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and cheap, many studies have utilized this method to investigate the 
structure and function of the cell junctions.17–24 However, since the 
main function of BTB is to provide microenvironment for meiotic and 
postmeiotic cell development, this in vitro system is not suitable for 
the study of major aspects of BTB function because coculture of germ 
cells with Sertoli cells cannot achieve meiosis.25 Moreover, the BTB 
structure and/or function may also be affected by germ cells. Therefore, 
this primary Sertoli cell culture system is insufficicent for in‑depth 
study of the structure, function and regulation of BTB in the testis.

In vivo method
Genetically‑modified mice have been widely used to understand the 
functional roles of specific gene in development. There are two basic 
technical approaches used to produce genetically‑modified mice, 
namely, transgenic and knockout (KO) mice.26–28 The transgenic mouse 
approach involves pronuclear injection into a zygote, where the gene of 
interest will randomly integrate into the mouse genome.29 The second 
approach, pioneered by Oliver Smithies and Mario Capecchi, involves 
modification of embryonic stem cells with a DNA construct containing 
DNA sequences homologous to the target gene.28 Embryonic stem 
cells with deletion of the target gene are selected and then injected 
into the mouse blastocysts. This manipulation causes absence of the 
gene (null) from all the cells of mouse. This approach, usually called 
conventional KO technology, is approporiate for investigating the 
physiological function of tissue or cell type‑specific genes.30 A refined 
version of the KO technology, conditional KO (cKO), which is based 
on tissue and cell type‑specific deletion of a gene of interest, shows 
significant advantages over conventional KO, especially for those 
genes whose conventional KO causes embryonic lethality.31 The most 

INTRODUCTION
Blood‑testis barrier  (BTB) is found between adjacent Sertoli cells 
within the seminiferous tubules.1–9 The BTB divides the seminiferous 
tubules into the basal and apical (adluminal) compartments. Meiosis, 
spermiogenesis and spermiation take place in the apical compartment; 
whereas, spermatogonial cell division and differentiation to preleptotene 
spermatocytes occur in the basal compartment.10,11 Thus, the BTB 
creates a unique microenvironment for meiotic and postmeiotic cells 
by forming an immunological barrier that separates meiotic and 
postmeiotic germ cells from blood circulation (reviewed in12).

The BTB consists of several types of cellular junctions including 
tight junctions  (TJs), gap junctions  (GJs) and adhesion junctions, 
and many junctional proteins are involved in the establishment 
of BTB  (reviewed in12–14). Defects in these proteins can cause BTB 
disfunction which may elicit immune responses against meiotic 
and postmeiotic cells, ultimately leading to spermatogenetic failure 
and male infertility. Furthermore, functions of BTB may also be 
compromised due to the defects of genes that regulate the formation 
and function of cell junctions. In this article, we will review recent 
findings in BTB functional genes obtained from genetically‑modified 
mice.

TECHNOLOGIES USED FOR BTB FUNCTION STUDY

In vitro method
Since Sertoli cells cultured at high density in vitro show the ability to 
form junctions that mimic BTB to some extent,15,16 an in vitro system 
based on the culture of primary Sertoli cells has been established and 
used as a model for BTB study.17–21 Because it is relatively easy, quick 
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widely used approach at present for cKO is the Cre‑LoxP system, which 
involves a ‘floxed’ mouse line bearing alleles of the gene to be deleted 
with recombinase‑specific sites (i.e. two LoxP repeats flanking critical 
exons) and a transgenic mouse line expressing the Cre‑recombinase 
driven by a promoter with a desired temporal and/or spatial expression 
pattern.32–35 The gene of interest flanked by two LoxP sites will be deleted 
or disrupted when Cre‑recombinase is expressed in specified tissues or 
cell types at a specific development time point.32–35 Most resulting cKO 
mice have no evident developmental abnormalities in tissues except 
the one of interest and thus can be used for studies of gene function 
in a specified tissue or cell type at specific time point.

By using these genetic approaches, especially conventional 
and conditional gene KOs, about 400 genes involved in murine 
spermatogenesis have been inactivated,36–38 but only a few have been 
associated with the structure and function of BTB. In the following 
sections, we will summarize BTB‑associated genes identified from 
genetically‑modified mice.

DEFECTS IN SPERMATOGENESIS IN KO MICE OF 
BTB‑ASSOCIATED PROTEINS
The BTB‑associated genes are classified into two major groups based 
on their roles in BTB structure and function. The first group (Table 1) 
includes the known structural components of the BTB, and the 
other (Table 2) consists of those that regulate BTB formation, integrity 
and function. Since many of the mechanisms involved in this process 
are unknown, these may also include structural components.

Function of BTB structural components
Several cellular junctions function together to establish BTB with each 
type of cellular junction composed of multiple structural proteins. 
Deficiency in these proteins would cause significant damage to BTB 
and consequently spermatogenic failure.

Claudin‑11 (Cldn‑11)
Claudins, 20–27 kDa phosphoproteins, are the main constituents 
of the TJs in mammalian body.83–86 They are intercellular adhesion 

molecules with variable pore‑like properties.87,88 To date, about 24 
different claudins have been identified and many of them show a 
distinct organ‑specific distribution.85,89,90 In mice and rat testes, Cldn‑11 
is specifically expressed in the Sertoli cells and responsible for the 
formation of the typically parallel tight junctional strands between 
Sertoli cells.85 In mouse testis, Cldn‑11 expression peaks between 
postnatal day 6–16, coinciding with the BTB formation.91,92

Cldn‑11 KO mice were the first mouse model used for the study of 
BTB.39 In prepubertal and adult Cldn‑11 KO mice, the lumens of the 
seminiferous tubules are narrow and often filled with Sertoli cells.39,40 
Adult mouse testes lacking Cldn‑11 in Sertoli cells are devoid of a 
mature BTB and show increased apoptotic germ cells.40 Cldn‑11 KO 
Sertoli cells lose polarity and detach from the basement membrane 
of seminiferous tubules. They experience an epithelial to fibroblastic 
cell transformation and proliferate actively while still maintaining the 
expression of Stertoli cell specific differentiation markers. As expected, 
Cldn‑11 KO mice are sterile.39

Occludin (Ocln)
Occludin, a 65 kDa protein, was the first component of the TJ strand 
identified.93–96 It expresses in Sertoli cells, together with claudins, 
serving as a key component of TJs in BTB.96 In mouse, Ocln is detected 
by immunofluorescence in testis cords as early as embryonic day 
13.5.97 By postnatal day 14, it is detected as focal wavy bands toward 
the base of seminiferous tubules that contain a number of germ cells.97 
By postnatal day 23 and in adult mice, these bands are present in all 
tubules at all stages of seminiferous epithelial cycle.97 As in mice, Ocln 
is also detected at all stages of the seminiferous epithelial cycle in dogs 
and Korean wild rabbits  Lepus coreanus.98,99 However, in rats, Ocln 
protein expression is stage‑specific, expressing heavily in Sertoli cells 
in seminiferous tubes of all stages except stage VIII, where it is not 
detectable by immunostaining.96,99 Interestingly, Ocln is not expressed in 
seminiferous tubules of guinea pigs (Cavia porcellus) and humans.95,99

Compared to Cldn‑11  KO mice, the abnormalities of 
spermatogenesis in Ocln KO mice increase slowly and gradually with 
ageing.39–41 In testis of 6‑week‑old Ocln KO mice, the seminiferous 

Table 1: Defects of spermatogenesis in the BTB structural genetically‑modified mice

Gene Abbreviation 
(other names)

Type of 
junction

Techniques for 
gene modification

Fertility Defects of BTB 
in genetically‑ 
modified mice

Defects of somatic 
cells in genetically‑ 
modified mice

Defects of germ 
cells in genetically‑ 
modified mice

References

Claudin 11 Cldn11 (Osp; Otm; 
Claudin11; Claudin‑11)

TJ KO Infertility Tight junctions 
diminished

Sertoli cells lose 
polarity, keep 
proliferation and 
show compromised 
differentiation

Spermatogenesis 
arrests at 
spermatids, 
increased germ 
cell apoptosis

39,40

Occludin Ocln (Ocl; AI503564) TJ KO Progressive 
infertility

NDa ND Germ cell loss in 
testes of old mice

41

Tight junction 
protein 2

ZO‑2 (Tjp2) TJ KOa Infertility Increased 
permeability

Sertoli cell 
vacuolation

Germ cell loss 42

Tight junction 
protein 3

ZO‑3(Tjp3) TJ KO No obvious 
abnomality

ND ND ND 43

Gap junction 
protein, 
alpha 1

Cx43 (Gja1; Npm1; Cnx43; 
Gja‑1; AU042049; 
AW546267; Cx43alpha1; 
connexin43)

GJ cKO (Amh‑Cre) Infertility ND Sertoli cell 
vacuolation

Spermatogenesis 
arrests at 
spermatogonia

44,45

Catenin 
(cadherin 
associated 
protein), 
beta 1

Ctnnb1 (Bfc; Mesc; Catnb) AJ cKO (AmhR2‑Cre) No obvious 
abnomality

ND ND ND 46

Transgene 
(AmhR2‑Cre)

Infertility ND Sertoli cells keep 
proliferation and 
show compromised 
differentiation

Germ cell loss 47,48

AJ: adhesion junctions; BTB: blood‑testis barrier; GJ: gap junctions; ND: not determined; KO: knockout; TJ: tight junction. aZO‑2 KO embryonic stem (ES) cells were injected into wild 
type blastocysts to generate viable ZO‑2 chimera
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tubules and spermatogenesis are histo‑cytologically indistinguishable 
from those in wide‑type mice. Around 40–60 weeks of age, the 
seminiferous tubules of KO mice display atrophy. The atrophic tubules 

are devoid of germ cells, but retain Sertoli cells along the basement 
membrane.41 The exact mechanisms underlying this age‑dependent 
effect in testis of Ocln KO mice remain unknown.

Table 2: Defects of spermatogenesis in the BTB regulatory genetically‑modified mice

Gene Abbreviation 
(other names)

Protein localization 
in testes

Techniques 
used for 
function 
analysis

Fertility of 
genetically‑ 
modified 
mice

Defects 
of BTB in 
genetically‑ 
modified mice

Potential 
targets of 
BTB junction 
typea

Defects of 
somatic cells 
in genetically‑ 
modified mice

Defects of 
germ cells in 
genetically‑ 
modified mice

Reference

Androgen 
receptor

Ar (Tfm; 
AW320017)

Leydig cells, 
peritubular myoid 
cells and Sertoli 
cells

cKO 
(Amh‑Cre)b

Infertility Increased 
permeability

TJ Sertoli cell 
vacuolation

Spermatogenesis 
arrest at the 
diplotene stage

49–61

Adenomatosis 
polyposis coli

Apc (CC1; Min; 
mAPC; AI047805; 
AU020952; 
AW124434)

Leydig cells, 
Sertoli cell and 
spermatids

cKO 
(Amh‑Cre)

Infertility Increased 
permeability

TJ, AJ Sertoli cell 
vacuolation 
and lacking 
apical 
extensions

Abnormal 
differentiation 
and 
desquamation

46

AT rich 
interactive 
domain 
4A (RBP1‑like)

Arid4a (Rbbp1; 
MmRBBP1; 
A630009N03; 
A630067N03Rik)

Sertoli cells KOc Progressive 
infertility

Increased 
permeability 
in testes of 
old mice

TJ Sertoli cell 
vacuolation

Spermatogenesis 
arrest at 
spermatocytes 
or spermatids

62

AT rich 
interactive 
domain 
4B (RBP1‑like)

Arid4b (BCAA; 
BRCAA1; 
Rbp1l1; SAP180; 
RBBP1L1; 
5930400I17; 
9330186M13; 
6330417L24Rik; 
6720480E17Rik)

Sertoli cells

Basigin Bsg (HT‑7; CD147; 
EMMPRIN; 
AI115436; 
AI325119)

Leydig cells, 
Sertoli cells, 
spermatocytes 
and spermatids

KO Infertility Increased 
permeability

AJ Sertoli cell 
vacuolation

Spermatogenesis 
arrest at 
spermatids

63–65

Ets variant 
gene 5

Etv5 (ERM; 
1110005E01Rik; 
8430401F14Rik)

Sertoli cells and 
subpopulation of 
gonocytes

KO Infertility Increased 
permeability

ND Sertoli cell 
vacuolation

SSCs loss during 
first wave of 
spermatogenesis

66,67

Fatty acid 
desaturase 2

Fads2 (Fadsd2; 
2900042M13Rik)

Leydig cells, 
peritubular myoid 
cells, Sertoli cells 
and germ cells 
(ubiquitously 
expressed)

KO Infertility Increased 
permeability

TJ, GJ, AJ Sertoli cell 
vacuolation

Spermatogenesis 
arrest at 
spermatids

68

GATA binding 
protein 4

Gata4 (Gata‑4) Fetal: pre‑Sertoli 
cells, Sertoli cells, 
fetal Leydig cells, 
fibroblast‑like 
interstitial cells 
and peritubular 
myoid cells 
Postnatal: Leydig 
cells and Sertoli 
cells

cKO 
(Amhr2‑Cre)

Progressive 
infertility

Increased 
permeability

GJ Sertoli cell 
vacuolation 
in older cKO 
testes

Spermatocyte 
and spermatid 
desquamation

69–76

Retinoblastoma 1 Rb (Rb1; pRb; 
Rb‑1)

Sertoli cells and 
germ cells with 
stage dependent

cKO 
(Amh‑Cre)

Progressive 
infertility

Increased 
permeability 
in testes of 
old mice

TJ Sertoli cell 
vacuolation 
in older cKO 
testes

Spermatogenesis 
arrest at 
spermatocytes 
and round 
spermatids

77

SRY (sex 
determining 
region Y)‑box 8

Sox8 Sertoli cells KO Progressive 
infertility

Increased 
permeability 
in testes of 
old mice

TJ Sertoli cell 
vacuolation 
in older cKO 
testes

Abnormal 
differentiation 
and 
desquamation

78‑80

TYRO3 protein 
tyrosine kinase 
3

Tyro3 (Brt; Dtk;
Rse; Sky; Tif; Etk‑2; 
AI323366)

Sertoli cells KOd Infertility Increased 
permeability 
in testes of 
old mice

ND ND Degeneration of 
germ cells of 
different stages

81,82

AXL receptor 
tyrosine kinase

Axl (Ark; Ufo; Tyro7;
AI323647)

Sertoli cells

c‑mer 
proto‑oncogene 
tyrosine kinase

Mertk (Eyk; Mer;
Nyk; nmf12)

Leydig cells and 
Sertoli cells

AJ: adhesion junctions; BTB: blood‑testis barrier; GJ: gap junctions; KO: knockout; ND: not determined; SCC: spermatogonial stem cell; TJ: tight junction. aThe potential targets of 
BTB junction type classification is based on the BTB basic gene expression level change in the modified mice. bBesides cKO, a transgens mice is also included in Ar studies. cKO 
refers to Arid4a KO and Arid4b haploinsufficiency (Arid4a‑/‑ Arid4b+/−). dThe KO mouse is a triple KO for Tyro3, Axl and Mertk
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Zonula occludens (ZO) proteins
TJ integral membrane proteins such as claudins and Ocln are tethered 
to the actin cytoskeleton by adaptor proteins, notably the closely related 
ZO proteins ZO‑1, ZO‑2 and ZO‑3.101,102 These three closely related 
and widely expressed ZO proteins belong to the membrane‑associated 
guanylate kinase‑like protein superfamily.101,102 ZO‑1 protein is also 
known as TJ protein 1 (TJP1). It is detected at the inter‑Sertoli cell 
junctions in testis of guinea pig and mouse.97,100,103,104 In normal human 
testis, ZO‑1 and ZO‑2 are observed at the adherent site of adjacent 
Sertoli cells.100,105 The nuclear localization of some ZO proteins is 
also reported in particular conditions.106–109 Recently, these three ZO 
proteins have been deleted in mice.110,111 Although ZO‑3 KO mice lack 
an obvious phenotype, mice deficient in ZO‑1 or ZO‑2 shows early 
embryonic lethality. 110,111 By microinjecting ZO‑2 KO embryonic stem 
cells into wild‑type mouse blastocysts, Xu et  al.  (2009)42 generated 
viable ZO‑2 chimera.42 The adult chimera presented a set of phenotypes 
in different organs. Male ZO‑2 chimera show reduced fertility and 
pathological changes in the testis. Lanthanum tracer experiments 
showed a compromised BTB function in these mice.42,112 Based on the 
gene expression and localization analyses, the authors found that the 
expression level of ZO‑1, ZO‑3, Cldn‑11 and Ocln is not apparently 
affected when compared to the controls. ZO‑1 and Ocln still localize 
to the BTB region, but Cldn‑11 and Connexin43 are misslocalized from 
BTB. These results indicate there is limited redundance between ZO‑2 
and other ZO proteins in adult mice.

Connexin‑43 (Cx 43)
Cx43, also known as GJ protein alpha 1  (Gja1), is the predominant 
testicular GJ protein located between adjacent Sertoli cells and 
between Sertoli cells and germ cells.43 It is colocalized with Ocln, ZO‑1 
and N‑cadherin at the base of the epithelium, and also observed at 
the focal sites in the epithelium.97 To study the function of Cx43 in 
spermatogenesis, mice with Cx43 specifically deleted in Sertoli cells have 
been generated.44,45 Studies on these mice revealed that the expression 
of Cx43 in Sertoli cells is required for normal testicular development 
and initiation of spermatogenesis.44,45 Adult Sertoli cell‑specific Cx43 
cKO mice are sterile with a dramatic reduction in size and weight of 
testes.44,45 Their spermatogenesis is arrested at spermatogonia in 95% of 
seminiferous tubules with the number of spermatogonia dramatically 
decreased and Sertoli cells increased. Sertoli cell‑only syndrome and 
Sertoli cell clusters are also noted in these mice.44,45

Cadherin associated protein beta 1 (b‑catenin)
Cadherin associated protein beta 1  (Cttnb1, β‑catenin) is a 
multifunctional molecule that functions in intercellular adhesion and 
signal transduction.113,114 It is colocalized with N‑cadherin between 
adjacent Sertoli cells in the seminiferous tubules near the basal and the 
lower one‑third of the adluminal compartments, and also at cell‑cell 
contacts sites between Sertoli cells and spermatocytes in testes of 
Sprague–Dawley rats.115,116 N‑cadherin is considered as a structural 
component of BTB, so the colocalization of β‑catenin with N‑cadherin 
at the inter‑Sertoli cells contact point suggests that it is also an integral 
component of BTB.12,117,118 β‑catenin is also an essential component of 
the WNT/β‑catenin signaling pathway, which plays important roles in 
multiple developmental processes including testis development.119–121

By crossing with mice expressing Cre recombinase driven by the 
anti‑Mullerian hormone (AMH) type II receptor promoter (Amhr2) in 
Sertoli cells, Ctnnb1 is specifically deleted in Sertoli cells.45 Histological 
examination of testes of adult  (>12 weeks) Ctnnb1 cKO mice does 
not show any abnormities in testicular morphology.45 Constitutively 

activated β‑catenin in Sertoli cells leads to continuous proliferation 
and compromised differentiation of Sertoli cells.46,47 Compared with 
the controls, Sertoli cells in the adult mutant mice still express AMH 
and glial cell‑derived neurotrophic factor  (GDNF) at high levels, 
which are normally expressed only in immature Sertoli cells. Defective 
differentiation of germ cells and increased apoptosis were observed in 
these mutant mice. As expected, the epididymis of the adult mutant 
mice are devoid of sperm.47 Besides, as a structural component of BTB, 
it also plays an essential role in the regulation of Sertoli cell proliferation 
and differentiation. Actually, it has been reported to regulate cell 
proliferation and differentiation through the WNT/β‑catenin signaling 
pathway.118,121,122 As for its role in BTB, based on the observation that its 
deficiency does not cause detectable reproductive defects, we speculate 
that β‑catenin may just serve as an adaptor for N‑cadherin. To confirm 
or refute this speculation, more studies are required.

Function of BTB regulatory elements

Androgen receptor
Androgen receptor (Ar), a member of the steroid hormone receptor 
superfamily, mediates androgen action and plays an important role in 
male reproduction (reviewed in124–127). In testes, Ar can be detected in 
Sertoli cells, peritubular myoid cells and cells in the interstitial spaces 
including Leydig cells and perivascular smooth muscle cells.49,50,55–58 It 
has been reported that the Sertoli cell‑specific Ar cKO mice are infertile, 
due to spermatogenic arrest predominately at the diplotene stage with 
almost no sperm observed in the epididymis.51,52,59,61 The defects in BTB 
structure of these cKO mice are associated with the reduced expression 
of BTB proteins like Cldn‑11, ZO‑1, Ocln and gelsolin and with a 
significantly enhanced expression of vimentin.52,54,60 It is noteworthy 
that the Arflox (ex1‑neo)/Y mice had a partial defect in androgen sensitivity 
when carry this floxed allele, and a marked reduction in AR protein 
levels in different tissues including the testis and show defects in 
spermiogenesis.51 The BTB in Arflox (ex1‑neo)/Y/Amh‑Cre mice is disrupted, 
possibly due to the reduced expression of Cldn‑3.53 These results from 
Ar mouse models indicate that the function of AR in Sertoli cells is 
essential for the maintenance of fully competent Sertoli cell function in 
BTB integrity as well as the sustenance of appropriate hormone levels 
to support the completion of spermatogenesis.51,52,59,61,128–130

Adenomatous polyposis coli (Apc)
Mutations in Apc, a multifunction tumor suppressor protein, are 
associated with the development of various human cancers, including 
colon, liver, ovarian, endometrial and testicular cancers.131–134 In a 
mouse model that expresses a truncated form of Apc in Sertoli cells, 
despite having normal embryonic and early postnatal testicular 
development, premature germ cell loss and Sertoli cell only  (SCO) 
seminiferous tubules were observed.46 The cKO of Apc does not affect 
the Sertoli cell quiescence, apoptosis or differentiation, as evidenced 
by the absence of proliferating cell nuclear antigens and DNA damages 
in Sertoli cells, as well as AMH expression.46 However, these Sertoli 
cells lose their apical extensions, which normally enclose germ cells 
at late stages of spermatogenesis.46 As for the BTB structure, ZO‑1 and 
N‑cadherin proteins are seen as diffused and away from the BTB site 
in Apc cKO testes.46 As a result, deficiency of the Apc in Sertoli cells 
disrupts the BTB and causes spermatogenic failure most probably by 
affecting localization of junctional proteins.46

AT rich interactive domain 4A and AT rich interactive domain 4B
AT rich interactive domain 4A  (Arid4a) and AT rich interactive 
domain 4B (Arid4b) are members of the ARID (AT‑rich interaction 
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domain) gene family. ARID4A and ARID4B proteins, also known 
as RB‑binding protein 1  (RBBP1, RBP1) and RBBP1‑like protein 
1 (RBBP1L1), are the members of chromatin‑remodeling complex and 
function as transcriptional repressors upon recruitment by RB.135–138 In 
situ hybridization analysis reveal that Arid4a and Arid4b are expressed 
mainly in Sertoli cells of testes.62 Mice with complete deficiency of 
Arid4a and haploinsufficiency of Arid4b showed progressive loss 
of male fertility, accompanied by impaired BTB, hypogonadism 
and seminal vesicle agenesis/hypodysplasia.62 These mice show 
spermatogenic arrest at meiotic spermatocytes or postmeiotic 
spermatids.62 These observations recapitulate the defects found in 
the Sertoli cell‑specific Ar KO mice and the Sertoli cell‑specific Rb 
KO mice.62 Gene expression evaluation revealed that ARID4A and 
ARID4B contribute to the optimal expression of Cldn‑3 by functioning 
as positive coregulators in the context of the AR and RB complex.62 
Furthermore, increased permeability of the BTB in the testes of Arid4a 
KO and Arid4b haploinsufficiency mice are observed based on a biotin 
tracer injection experiment. Together, Arid4a and Arid4b are critical 
for physiological function of Sertoli cells.

Basigin (Bsg)
Bsg is a transmembrane glycoprotein enriched with N‑glycans.139,140 
It is highly expressed in gonads and plays a crucial role in both male 
and female reproduction.64,65, In the mouse testis, BSG is expressed in 
Sertoli cells, Leydig cells, spermatocytes and spermatids.64,65 Bsg KO 
males are sterile.65 The Bsg KO testes are devoid of elongated spermatids 
and mature spermatozoa but have numerous round spermatids.63 
Significantly increased apoptotic germ cells and compromised integrity 
of the BTB are observed in Bsg KO testes. Immunolocalization analysis 
of BTB component proteins indicates that no obvious difference in 
the localization of Cxadr, Cx43 or Cldn‑11 are seen between wild type 
and Bsg KO testes, however, the expression of N‑cadherin was greatly 
reduced at the basal compartment of the seminiferous tubules (the site 
of the BTB) in Bsg KO mice.63 These results imply that Bsg deficiency 
can compromise BTB integrity.

Ets‑variant gene 5
The Ets‑variant gene 5  (Etv5), also known as Ets‑related molecule 
or ERM, is a member of the PEA3 subfamily of the ETS family of 
transcription factors. It is mainly expressed in adult Sertoli cells.66,67 
Mice with a targeted deletion of Etv5 can undergo first wave of 
spermatogenesis, but lose their spermatogonial stem cells during this 
time, and subsequently show SCO phenotype.66 The disappearance of 
spermatogonial stem cells in the mutants is attributed to the failure 
of spermatogonial stem cell proliferation without affecting their 
differentiation by lack of Etv5. The integrity of BTB in Etv5 KO mice 
is disturbed which was shown by biotin tracer experiment.67 Whether 
the BTB is regulated by Etv5 directly or indirectly is still unknown, 
which deserves the further analysis.

Fatty acid desaturase 2
Fatty acid desaturase 2 (Fads2) is responsible for the initial step in the 
enzymatic cascade of ω3‑ and ω6‑polyunsaturated fatty acid synthesis 
from essential fatty acids.142–144 Fads2 KO mice are sterile, their testis 
weight is reduced to two‑thirds of that of age‑matched wild type 
littermates.68 The lumen of the seminiferous tubules and epididymis 
of the adult mutants lacks spermatozoa.68 The epididymal ductuli 
fill with detritus and immature spermatids. Immunohistochemical 
studies revealed that Ocln, Cldn‑11, JAM‑A, ZO‑1, Cx43 and β‑catenin 
are dislocated throughout the basolateral and apical compartments 
of the Fads2 KO Sertoli cell membrane.68 Furthermore, transmission 

electron microscopic analysis highlighted that the well‑structured TJ 
structures between Sertoli cells are missing in Fads2 KO testes. Finally, 
compromised selective permeation of BTB in KO testes has been revealed 
by the lanthanum nitrate and fluorescence dyes perfusion experiments.68

GATA binding protein 4
Transcription factor GATA binding protein 4 (Gata4) has been implicated 
in the development and function of the mammalian testis.145 During fetal 
testicular development, Gata4 is expressed in pre‑Sertoli cells, Sertoli 
cells, Leydig cells, fibroblast‑like interstitial cells and peritubularmyoid 
cells.74,76 After birth, Gata4 is found mainly in the Sertoli cells and adult 
Leydig cells.69–72,75 Mice, whose Gata4 conditionally is deleted in Sertoli 
cells, develop age‑dependent testicular atrophy and are infertile.73 
Histological analysis demonstrated that the older cKO testes displayed 
Sertoli cell vacuolation, germ cell depletion, multinucleated giant cells 
and syncytia of degenerating spermatids.73 Biotinylated tracer injection 
experiments indicate that the BTB appeared intact in young cKO 
mice (2.5 months), but it had a compromised integrity in the 6‑month‑old 
cKO mice.73 Furthermore, biotinylated germ cells, including multinuclear 
giant cells were evident in seminiferous tubules of 6‑month‑old cKO 
mice.73 Thus, the older Gata4 cKO mice develop increased permeability 
of the BTB with the advancing of age.

Retinoblastoma 1 (RB)
RB protein, encoded by Rb gene, is a negative regulator of the cell cycle 
and the first tumor suppressor found.146,147 The Sertoli cell‑specific Rb 
KO mice displayed progressive infertility in males.77 Initially, loss of Rb 
in Sertoli cells has no gross effect on Sertoli cell function and the mice 
are fertile at 6 week of age.77 However, by the age of 10–14 weeks, the 
cKO mice demonstrated severe Sertoli cell dysfunction and infertility.77 
The most striking defects in mature Sertoli cell function are increased 
permeability of the BTB by biotin tracer experiment.77 Detailed analysis 
found that TJ components, Cldn‑3 and Ocln, are downregulated in Rb 
cKO Sertoli cells.77 The progressive loss of integrity of BTB in the Rb 
cKO testes suggested that Rb was initially dispensable for the formation 
of the BTB but might be indispensable for its remodeling as maturing 
germ cells crossed from the basal to adluminal compartment and this 
function might be directly related to the regulation of TJ genes.

Sex determining region Y‑box8
Sex determining region Y‑box 8 (Sox8) is a member of the Sox family of 
developmental transcription factor genes and is closely related to Sox9, 
a key gene in testis determination pathway in mammals.148–151 In testis, 
it is expressed in the developing mouse testis around the time of sex 
determination and continues beyond 16 days post coitum in Sertoli cells.79 
Sox8 KO mice exhibit a progressive male infertility phenotype.80 These 
KO males sporadically produced litters of reduced size at young ages and 
showed an age‑dependent deregulation of spermatogenesis, characterized 
by sloughing of spermatocytes and round spermatids, spermiation failure 
and a progressive disorganization of the spermatogenic cycle, which 
resulted in the inappropriate placement and juxtaposition of germ cell 
types within the epithelium.80 Cldn‑3 was significantly decreased in the 
Sox8 KO testes.78 Furthermore, the use of biotin tracers showed increased 
BTB permeability in the Sox8 KO adult testes.78 Thus, Sox8 is essential 
in Sertoli cells for germ cell differentiation, partly by controlling the 
microenvironment of the seminiferous epithelium.

TYRO3 protein tyrosine kinase 3, AXL receptor tyrosine kinase and 
c‑mer proto‑oncogene tyrosine kinase
TYRO3 protein tyrosine kinase 3  (Tyro3), AXL receptor tyrosine 
kinase  (Axl) and c‑mer proto‑oncogene tyrosine kinase  (Mer) 
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constitute the TAM family of receptor tyrosine kinases, characterized 
by a conserved sequence within the kinase domain and adhesion 
molecule‑like extracellular domains.152,153 This small family of 
receptor tyrosine kinases regulates an intriguing mix of processes, 
including cell proliferation, survival, cell adhesion and migration 
and regulation of inflammatory cytokine release.152–154 Tyro3, Axl 
and Mer (TAM) receptor tyrosine kinases triple KO (TAM KO) male 
mice are infertile due to impaired spermatogenesis.81,82 These triple 
KO testes showed a progressive loss of germ cells from elongated 
spermatids to spermatogonia.82 Young adult TAM KO mice exhibited 
oligo‑astheno‑teratozoospermia and various morphological 
malformations of the sperm.82 With the progress of mice age, 
germ cells were eventually depleted from the seminiferous tubules. 
Furthermore, biotin can be detected in the seminiferous tubules of 
20‑  to 30‑week‑old testes indicating that BTB was initially built in 
TAM KO mice, but subsequently compromised as the mice aged.82 
Moreover, major inflammatory cytokines, including tumor necrosis 
factor‑α, interleukin‑6 and monocyte chemotactic protein 1 were 
upregulated in the testis of TAM KO mice, and predominantly located 
in Sertoli cells.82 It is therefore suggested that the TAM receptors are 
important in the maintenance of the immune homeostasis in the testis 
through the BTB.

CONCLUSIONS
Based on the literature reviewed above, we conclude that:
1. BTB gene KO mice, once their BTB integrity is compromised, 

always show some common abnormalities, e.g.  germ cell 
apoptosis, development arrest, aggregated Sertoli cells in apical 
compartment, SCO phenotype and infertility. This indicates that 
the BTB integrity is essential for normal spermatogenesis and 
male fertility

2. Deletion of genes encoding proteins involved in different types 
of junctions often causes different phenotypes in seminiferous 
tubules, suggesting that different junction types in the BTB may 
play distinct role in maintaining the integrity of BTB in structure 
and function

3. Deletion of different genes of the same cell junction composed 
of the BTB, e.g. Cldn, Ocln and ZO‑2, causes slightly different 
abnormalities in testicular tubules and fertility of animals, which 
indicates that these proteins function in non‑redundant manner

4. Although the interactions between germ cells and Sertoli cells 
are believed to play a role in BTB function and integrity, a direct 
convincing evidence to support this hypothesis, where BTB is 
compromised after specific deletion of a gene in germ cells, is 
still lacking.

FUTURE PERSPECTIVES
BTB and male infertility
Unexplained male infertility accounts for 30%–40% of men with 
abnormal semen parameters.155 The causes of spermatogenic defects in 
infertile patients are multifactorial. Endocrine disruption of testicular 
development during neonatal period, due to environmental pollution, 
genetic and epigenetic factors, is the most frequent explanation invoked 
for unexplained male infertility.155–158 These factors have been associated 
with testicular dysgenesis, male infertility and recently testicular 
malignancy.155 It is predicted that these multifactors are associated with 
the BTB and could participate in the etiopathology of human male 
infertility by dysregulating BTB. For example, cKO of Cx43 in mouse 
Sertoli cells results in a very similar spermatogenic failure seen in 

infertile men.44,45,159,160 Azoospermic patients with severe spermatogenic 
failure have been reported to show altered expression of Cx43 mRNA.161 
Furthermore, significantly positive correlation is reported between 
the histological score and intensity of the testicular Cx43 expression 
in oligozoospermic men.162 Similar staining pattern of Cx43 are found 
in testes of healthy men and patients with hypospermatogenesis or 
spermatogenic arrest at meiotic and postmeiotic stages, while no 
staining is observed in the seminiferous tubules of patients with 
spermatogenic arrest at spermatogonia or SCO syndrome.163 It is thus 
suggested that, to understand the etipathology of human infertility, 
the expression and localization of BTB proteins should be studied in 
men with spermatogenic defects and compared to those observed in 
BTB gene KO mice.

BTB and spermatogenic microenvironment or biomarkers
In testis, blood vessels, lymphatic vessels and nerves are only present 
in the interstitium between seminiferous tubules, but not inside 
the seminiferous tubules. The entry of nutrients (e.g. sugars, amino 
acids) and regulatory molecules (e.g. hormones, electrolytes), but not 
toxicants  (e.g.  environmental toxicants, drugs, chemicals) into the 
apical compartment where meiotic and postmeiotic germ cells reside 
is tightly regulated by BTB.12 The selectivity of BTB, thus, provides 
a unique microenvironment for the development of meiotic and 
postmeiotic germ cells in the apical compartment.12 The BTB may also 
function to prevent some molecules from emission from the apical 
compartment. It is, therefore, reasonable to think that if the integrity 
of BTB is compromised, some molecules that are only present within 
the seminiferous tubules normally may diffuse into the blood. These 
molecules can be used as circulation blood biomarkers of the integrity 
of BTB or the damage to the microenvironment of spermatogenesis.

BTB and cell specific conditional KO strategy
Normal BTB formation and function require numerous genes, many 
of which are ubiquitously expressed and function in other organs 
as well. Conventional KO of these genes may cause embryonic or 
perinatal lethality in homozygotes, e.g.  ZO‑1 or ZO‑2 KO mice 
show early embryonic lethality.106,107 Even if the KO of a ubiquitously 
expressed gene is not lethal, it may cause alterations in the physiology 
of many organs, which could complicate the studies especially for 
reproduction, the process also regulated tightly by hypothalamic and 
pituitary. Therefore, the cKO approach shows obvious advantages 
over conventional KO. However, till now, only a few genes have been 
investigated by specific deletion in Sertoli cells for their role in BTB 
and spermatogenesis. Therefore, to delineate the function of BTB in 
spermatogenesis, much work is needed by using the conditional gene 
KO approach.
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