowledge of X is

H(Y|X) = −E[log2 P(Y|X)].

The mutual information (MI) is the reduction of uncertainty of the
random variable Y due to the knowledge of X. That is

MI(Y;X) = H(Y)−H(Y|X).

In principle, the mutual information is a measure of the
“gain of information,” or the determinative power (DP) of X
over Y . The authors of Heckel et al. (2013) use the MI to
construct the DP of a node j over the states of a Boolean network,
namely

DP(j) =

n
∑

i=1

MI(fi(X);Xj) (1)

which represents a summation of all “information gains”
obtained from node j over its outputs (i.e., nodes i that have j as
an input). Here, the states of the nodes are labeled X1,X2, . . . ,Xn,
and X = (X1,X2, . . . ,Xn) represents the state of the network.
The notation fi(X) represents the random variable that describes
the dynamical rule of node i. Not all variables X1,X2, . . . ,Xn

are relevant for the computation of fi(X) since the actual
number of inputs may differ from one node to another. The
authors identify the nodes with the largest determinative power
in a feedforward E. coli network, with the goal of finding a
subnetwork whose knowledge can provide sufficient information
about the entire network; in other words the entropy of the
network conditional on the knowledge of that subnetwork is
small enough. They show that in the E. coli network, one could
consider a subnetwork consisting of less than half of the nodes,
and that for larger subnetworks, the entropy does not improve
significantly once an approximate (threshold) subnetwork size
is reached. Similar results have been found in Matache and
Matache (2016) for a signal transduction model in fibroblast
cells, paired with a mathematical generalization of some of the
results in Heckel et al. (2013) under more relaxed assumptions.
Our goal is to use a similar approach for other networks to
identify if this type of behavior is typical or not. In the next
section, we describe the networks under consideration and then
we present the algorithm for finding a suitable subnetwork
size. However, before we do that, let us provide an example
illustrating the computation of DP according to formula (1).
The mutual information terms in (1) are obtained using a
formula derived in Matache and Matache (2016). We combine
Theorem 1 and Proposition 4 of Matache and Matache (2016) in
a suitable way to provide a brief explanation of how the formula is
obtained.

The mutual information formulaMI(fi(X);Xj) can be written
as

MI(fi(X);Xj)

= h





∑

x∈supp fi

px



 − P(Xj = 1)h





∑

x∈supp fi

P(X = x|Xj = 1)





−P(Xj = 0)h





∑

x∈supp fi

P(X = x|Xj = 0)



 (2)

where supp fi = {x : fi(x) = 1} is the support of the function fi,
and P(X = x|Xj = xj) is the conditional probability of X = x
given Xj = xj.

The formula follows directly from the definition of the mutual
information

MI(fi(X);Xj) = H(fi(X))−H(fi(X)|Xj). (3)

Observe that

H(fi(X)) = h(P(fi(X) = 1))

= h(E[fi(X)])

= h





∑

x∈{0,1}n

fi(x)px



 = h





∑

x∈supp fi

px



 (4)

where we use the known fact that for a (Bernoulli) random
variable B with values 0 and 1, we have that P(B = 1) = E[B].
Similarly,

H(fi(X)|Xj) =
∑

xj∈{0,1}

P(Xj = xj)H(fi(X)|Xj = xj)

=
∑

xj∈{0,1}

P(Xj = xj)h
(

P(fi(X) = 1|Xj = xj)
)

.

On the other hand,

P(fi(X) = 1|Xj = xj) = E[fi(X)|Xj = xj]

=
∑

x∈{0,1}n

fi(x)P(X = x|Xj = xj)

=
∑

x∈supp fi

P(X = x|Xj = xj).

This implies

H(fi(X)|Xj) =
∑

xj∈{0,1}

P(Xj = xj)h





∑

x∈supp fi

P(X = x|Xj = xj)





= P(Xj = 1)h





∑

x∈supp fi

P(X = x|Xj = 1)





+P(Xj = 0)h





∑

x∈supp fi

P(X = x|Xj = 0)



 . (5)
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Replacing formulas (4) and (5) in (3) we obtain formula (2)
which we use in the next example.

EXAMPLE 1. Consider the 4-node network with states X =

(X1,X2,X3,X4). For simplicity we assume that X is a uniform
random variable that assigns equal probabilities to all x. Therefore,
P(Xi = 1) = P(Xi = 0) = 1/2 for i = 1, 2, 3, 4. Define the
Boolean rules as follows:

f1(x2, x3, x4) = x2 ∧ x3 ∧ (1− x4);
f2(x1, x2, x3) = x1 ∧ (x2 ∨ x3); f3(x1, x2) = x1 ∨ x2.

Observe that the actual inputs differ from one node to the other,
and that X4 can be regarded as an external input with one single
output X1, and does not have a Boolean update rule f4. We can see
that

supp f1 = {(1, 1, 0)}; supp f2 = {(1, 0, 1), (1, 1, 0), (1, 1, 1)};
supp f3 = {(0, 1), (1, 0), (1, 1)}.

We obtain the following.

Formula (1) DP(i)

DP(1) = MI(f2(X);X1)+MI(f3(X);X1) DP(1) = 0.8601

DP(2) = MI(f1(X);X2)+MI(f2(X);X2)+MI(f3(X);X2) DP(2) = 0.6714

DP(3) = MI(f1(X);X3)+MI(f2(X);X3) DP(3) = 0.3601

DP(4) = MI(f1(X);X4) DP(4) = 0.1379

For example, to find MI(f2(X);X1), we note that
∑

x∈supp f2
px =

3/8. Since all elements of supp f2 have X1 = 1, it follows that

∑

x∈supp f2

P(X = x|X1 = 0) = 0

and

∑

x∈supp f2

P(X = x|X1 = 1) =
∑

x∈supp f2

P(X = x,X1 = 1)

P(X1 = 1)

=
P(1, 0, 1)

1/2
+

P(1, 1, 0)

1/2
+

P(1, 1, 1)

1/2

=
1/8

1/2
+

1/8

1/2
+

1/8

1/2
=

3/8

1/2
= 3/4

due to the assumption of a uniform distribution of the inputs.
Then MI(f2(X);X1) = h(3/8) − 1

2h(3/4) = 0.5488. Similarly,

MI(f3(X);X1) = h(3/4) − 1
2 (h(1) + h(1/2)) = 0.3113. Thus,

DP(1) = 0.8601 and the other DP values are obtained the same
way and are included in the last column of the table above. Thus,
node 1 is the most determinative in this network, followed by nodes
2, 3, and 4 in that order. This example points out that nodes
with most outputs need not be the most determinative due to the
Boolean function governing the node dynamics. At the same time,
nodes that have the same number of outputs can lead to very
different DP values.

In the numerical results to be presented in this paper, we use
the assumption of ergodicity, meaning that all input states are

equally likely. Although this may not be a perfect reflection of
reality, it is a most common approach in studying the dynamics
of Boolean models for biological networks. For example, this
assumption is used in Heckel et al. (2013), the paper that
introduces the DP concept for identifying the most powerful
nodes in a Boolean network. In Heckel et al. (2013) it is shown
that the knowledge of the states of the most determinative
nodes in the feedforward regulatory network of E. coli reduces
the uncertainty of the overall network significantly. However,
further study of non-ergodic scenarios may provide new
insights.

3. SUBNETWORK SIZE

Let us briefly describe the types of networks that will be used
in simulations and for which statistical data are collected and
analyzed.

The networks are obtained from Cell Collective (CC,
www.cellcollective.org, Helikar et al., 2012, 2013), an interactive
platform for building and simulating logical models. The
database contains over 60 peer-reviewed published models of
biological networks and processes. The networks are of many
sizes and represent a variety of different biological processing
across a number of different organisms [e.g., yeast (Irons, 2009;
Todd and Helikar, 2012), flies (Marques-Pita and Rocha, 2013),
humans (Conroy et al., 2014; Mendéz and Mendoza, 2016)].
Models can be simulated and analyzed directly in Cell Collective,
or downloaded (as SBML or truth table files) for additional
analyses in other tools. In our simulations, truth tables for a
collection of networks from Cell Collective are formatted and
used in a Matlab program to find the DP and subnetwork size
using the above equations.

Next, we provide the actual algorithm used in conjunction
with the DP of nodes to find a suitable size for the subnetwork
consisting of the most determinative nodes.

Once each DP(j) is computed for j = 1, 2, . . . , n, we can
sort them to identify the nodes with highest DP values. We
provide an example in Figure 1 (top) where we show the DP
values in ascending order for a T-cell Receptor Signaling network
(Saez-Rodriguez et al., 2007, https://cellcollective.org/#2171/t-
cell-receptor-signaling) with 94 nodes (blue curve). We also
plot the maximum possible DP values (with dotted red line)
given by the total number of outputs of each node, to have
an understanding of how the DP compares to this maximum.
Observe that if all mutual information terms would take on their
maximum possible value of 1, then the DP would be the number
of outputs of the node under consideration. By plotting both
the DP values and the maximum possible, we can assess the
“efficiency” of the node in generating the information gain in the
network.

Once the DP values are sorted, we can compute the overall
network entropy generated by subnetworks chosen based on top
DP values of nodes. For large networks this can become a difficult
task. Therefore, following the work of Heckel et al. (2013), we
simplify the computations by considering an upper bound for
the entropy. If we consider the collection Sl of the top l most
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FIGURE 1 | (Top) Sorted DP values (blue curve) for the nodes of a T-cell Receptor Signaling of size n = 94. The maximum possible values for DP, that is, the number

of outputs of each node, are plotted with a red dotted curve for comparison. Notice that most nodes do not reach their maximum possible DP, and that the average

DP of 0.57481 is small in comparison to the maximum DP value of 5. Thus, most nodes have a rather small DP. (Bottom Left) A(l) vs. l. Observe that the curve has an

initial drop for the nodes with the largest DP values, after which the rate of convergence to a positive value is reduced as l increases. This indicates that once a

threshold value of l is reached, the entropy does not decrease significantly anymore. Also, the value of A(l) for l = 1 is more than 4 times larger than the final value for

l = 94. (Bottom Right) B(l) and MAd (l) vs. l. We also plot a horizontal line indicating the chosen threshold T for the size of the subnetwork. The bold vertical line

segment indicates the subnetwork size. For this particular network, the subnetwork size is less than half of the network size.

determinative nodes, then we can compute

H(X|XSl ) ≤

n
∑

i=1

H(Xi|XSl ), for l = 1, 2, 3, . . . , n (6)

where XSl is the random variable whose values are the states of
the nodes in Sl. In Figure 1 (bottom left), we plot the values of the
larger quantity in (6), namely A(l) =

∑n
i=1H(Xi|XSl ) which is an

upper bound for the entropy of the network given the top l nodes.
Observe that for this case, subnetworks of sizes 40–50 or more
(with approximation) do not yield a significant improvement
of the entropy. Thus it suffices to consider less than half of
the original network to be able to predict the overall network
behavior with fairly low uncertainty/entropy levels. Observe also
that the entropy converges to a positive value as the subnetwork
size approaches the network size. This is due to the inherent
uncertainty in the network based on its topology and dynamical
rules.

In order to identify a precise cutoff for the subnetwork size,
we follow the algorithm described next. This algorithm identifies
the cutoff observed in Figure 1 (bottom right; thick vertical line
segment).

(I) Start with the sequence {A(l), l = 1, 2, . . . , n}.
(II) Construct the associated sequence of distances between

consecutive terms of this sequence. That is, construct the
sequence {B(l) = |A(l+ 1)− A(l)|, l = 1, 2, . . . , n− 1}.

(III) Smooth out the sequence by applying a moving average
procedure of order d, which, in our simulations it is set to
0.1(n − 1) (rounded up). That is, we consider the averages
over d consecutive terms of the sequence. Namely, for u =

1, 2, . . . , (n−1)−(d−1), in other words for u = 1, 2, . . . , n−
d, the moving average is given by

1

d

u+d−1
∑

j=l

B(j). (7)

The first and last elements of the sequence are repeated as
necessary so that the final sequence of moving averages has
the same length at the original sequence to be averaged. For
a given d we label the sequence of moving averages MAd =

{MAd(l), l = 1, 2, . . . , n − 1} including all terms of formula
(7) with the necessary repetitions of the first and last elements
to obtain a total of n− 1 terms. An even d value generates an
odd number of repeated elements, which leads to one extra
repetition of the last element as opposed to the repetitions of
the first element (see MA4 in the example below).

For instance, if the input sequence of B(l) values is
{10, 9, 8, 7, 6, 5, 4, 3, 2, 1} then some sample {MAd} sequences
are

MA3 = {9, 9, 8, 7, 6, 5, 4, 3, 2, 2}

MA4 = {8.5, 8.5, 7.5, 6.5, 5.5, 4.5, 3.5, 2.5, 2.5, 2.5}

MA5 = {8, 8, 8, 7, 6, 5, 4, 3, 3, 3}.
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FIGURE 2 | Surface plot for L vs. a grid of values of d and T. The black dot represents the point L,d = 0.1(n− 1),T = 1
4 max(MAd ) for the T-cell Receptor Signaling

model with L = 40, and for the Cholesterol Regulatory Pathway model with L = 22.

For example, to clarify even further, in the case of MA3 and
u = 1, formula (3) generates 1/3(B(1) + B(2) + B(3)) =

9. However, since n − d = 10 − 2 = 8 we repeat the
first and last terms of the sequence given by (3), so that
MA3(1) = MA3(2) = 9. Similarly, MA3(9) = MA3(10) =
1/3(B(8)+ B(9)+ B(10)) = 2.

(IV) Set T, the threshold for finding the size of the subnetwork.
In simulations we use T = 1

4 max(MAd). More precisely,
starting with l = 1, we increase l by one unit until we reach
a value L for which the following conditions are satisfied

MAd(L) ≤ T and
1

d

min(L+d−1,n−1)
∑

j=L

MAd(j) ≤ T. (8)

That is, the values of the MAd sequence drop below the
threshold T and the average variance of the next d values of
MAd is also less than the threshold T.

(V) The subnetwork consists of the nodes with the L highest DP
values.

The results are dependent on how one sets the parameters d
and T. The larger the d value, the smoother the MAd sequence,
and thus the conditions (8) tend to be satisfied for smaller values
of l. The same happens if T is sufficiently large. On the other
hand, larger moving average order d means losing some of the
intrinsic variation of data. Therefore, we need to be aware of the
tradeoff between accuracy and details of the data, as is customary
in network modeling and simulation.

In Figure 1 (bottom right), this algorithm with d = 0.1(n− 1)
and T = 1

4 max(MAd) generates a minimal subnetwork size
of 40 nodes with the largest DP. This is less than half of the

network size. We notice that the threshold T is approximately
1
4 max(MAd) =

1
4 · 2.8 = 0.7.

To see how the two parameters d and T affect the size L of
the subnetwork, we compute L for a grid of values of d and T for
two networks that will be used as examples in the next section
too. Two sample surfaces are shown in Figure 2. The black dot
indicates the actual L value obtained with this procedure for d =

0.1(n − 1) and T = 1
4 max(MAd) considered in the simulations.

As expected, the values of L increase with an increase of the
two parameters, and the surfaces are similar in shape with mild
variations.The choice of d = 0.1(n − 1) used in simulations
generates subnetworks that do not surpass 60% of the network
size with approximation. We will see that this is sufficient to
identify a good fraction of biologically important nodes in several
networks from the Cell Collective (Helikar et al., 2012, 2013).

We explore other networks in the next section, however, we
will provide graphs related to the networks considered so far and
add one more network of small size.

4. NUMERICAL RESULTS AND ANALYSIS

4.1. Simulations and Statistical Analysis
We apply the procedure explained in the previous section to a
number of networks available in Cell Collective (Helikar et al.,
2012, 2013). We summarize the results below and supplement
with suitably chosen graphs. For each network shown in graphs,
we plot the sorted DP values for all nodes, the upper bound
for the entropy, A(l) vs. l, and the elements of the algorithm
for finding the subnetwork size, namely B(l) and MAd(l) vs. l
with a horizontal line at the threshold value T that indicates the
subnetwork size.

The graphs of A(l) consist of a curve that decreases to zero
or a value that stabilizes for large values of l in most cases. A
typical example is the one considered in the previous section for
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FIGURE 3 | Analog of Figure 1 for the Oxidative Stress Pathway network with n = 18. The average DP is larger than for the T-cell Receptor Signaling network, which

can be expected in a smaller network where nodes may incorporate more information to be used in the network. The maximum DP is smaller though. Observe that

here, A(l) decreases to a value close to zero along a non-linear curve. The subnetwork size is a third of the network size, so it is smaller as a fraction of the network in

comparison to the T-cell Receptor Signaling network where the subnetwork is about 42% of the network size.

the T-cell Receptor Signaling network in Figure 1. This behavior
is very similar to the results obtained in Heckel et al. (2013),
the paper that inspired this work, for a feedforward regulatory
network in E. coli. Notice that A(l) stabilizes at a positive value
for large l and does not converge to zero. In general, since A(l) is
an upper bound for the entropy as seen in inequality (6), it may
not approach zero. On the other hand, the entropy itself is the
expected value of a random variable as indicated in Definition 2,
and therefore it may be non-zero.

A couple of variations are shown as well. In Figure 3 we
consider a small Oxidative Stress Pathway network with 18
nodes (Sridharan et al., 2012, https://cellcollective.org/#3512/
oxidative-stress-pathway). The subnetwork size is a third of
the network size. In Figure 4 we show similar graphs for a
medium sized Cholesterol Regulatory Pathway network with 34
nodes (Kervizic and Corcos, 2008, https://cellcollective.org/#
2172/cholesterol-regulatory-pathway). In this case, the upper
bound A(l) approaches zero rather slowly at an almost linear
rate, therefore the subnetwork size is larger when compared
to the whole network, namely about 65% of the entire
network.

Next, we summarize the data obtained from a total
of 36 networks and generate some statistical information.
Four networks are significantly larger than the others: signal
transduction in fibroblast cells with 130 nodes, interleukin-1
signaling with 103 nodes, signal transduction in a macrophage
with 302 nodes, and T-cell receptor signaling with 94 nodes.
We consider them “outliers” and explore some statistics on the
remaining 32 networks to avoid skewed results. We hope to be
able to expand the list of large networks in the future and include
them in the analysis.

We provide boxplots for seven numerical characteristics
obtained from the network data: network size n, subnetwork size
L, maximum DP values, average DP values, ratio L/n, number
of links or edges in the network, E, given by the total number
of inputs or outputs for all nodes, and E/n2 as the ratio between
the edges and total number of possible edges, taking into account
that self-inputs are allowed. The results are shown in Figure 5.
We choose to separate them due to the different ranges of values.
Observe that most subnetwork sizes are fairly small even for
larger networks or more edges, so the subnetwork sizes may
not increase with the network size or the number of edges. The
number of nodes and the number of edges have similar boxplots.
The maximum DP can be fairly large; however it is not clear yet
if this fact is related to the network size, or the number of edges.
Wewill explore the idea in what follows. Finally, the averageDP is
rather small for all networks, regardless of their sizes. Also, most
of the ratios L/n of the subnetwork size vs. the network size are
less than 60%.

We also explore the dependencies between the numerical
characteristics considered in Figure 5, by generating a number
of scatter plots with corresponding fitted regression lines. In
particular, we want to see if there are correlations between L, L/n
or the maximum DP and average DP vs. the network parameters
n,E,E/n2. We find that there is no evidence of strong correlations
between the variables, except for L vs. n,E and maximum
DP vs. n,E. The scatter plots are shown in Figure 6 and the
corresponding fitted lines and coefficients of determination R2

are listed in Table 1. Note that there is no strong linear (or non-
linear) relationship; however we note the increasing trend in both
subnetwork size L and maximum DP with increased n and E. On
the other hand we see that the average DP does not depend on the
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FIGURE 4 | The Cholesterol Regulatory Pathway network consists of n = 34 nodes. The maximum and average DP are comparable to the Oxidative Stress Pathway

network. The upper bound A(l) for the Cholesterol Regulatory Pathway network has an almost linear decrease to zero. Therefore, the subnetwork size of 22 is larger

than in previous cases in comparison to the network size, representing about 65% of the network.

FIGURE 5 | Boxplots for the network size n, subnetwork size L, maximum DP, average DP, ratio L/n, number of edges E, and the ratio E/n2. They are grouped based

on similar magnitudes. The boxplots for n and E are very similar. It appears that most subnetwork sizes are fairly small even for larger n or E values, so the subnetwork

sizes may not increase with the network size or the number of edges. The maximum DP seems to be fairly large. The average DP is rather small for all networks

regardless of their sizes. The boxplot for L/n indicates that most subnetworks represent less than 60% of the original network. The number of edges E is small in

comparison to the total number of possible edges in the network due to small values of the quantity E/n2 ∈ [0, 0.13]. This suggests that these networks do not have

too many links.

parameters and that the ratio L/n decreases with increased n,E,
which supports the observations from the boxplots.

Thus, the given data do not suggest a specific strong
relationship between the numerical characteristics; however they
allow us to observe trends and support some of the previous
observations in the boxplots. Our samples are quite small, so

it would be useful to continue adding new networks to the
collection considered in this paper, to overcome the possible
inaccuracies due to small sample size. The change of parameters
in the network size algorithm leads to a fairly similar change in
the subnetwork size for different networks as seen in Figure 2,
suggesting a correlation between the choice of parameters and
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FIGURE 6 | Scatter plots and fitted lines for the identification of possible correlations between L, L/n, Max(DP), Avg(DP), and the parameters n,E,E/n2. The

equations for the fitted lines are listed in Table 1. There are no observable strong correlations and this is confirmed by the coefficients of determination in Table 1.

Weak correlations are noticed for the increasing subnetwork size L as a function of n or E, and the increasing Max(DP) as a function of the same two parameters n

and E. We also notice the decreasing trend of the ratio L/n with increased network size n or number of edges E, which suppports our observations from the boxplots.

TABLE 1 | Fitted lines and coefficients of determination R2 corresponding to the scatter plots of Figure 6.

x

y
L L/n Max(DP) Avg(DP)

n y = 4.167+ 0.3187x y = 0.6057− 0.0037x y = 0.176+ 0.1088x y = 0.5906+ 0.0009x

R2 = 51.1% R2 = 11.9% R2 = 66.2% R2 = 0.5%

E y = 4.638+ 0.2985x y = 0.5622− 0.002x y = 0.6277+ 0.0912x y = 0.5493+ 0.0024x

R2 = 56.9% R2 = 4.7% R2 = 59.1% R2 = 4.8%

E/n2 y = 18.24− 115x y = 0.3961+ 2.315x y = 4.697− 33.29x y = 0.5616+ 1.118x

R2 = 23% R2 = 16.1% R2 = 21.4% R2 = 2.8%

The coefficients are generally small, the maximum values being observed for L vs. n,E and for Max(DP) vs. n,E. However, the maximum coefficient is only 66.2%, which suggests weak

correlations at best.

the subnetwork size L. We expect that other possible variables or
attributes that are intrinsic to the actual topology or dynamics
of networks may have a stronger correlation with the DP values.
Some of these attributes are connectivity (in-degree), number
of outputs (out-degree), path length and other topological
measures, canalizing depth, ratio of canalizing functions, or
average bias of outputs (Albert and Barabasi, 2002; Kochi et al.,
2014; Wohlgemuth and Matache, 2014). We plan on exploring
them in great detail in future research to shed more light on
possible relationships with the variables in Figures 5, 6.

The observed general low DP values is what we expect in an
equilibrium situation. It has been shown that the correlations

between nodes become high only when facing a transition
(Gorban et al., 2010; Censi and Calcagnini, 2011; Mojtahedi et
al., 2016). It is possible that the simple node level hierarchy
coming from mutual information might benefit from a study
of at least some complex graph analysis descriptors such as
in-degree, out-degree, betweenness and closeness centrality of
the nodes that keep track of the role played by the nodes
in the system they are embedded into (Csermely et al., 2005;
Kovacs et al., 2010). In the next section we complement
our analysis with a brief graph-theoretical perspective that
is relevant in signaling networks (Di Paola and Giuliani,
2015).
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4.2. Determinative Power and Topological
Attributes
We will focus on some topological attributes or measures
associated with the nodes of a BN that may provide more
information on the magnitude of the DP values. Given a BN,
[n] : = {1, 2, . . . , n}, and an arbitrary node j ∈ [n], we consider
the connectivity or the number kj of inputs of the node j (the in-
degree), the number oj of outputs of the node j (the out-degree),
together with several measures of centrality of node j as defined
below.

DEFINITION 3. A sequence of distinct nodes P(i1, im) =

{i1, i2, . . . im} of a BN with the property that ik is an input to ik+1

for any k = 1, 2, . . . ,m − 1, is called a path of length m − 1 from
the source node i1 to the destination node im. Thus, the distance
between the two nodes along this path is d(i1, im) = m− 1.

There could be multiple paths between two nodes, possibly
with the same length. We are interested in the shortest path
length between nodes. Observe that the shortest path length may
differ if we switch the source and the destination nodes, so we
may have d(i1, im) 6= d(im, i1). On the other hand, if there is no
path from node i to node j then d(i, j) = 0.

For a given node i ∈ [n], let us consider the following
quantities. We use the notation |A| to denote the cardinality of
the set A, in other words the number of elements in that set. Let

Ain(i) = |{j ∈ [n] : j 6= i and there exists a path P(j, i)}|,

Fin(i) =
∑

j 6=i

d(j, i),

Aout(i) = |{j ∈ [n] : j 6= i and there exists a path P(i, j)}|,

Fout(i) =
∑

j 6=i

d(i, j).

If Ain(i) = 0 then Fin(i) = 0, and similarly, if Aout(i) = 0
then Fout(i) = 0. The quantities Fin(i), Fout(i) could be regarded
as measures of the farness of node i from the other nodes in
the network. The reciprocal of farness is a measure of closeness.
If we multiply the closeness by the fraction of the sources or
destinations of node i we obtain the following definitions of
closeness centrality.

DEFINITION 4. The in-closeness centrality of node i ∈ [n] is the
quantity

Cin(i) =

(

Ain(i)

N − 1

)2 1

Fin(i)
, if Ain(i) 6= 0,

and Cin(i) = 0 otherwise.
Similarly, the out-closeness centrality of node i ∈ [n] is the

quantity

Cout(i) =

(

Aout(i)

N − 1

)2 1

Fout(i)
, if Aout(i) 6= 0,

and Cout(i) = 0 otherwise.

A second measure of centrality is the betweenness centrality,
which measures how often each node appears on a shortest path
between two nodes in the network. Given three distinct nodes
i, j, k, letNjk be the total number of shortest paths from j to k, and
Njk(i) the number of those paths that pass through node i.

DEFINITION 5. The betweenness centrality of node i ∈ [n] is the
quantity

BC(i) =
∑

j,k 6=i

Njk(i)

Njk
.

The summation is over all nodes j, k for which Njk 6= 0, meaning
there exists at least a path between them.

We compute the topological attributes of nodes for the
individual networks considered in previous figures, namely theT-
cell Receptor Signaling, the Oxidative Stress Pathway, and the
Cholesterol Regulatory Pathway. However, we are also adding
one of the outlier networks, namely the signal transduction in
fibroblast cells network with 130 nodes. The Fibroblast Signaling
network has been investigated before in various publications
(Kochi and Matache, 2012; Kochi et al., 2014; Matache and
Matache, 2016; Puniya et al., 2016).

In Figure 7 we provide network visualizations for each
of the node attributes described in this section for the
Fibroblast Signaling network. They are presented in the following
order: DP, betweenness centrality, in-closeness centrality, out-
closeness centrality, in-degree, and out-degree. The node color
is proportional to the magnitude of these measures: dark colors
for low values and light colors for large values. This type
of visualization offers an overall view of the network’s most
central nodes, as well the nodes with most connections, or
the nodes with highest DP values, thus identifying, to some
extent, the role played by the nodes in the network they are
embedded into. Similar graphs are shown in Figure 8 for the
T-cell Receptor Signaling network, in Figure 9 for the Oxidative
Stress Pathway network, and in Figure 10 for the Cholesterol
Regulatory Pathway.

We note that, aside from some similarities between theDP and
the out-degree graphs which are expected given the definition
of the DP as a summation of mutual information terms over all
outputs of a given node, there is no other significant correlation.
This is confirmed by a statistical analysis of the topological data.
We include scatter plots with corresponding fitted regression
lines for the DP as a function of the out-degree in Figure 11,
together with the corresponding coefficients of determination
R2. The plots indicate that there might be nodes with high DP
and fewer outputs, and also nodes with low DP and a larger
number of outputs. In section 4.3 we relate this fact to the
biological relevance of the nodes with large DP values. We
provide simple scatter plots for DP as a function of the other
topological measures indicating only the ranges of values of R2

in Figures 12–15. The coefficient of variation is quite small in
most cases. The largest values correspond to the DP vs. out-
closeness and betweenness centrality of the smallest network, the
Oxidative Stress Pathway network. However, even these values
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FIGURE 7 | Fibroblast Signaling network: visualization of node attributes.

FIGURE 8 | T-cell Receptor Signaling network: visualization of node attributes.

are around 50%. We also conclude that for the four networks
under consideration theDP is not correlated with any of the other
topological measures.

Thus, further analyses need to be pursued, including other
topological aspects in conjunction with various dynamical
measures. For example, it has been shown that the location of
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FIGURE 9 | Oxidative Stress Pathway network: visualization of node attributes.

FIGURE 10 | Cholesterol Regulatory Pathway network: visualization of node attributes.

nodes in the network may be crucial for identifying enzymes
whose elimination may have lethal effects in certain metabolic
networks (Palumbo et al., 2005, 2007). In that case themetabolites

are considered the nodes of the network, whereas the enzymes are
the links between nodes. Therefore, it may be of further interest
to explore other node location measures.
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FIGURE 11 | The scatter plots suggest some correlation between the DP values and the number of outputs. However, we can observe that there might be situations

where a large DP does not correspond to a large number of outputs. There can also be situations where the DP is small even though the node has more outputs.

FIGURE 12 | Simple scatter plots for DP vs. in-degree. R2 ∈ [0%, 7.3%].

4.3. Biological Relevance of the Most
Determinative Nodes
Aside from providing a method for finding a subnetwork
with a fairly low impact on the overall entropy of the

system, the DP method identifies biologically significant
nodes among the top DP values. To support this
statement we analyze biological relevance of the top DP
nodes.
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FIGURE 13 | Simple scatter plots for DP vs. in-closeness centrality. R2 ∈ [0%, 1.3%].

FIGURE 14 | Simple scatter plots for DP vs. out-closeness centrality. R2 ∈ [5.7%, 48%], where 48% corresponds to the Oxidative Stress Pathway network.

We focus on the particular networks shown in the figures
so far, namely Fibroblast Signaling, T-cell Receptor Signaling,
Oxidative Stress Pathway, Cholesterol Regulatory Pathway. These
are all intercellular networks found in many different organisms.

We are interested in the biological relationship between high
DP and the nodes’ biological importance in the cell. In our
analysis, we provide most information on the larger networks
from among these four, namely Fibroblast Signaling and T-cell
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FIGURE 15 | Simple scatter plots for the DP vs. betweenness centrality. R2 ∈ [6.5%, 52%], where 52% corresponds to the Oxidative Stress Pathway network.

Receptor Signaling, and a shorter summary for the other two
networks.

We start with a few notes on Fibroblast Signaling. To
investigate in more detail whether nodes with high DP values are
influential, we compare these nodes with the 32 most influential
nodes identified under different environmental conditions in a
previously published study by Puniya et al. (2016). We compare
these most influential nodes with the top 10, 20, 30, 40, 50, and
60 nodes having high DP values in our analysis. We obtain an
overlap of 70%, 65%, 50%, 47%, 38%, and 33%, respectively.
Among the top 20 nodes having high DP values, 13 were
previously identified as the most influential. Among the top 10,
we find only one node which was previously identified as less
influential. Similarly, in the top 20, 30, 40, 50, and 60 nodes,
the distribution of the previously identified less influential nodes
are 2, 3, 4, 8, and 13 respectively. This comparison suggests that
the majority of nodes having high DP values (> 65% in the
top 20) are also identified as most influential when perturbed
under different environmental conditions by Puniya et al. (2016).
Therefore, these nodes may be involved in crucial biological
functions.

Furthermore, we perform functional analyses of these nodes
having high DP values. We provide information on all four
networks under consideration.

1. Methods

Gene essentiality data are obtained from the Online GEne
Essentiality (OGEE) database version 1 that was downloaded
on July 20, 2015 (Chen et al., 2012, 2017). Essential genes
are deemed to be critical for cellular function and survival.
As such, if an essential gene is removed (or knocked-out),

it results in inviability. The OGEE database lists 7,168 genes
as essential and 6,985 genes as conditionally (under specific
environmental conditions) essential for humans, and was
compiled using 18 different datasets of different cell lines
using gene modification tools such as RNAi and CRISPER-
cas9 (Chen et al., 2017). We overlap essential genes in
that database with the nodes having high DP values in the
Fibroblast Signaling network. Some nodes may be proteins
that consist ofmultiple subunits or havemultiple isoforms that
are encoded by multiple genes. For example, Phospholipase
D has two major isoforms, namely PLD 1 and PLD 2. Of
these, PLD 1 is found to be essential in one tested cell line
grown in GS-9 media (Chen et al., 2017). In such cases, we
consider a node as essential if at least one gene (out of all
protein coding genes) is listed as essential in the database.
The proportion of the essential nodes in top selected nodes
having high DP values is compared with the proportion of
the essential nodes in the whole network. Using the DAVID
tool for pathway enrichment analysis (Huang et al., 2009a,b),
the genes associated with high DP nodes are mapped on the
KEGG and Biocarta pathways and compared with the total
genes in the network as a background. The DAVID tool uses
Fisher’s exact test to calculate p-values. The FDR is computed
and a cutoff of 5% is used to correct the multiple comparisons.
Furthermore, for annotation clustering the similar terms are
clustered together using high classification stringency.

2. Gene essentiality analysis
Fibroblast Signaling: To investigate the essentiality of the
nodes with high DP values in the Fibroblast network, we
map these nodes with gene essentiality data. Out of 130
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FIGURE 16 | (A) Distribution of essential nodes among top nodes having high

DP values in the Fibroblast Signaling network with n = 130 nodes. Y-axis:

Number of essential nodes among the selected nodes divided by number of

selected nodes (top DP nodes). The red horizontal line indicates the proportion

of essential nodes found in the whole network. (B) Distribution of essential

nodes among top nodes having high DP values in the T-cell Receptor

Signaling network with n = 94 nodes.

nodes in the network, 68 nodes (52%) are essential. To
investigate the relationship between essentiality and DP
values, we check the distribution of the essential nodes in
the top 10, 20, 30, 40, 50, and 60 nodes having high DP
values. The essential nodes in these top selected nodes
are 70%, 75%, 66%, 60%, 52%, and 53% respectively, as
shown in Figure 16A. High proportions of essential nodes
are found in the top 10, 20, and 30 nodes. For the top
50 and 60 the proportions are close to the background
proportion of essential nodes in the whole network. Among
the top 20, a total of 15 nodes (75% of selected nodes)
are identified as essential and are listed in Table 2. This
proportion is significantly higher than the background
proportion of essential nodes in the whole network
(p-value 0.0306 < 0.05).

T-cell Receptor Signaling: We investigate the distribution
of essential genes in T-cell signaling model. A total of 42
nodes out of 95 (42.2%) are essential. Among the top 10, 20,
30, 40, and 50 nodes having high DP values, 7, 14, 18, 21,
and 25 are essential as shown in Figure 16B. We find 70% of
nodes as essential in each of the top 10 and top 20 nodes. The
proportion of the essential nodes decreases with decreasing
DP value. The proportion of the essential nodes in the top 20
nodes having high DP values is significantly higher than that
of the background proportion of 42.2% in the whole network
(p-value 0.0115 < 0.05).

TABLE 2 | Essential genes among the Top 20 nodes having high DP values in the

Fibroblast Signaling network.

Fibroblast Nodes (Top 20) Essential Genes (Uniprot ID’s)

ASK1 Q99683

CaM Q96HY3

Cas P56945

Cdc42 P60953

EGFR Q504U8

Erk P28482, Q8TD08, P27361, Q16659, P31152,

Q13164, P53778

Fak Q05397

IL1_TNFR P01584, P19438

Mek Q02750, P36507, P52564, P46734

PKA P17612, P22694, P22612

PKC P17252, P05771, P24723, Q05513, Q04759,

Q02156, Q05655, P41743

PP2A P67775

Rho P08100

Src P12931

Trafs Q9BUZ4, Q9Y4K3

Oxidative Stress Pathway: Oxidative stress signalingmodel
consists of 18 nodes. Of these, 13 nodes (72.22%) are essential.
In the top 5 and top 10 nodes having high DP values, 4 and
7 are essential, respectively. For example, the top hub nodes
ROS and AKT are essential.

Cholesterol Regulatory Pathway: Out of 34 nodes, 7 are
essential. The top hub node msREBP is essential in metabolic
reprogramming of the effector T-cells (Kidani et al., 2013).

Thus, nodes having high DP values are enriched with
essential genes suggesting that the DP values might be used
to predict the gene or protein essentiality.

We include here a note on how the gene essentiality
results relate to the cutoff L for the subnetwork size. For
example for the T-cell Receptor Signaling network shown
in Figure 16B, we find 53% essential nodes among the top
L = 40 nodes having high DP values, in comparison to the
44% essential nodes in the whole network. Similarly, for the
Cholesterol Regulatory Pathway network a total of 7 essential
genes (20%) are found. Of these, 5 nodes are in the top
L = 22 nodes having high DP. Furthermore, in the case
of the Oxidative Stress Pathway network, we find 5 essential
nodes out of L = 6 nodes compared to 13 out of the 18
in whole network. Thus, our chosen cutoff L seems to be
sufficient for identifying a large fraction of essential nodes.
Moreover, the results suggest that even smaller values of the
cutoff L would allow a significant identification of essential
nodes.

3. Biological pathway analysis
Fibroblast Signaling: Further, to investigate the biological
processes associated with top DP nodes, we perform
pathway analysis of nodes having high DP values (Top
20). We obtain 15 KEGG pathways including signaling
pathways such as TNF-alpha signaling, MAPK signaling, and

Frontiers in Physiology | www.frontiersin.org 16 August 2018 | Volume 9 | Article 1185

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pentzien et al. Identification of Biologically Essential Nodes . . .

FIGURE 17 | Enriched KEGG pathways among the top 20 selected nodes having high DP values in the (A) Fibroblast Signaling network with 130 nodes and (B) T-cell

Receptor Signaling network with 94 nodes. The values on the x-axis correspond to fold enrichment and the total number of genes found in the KEGG pathway. The

enriched pathways are given on the y-axis.

TLR signaling, and pathways associated with diseases
such as influenza A infection, viral carcinogenesis,
prion diseases, and Epstein-Barr virus infection. The
results are shown in Figure 17A. The Erk node is
common among 14 out of 15 enriched pathways. Next
to this, the Mek node is common among 13 out of 15
enriched KEGG pathways. The EGFR node that has
the highest DP value is involved in 5 KEGG pathways.
These results suggest that the nodes having high DP
values are involved in crucial biological functions,
and are also associated with a variety of infections and
diseases.

T-cell Receptor Signaling: Among the top 20 nodes
having high DP values, we obtain 13 enriched KEGG
pathways as seen in Figure 17B. These enriched pathways
include insulin signaling, and pathways involved in
diseases such as cancers, long term depression, and
alcoholism. The node Raf is common among 12 out
of 13 enriched KEGG pathways. The pkb node has
the highest DP value in the T-cell Receptor Signaling
network and is involved in 8 out of 13 enriched KEGG
pathways. These results suggest that the nodes having high
DP values are involved in crucial biological functions,

and also associated with a variety of diseases including
cancers.

Oxidative Stress Pathway: Among the top 5 nodes,
the KEGG pathways including renal cell carcinoma,
acute myeloid leukemia, prolactin, estrogen, B-cell
receptor, and the T-cell receptor are found to be
enriched.

Cholesterol Regulatory Pathway: Among the
top 20 nodes no KEGG pathway is found to be
enriched.

5. DISCUSSION

The biological function analysis of the nodes having high
DP values (hubs) in the Fibroblast Signaling, T-cell Receptor
Signaling, Oxidative Stress Pathway, and Cholesterol Regulatory
Pathway networks suggest that the majority of nodes are
essential and also involved in crucial biological functions.
The proportion of the essential nodes among nodes having
high DP values (e.g., top 20) in large scale models, i.e.,
Fibroblast Signaling (130 nodes) and T-cell Receptor Signaling
(94 nodes) is significantly higher than that of the total
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essential nodes in the whole network. On the other hand,
the comparatively small models Oxidative Stress Pathway and
Cholesterol Regulatory Pathway models also exhibit their hub
nodes as essential. The biological pathway analysis of top
hub nodes shows that these are involved in important disease
pathways.

To have a better understanding of the meaning of the
subnetworks of hubs in the more general context of the whole
networks, we provide further insight into the biological roles of
some of the top hubs in each of the four networks.

The Fibroblast Signaling network is a generic network that
consists of several major signaling pathways including the
Epidermal Growth Factor Receptor (EGFR), the G-protein
coupled receptor, and the integrin signaling pathway (Puniya
et al., 2016). In the Fibroblast Signaling network the nodes with
the highest DP values e.g., EGFR, Apoptosis signal-regulationg
kinase 1 (ASK1), Erk, Focal adhesion kinase (Fak), Cellular
apoptosis susceptibility (Cas) protein, Calmodulin (CaM), or
Mek have critical functions in the protein kinase activity, the
regulation of protein kinase activity, and the cell proliferation
and apoptosis. For example, the hub node EGFR is found to
be essential for several biological functions, such as in Toll-like
Receptor 3 signaling in human and mouse cell types, including
fibroblast, dendritic cells, and macrophages (Yamashita et al.,
2012).

The T-cell Receptor Signaling network comprises the T-cell
receptor, its co-receptors and the transcription factors involved
in T-cell activation and function (Saez-Rodriguez et al., 2007).
In this network, the nodes with the highest DP values include
Protein Kinase B (pkb), Linker of Activated T-cells (Lat), Fyn,
Zap70, and the tyrosine kinase (lckp1), that have important
roles in the T-cell receptor signaling. The hub node Zap70 is a
tyrosine kinase that is essential for the adaptive immune response
(Wang et al., 2010). Furthermore, the protein associated with
the Lat node is phosphorylated by Zap70 following the T-cell
receptor activation (Paz et al., 2001). The other nodes, i.e., pkb,
Fyn, and lckp1, are tyrosine kinases involved in cell growth and
proliferation (Safran et al., 2010).

TheOxidative Stress Pathway network comprises the oxidative
stress and PI3K/Akt signaling. In this network, the nodes
reactive oxygen species (ROS), Akt and the Anti-oxidant
response element (ARE) have the highest DP values. ROS plays
an important role in the maintenance of the redox balance.
Increased levels of ROS causes macromolecules and cell organelle
damage, and triggers the cell apoptosis (Redza-Dutordoir and
Averill-Bates, 2016). On the other hand Akt is a positive regulator
of cell proliferation.

The Cholesterol Regulatory Pathway network consists of
reactions involved in cholesterol biosynthesis and its regulation
by Sterol regulatory element-binding proteins (SERBPs). The
nodes with the highest DP values include mSREBP, Statins,
and Acetyl-CoA, and have important roles in regulation.
The node mSREBP is a transcription activator involved
in the lipid biosynthesis pathway (Shimano, 2001). The
Statins are inhibitors of cholesterol biosynthesis. The Acetyl-
CoA is a central metabolite and a substrate for cholesterol
biosynthesis.

We also point out that many essential nodes may tend
to have a large number of outputs, and since the DP is a
summation of MI values over all possible outputs, there is
a natural correlation between higher DP values and larger
number of outputs, as noted in Matache and Matache (2016)
and as seen in Figure 11. However, the DP method can
identify essential nodes with both large and small number of
outputs.

For example, in the Fibroblast Signaling network, the top
DP node is EGFR having 13 outputs. It is identified as an
essential node. In Matache and Matache (2016) it is specified
that mutations of the EGFR are known to be related to lung
cancer, interfering with the signaling pathways within the cell
triggered to promote cell growth and division (proliferation)
and cell survival. The second node in the order of DP is
ASK1, also an essential node. This node has only 4 outputs and
plays important roles in many stress-related diseases, including
cancer, diabetes, cardiovascular, and neurodegenerative diseases.
The third is the proto-oncogene tyrosine-protein kinase (Src),
identified as essential. This node is involved in the control
of many functions, including cell adhesion, growth, movement
and differentiation, and has 30 outputs. Although the fourth
node Phosphatidylinositol (3,4,5)-trisphosphate (PIP3_345) has
17 outputs, it is not considered essential in the OGEE database
(Chen et al., 2012). In fact, among the top 20% of nodes with
large DP values, we identify as essential 80% of those with
large (≥ 6) number of outputs and 50% of those with small
(≤ 5) number of outputs. The average number of outputs
is 4.3 and the maximum is 30 in the Fibroblast Signaling
network.

A fairly similar situation occurs for the T-cell Receptor
Signaling network. This suggests that future studies will need to
look at further correlations between essentiality and DP values.

We note here that the codes used for the work in this paper
are available upon request.

6. CONCLUSIONS

Our results suggest that DP can serve as a useful tool to identify
a subset of relevant nodes in the network that offer the most
information gain and whose knowledge reduces the entropy of
the whole network significantly. Moreover, many of the nodes
with top DP values are identified as biologically essential.

Several directions for further research include extending the
data to other networks to increase our samples for the statistical
analysis, as well as identifying some network properties or
attributes that are potentially correlated with the DP values,
such as average bias of the outputs of nodes, canalizing depth,
clustering coefficients, or feedback loop information. Moreover,
most biological networks have a very large maximal strongly
connected component called the “core” (Steinway et al., 2015;
Gan and Albert, 2016). On the other hand, it has been shown
that disrupting nodes that do not belong to the core may have a
significant impact on the network (Palumbo et al., 2005, 2007).
More precisely, essential mutations corresponding to enzymes
whose elimination has lethal effects on a metabolic network, tend
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to have a peripheral position and are seldom located in highly
connected components of the network. It would be of interest to
know how the DP values in the core differ from those not in the
core to possibly unravel further correlations.

Another topic for further research is to perform actual
network reduction to its topDP nodes and compare the dynamics
of the subnetwork to the dynamics of the entire network to
explore further the ability of the subnetwork to capture important
dynamical aspects of the whole network, such as preservation
of attractors. For instance, it would be of interest to explore the
Java software GINsim (Naldi et al., 2009a) to actually perform the
network reduction and use it to analyze dynamics of the various
models found in Cell Collective. This endeavor will require
a suitable algorithm for eliminating the edges or connections
linking the nodes of the chosen subnetwork to the eliminated
nodes.

Some more theoretical approaches would be to study the
impact of network reduction for homogeneous networks (that
is, networks in which all nodes obey a certain type of Boolean
function) to set some baseline dynamical behavior to be used for
comparison with more realistic network models.
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