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Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical
importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning
of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs) from the venom
glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible
for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of
sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation
across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high
degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was
made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific
and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper
species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA
immunization) the biological function of this important group of venom toxins in vipers that are distributed throughout Africa,

the Middle East, and the Indian subcontinent.

1. Introduction

Envenoming resulting from snake bites is an important
public health hazard in many regions, particularly in tropical
and subtropical countries [1, 2]. The saw-scaled viper Echis
ocellatus is the most abundant [3] and medically important
viper species in West Africa [4]. Envenoming by saw-
scaled viper (Viperidae: Echis) species is thought to be
responsible for more snakebite deaths worldwide than any
other snake genus [5]. In northern Nigeria, E. ocellatus is
responsible for 95% of all envenoming by snakes [6], causing
several hundred deaths annually [7]. The precise incidence
of snakebite is difficult to determine and is often grossly
underestimated, but in some areas of the Nigerian savannas,
victims of E. ocellatus envenoming may occupy more than

10% of hospital beds [8]. In the Benue valley of Nigeria,
for example, the estimated incidence is 497 per 100000
population per year with 10%-20% untreated mortality
[9]. Local effects of Echis viper envenoming include pain,
swelling, blistering, and haemorrhage which, in severe cases,
can lead to necrosis, permanent disfigurement, and even
amputation of the affected limb [10]. Systemic effects include
potentially lethal consumption coagulopathy, haemorrhage
and hypovolaemic shock [10].

Snake venoms contain a great variety of toxic proteases
[11, 12]. Many of these components are proteases, for
example, metalloproteases [13], serine proteases [14], phos-
pholipases A, [15] and C-type lectins [16] and mediate their
toxicity by either stimulating or inhibiting the haemostatic
system of human victims or experimental animals, resulting
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in clinical complications of blood clotting or uncontrolled
haemorrhage [12, 17-19]. Several of these proteinases cleave
plasma proteins of the victims in a specific manner with
varying degrees of substrate specificity. Thus, while some
serine proteases have both fibrinogenolytic and fibrinolytic
activities, others have only fibrinogenolytic activity and are
called “thrombin-like” proteases [19-25]. Approximately 100
snake venom toxins have been identified as “thrombin-like”
enzymes activating the blood coagulation factor [26]. These
“thrombin-like” proteases hydrolyze fibrinogen specifically
and release either fibrinopeptide A or B or both [27]
resulting in the disruption of the blood coagulation system
by producing abnormal fibrin clots composed of short
polymers that are rapidly dispersed and no longer cross-
linked by activated factor XIII [28].

Another group of serine proteases of Batroxobin, Cro-
talase, and Ancrod venoms affect other substrates, for
example, plasminogen [27] by cleaving fibrinogen in man-
ner distinct from that of thrombin. Other venom serine
proteases function like mammalian kallikrein (or kinino-
genase) releasing bradykinin from kininogen [29-31] and
are called “kallikrein-like” proteases [29], an example of this
is halystase [32], a kallikrein-like serine protease isolated
from A. halys blomhoffii venom, which cleaves the § chain
at Arg* and slowly degrades the « chain of fibrinogen to
generate a product that is no longer converted to normal
fibrin clots by thrombin; this results in both reduction
of blood pressure as well as inhibiting fibrinogen clotting
in the victims. Another kallikrein-like serine protease with
potent biological activity but with different physicochemical
properties from those of halystase has been isolated from the
venoms of A. caliginosus, C. atrox, C. viridis, and Trimeresu-
rus mucrosquamatus [29, 30, 32-34]. The latter showed
both a strong -fibrinogenolytic and kallikrein-like activities,
cleaving f-chain of fibrinogen molecules specifically and
releasing bradykinin from kininogen, respectively. Moreover,
the purified enzymes indicated that they have specificities
different from thrombin and thrombin-like proteases of
snake venom reported previously by decreasing fibrinogen
levels in plasma and prolonging bleeding without formation
of fibrin clots. They also exhibit amidase activity against
N-benzoyl-Pro-Phe-Arg-p-nitroanilide, which is a specific
synthetic substrate for kallikrein-like proteases.

In addition, there have been a few reports on venom
serine proteases with a unique activity, such as ACC-C, a
protein C activator isolated from the A. contortrix venom
[35] (which inhibits blood coagulation by inactivating the
activated forms of factor V and VIII), a plasminogen acti-
vator such as TSV-PA isolated from the 1. stejnegeri venom
[36, 37], PA-BJ, a platelet aggregating enzyme isolated from
the B. jararaca and Trimeresurus mucrosquamatus venoms
[38], and RVV-V, a factor V-activating enzyme isolated from
the V. russelli venom [39].

These data indicate that snake venom serine proteases
comprise an enzyme superfamily with multifunctional activ-
ities that may have diverged or have undergone gene dupli-
cation resulting in alteration of their biological properties
during the process of evolution thus acquiring special
functions [40, 41]. Although a considerable amount of data
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is now available, no standardised grouping of these venom
serine proteases has yet been documented. However, in 2001
Wang et al. [27] compared sequences of 40 serine proteinases
isolated from different snake venoms, using a constructed
phylogram in which such sequences were clustered into three
groups designated as coagulating enzymes, kininogenases,
and plasminogen activators.

No Serine proteinases have yet been purified from venom
of the West African saw-scaled viper Echis ocellatus, in
particular or for members of the Echis genus in general.
However, the fact that the serine protease superfamily was
important in the venom of the Viperidae suggested that such
enzymes should be present in the venom of E. ocellatus and
that serine protease-specific antibodies are likely to be an
important factor in E. ocellatus envenoming. We therefore
screened the E. ocellatus cDNA library in order to isolate
and characterise different isoforms or variants of this enzyme
superfamily.

2. Materials and Methods

2.1. Animals. Adult E. ocellatus (Nigeria) carpet viper used
in this study was maintained in the herpetarium, Liverpool
School of Tropical Medicine, Liverpool, UK.

2.2. Extraction of Total Venom Gland RNA and Construction
of cDNA Libraries. Venom glands were dissected from three
Echis ocellatus snakes. The vipers were sacrificed 3 days after
venom extraction when toxin gene transcription rates are
at a peak. Glands were homogenized under liquid Nitrogen
and total RNA extracted using guanidinium thiocyanate-
phenol-chloroform as described previously [15]. Lambda
phage cDNA libraries for E. ocellatus were constructed by
RT-PCR using the SMART c¢DNA library construction kit
(Clontech, California, USA). The lambda phage of the E.
ocellatus was packaged using Gigapack III Gold Packaging
Extract (Stratagene) and boiled for 5 min prior to being used
as targets of polymerase chain reaction (PCR) amplification.

2.3. Isolation and Analysis of ¢cDNA Sequences. A PCR
strategy [42] was used to isolate sequences encoding serine
proteinases from the cDNA libraries. A sense primer (5V-
GGA-TCC-ATG-GTG-CTG-ATC-AGA-GTG-CTA-ATC-

GCA-3V) and an antisense primer (5V-CTC-GAG-TGG-
GGG-GCA-AGT-CGC-AGT-TGT-ATT-TCC-3V)  compli-
mentary to highly conserved amino-terminal signal peptide
(M-V-L-I-R-V) and to the less conserved carboxy-terminal
(T-T-A-T-C-P-P) domains of published serine proteinases
DNA sequences of related viper species were synthesized
commercially (Sigma-Genosys, UK). A TAG stop codon was
inserted in the 3" primer and BamH1 and Xhol restriction
endonuclease sites (bold) were included in the 5" and
3" primers, respectively, to facilitate future subcloning into
mammalian expression plasmids. PCR was performed using
an initial denaturation (95°C—6 minutes) and annealing
(55°C—1 minute) step, followed by 35 cycles (1 minute
each) of extension (74°C), denaturation (94°C), and
annealing (55°C), and a terminal extension step (7 minutes)
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at 72°C in a thermal cycler (Gene Cycler, BioRad, Hercules,
CA, USA). The inclusion of water-only controls with each
PCR reaction allowed us to monitor and prevent cross-over
contamination. The amplicons were subcloned into the TA
cloning vector, pCR 2.1-TOPO, (Invitrogen, Groningen, The
Netherlands) and used to transform chemically competent
E. coli cells (TOP10F, Invitrogen) under ampicillin selection.
Plasmid DNA was extracted (Mini-spin prep kit, Qiagen,
Hilden, Germany) and digested with BamH1 and Xhol at
37°C to select plasmids containing inserts of the predicted
size for DNA sequencing. DNA sequencing was carried out
by the dideoxy-nucleotide chain-termination method in a
Beckman Coulter CEQk 2000 XL DNA Analysis System.
To confirm that the cDNA sequences encoded CTLs, the
predicted amino acid sequences were subjected to BLAST
searches of the GenBank, PDB, SwissProt, PIR, and PRF
databases. All the ¢cDNAs exhibited significant sequence
homology to Serine protienases of related vipers. The
CLUSTALW program [43] with PAM 250 residue weight
matrix was used to align deduced amino acid sequences
representing each E. ocellatus Serineprotienases isoforms
with analogues in venoms from related Viperidae species as
illustrated in Table 1. Serine proteinase (CAB62591) from
V. lebetina [44], Serine protease 1 (AAR24534) from B.
gabonica [45], Thrombin-like enzyme pre. (AAK12273)
from D. acutus [46], Venom serine protease 5 (AAN52350)
from T. stejnegeri [47], Serine proteinase 3 pre. (013063)
from gramineus [48], Serine proteinase A Precursor
(Q9PTUS) from B. jararaca [46, 49], Serine proteinase
2A pre. (013060) from T. gramineus [45, 48], Serine
protease (AAP42416) from B. jararacussu [50], KN-BJ2
(BAA20283) from B. jararaca [51], Serine proteinase 1 pre.
(AAG10788) from T. jerdonii [52], Thrombin-like serine
protease (AAL68708) from G. ussuriensis [53], and, finally,
Serine protease catroxase I pre. (AAL77226) from C. atrox
[54]. The phylogenetic trees constructed from the above
alignments were generated by a neighbour-joining [55]
algorithm in Lasergene software (DNASTAR, USA). The
predicted antigenic profile [56] of the published and new
Echis ocellatus serine protease (EoSer) isoforms analysed here
was determined using Protean Software (DNASTAR).

3. Results

3.1. Isolation of cDNAs Encoding E. Ocellatus Serine Pro-
tease. PCR screening of the Echis ocellatus venom gland
c¢DNA libraries resulted in a total of 14 E. ocellatus (Eo)
c¢DNAs whose sequences matched (BLAST searches) those
of published Serine proteases. The cDNAs consisted of
822 nucleotides (Figures 1 and 2(a)) and were predicted
to encode an open reading frame proteins of 264 amino
acids (28.5kDa) (Figure 2(b)). Alignment of the predicted
amino acid sequences of the 14 specific cDNAs encoding
the EoSP proteins (Figure 2(b)) revealed sequence variations.
The sequence similarity between the EoSP variants proteins
was less than 60% for the mature protein-coding region
but over 90% for regions coding both the signal peptide
and the carboxyl-terminal end. Where two or more identical
sequences were obtained from any one of these libraries, a
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F1Gure 1: PCR product of the E. ocellatus serine proteases. Analysis
of PCR amplification products by 0.7% agarose gel electrophoresis.
Bands were visualised using the ultraviolet transillumination. Lane
2: represents the amplified PCR product (circled) of about 800 bp
from E. ocellatus venom glands cDNA compared with Lane 1:1kb
ladder DNA-marker bands, of known molecular weight. Lanes 3
and 4 represent a H,O negative control and a SOD positive control,
respectively.

single representative cDNA was used for subsequent analysis.
Structural properties analysis (Emin algorithm-DNASTAR,
USA) (Figure 3) was used to categorise the 14 Serine protease
sequences into four distinct groups, based solely on sequence
alignment.

3.2. BLAST Search of the Predicted Amino Acid Sequence.
Accession numbers assigned to the new Echis ocellatus
Serine protease sequences are as follows: “group 1” EoSer-
1 (GU562413), “group 2” EoSer-3 (GU592440), “group 3”
EoSer-17 (GU592441), and “group 4” EoSer-7 (GU592439).
The predicted amino acid sequences of the EoSP-01, EoSP-03,
EoSP-07, and EoSP-17 were submitted to BLAST searches of
the genetic data bases and their similarity to published viper
serine protease (Table 1) confirmed that the EoSP cDNAs
encoded serine proteases.

3.3. Comparison of E. Ocellatus cDNAs with Analogous Serine
Proteases from Other Viper Species. All the EoSer-variants
contained the serine protease-consensus 24 amino acid
signal peptide sequence (Figure 4, arrows), including the
six-amino acids-activated motif. The signal peptide residues
were followed by a protease domain of 236 residues. The
deduced primary structures of all EoSP cDNA clones include
the requisite, highly conserved, 12 cysteine residues that form
the 6-disulphide bonds responsible for the characteristic
tertiary structure of venom serine proteases. The complete
amino acid sequences of the EoSP variants were aligned
with those of other venom serine proteases (Figure 4). Viper
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FIGURE 2: (a) The nucleotide sequence of the fourteen E. ocellatus venom gland ¢cDNAs resulting from PCR amplification. (b) Deduced

amino acid sequences of E. ocellatus venom gland serine protease cDNAs.

the G. ussuriensis viper [52]. Similarly, the Serine protease
catroxase I pre. of C. atrox venom showed no greater than

65% sequence similarity to any of the EoSP sequences.

venom SP sequences in the genetic databases were compared
with the E. o groups (Table 2 and Figure 4) by BLAST. Groups

r, SP isomers with less

than 65% sequence similarity to analogues in related viper

1-4 represent novel, highly simila

3.4. Predicted Antigenic Profile Analysis of E. ocellatus Serine

species. Group 4 showed the greatest sequence similarity

Proteases with Analogous Molecules. Since the main focus of

(80% and 82%) to the Serine protease of the African V.

our research is to develop toxin neutralising antibodies by
immunisation with DNA encoding specific toxins in venoms

lebetina and B. gabonica vipers, respectively. Of all the EoSP
clusters seemed to represent a SP sequence which showed the
highest sequence similarity range between 62% to 70% to the

of the most medically important African vipers [15, 59, 60],

SP of the vipers. None of the clusters showed more than 72%
sequence similarity to the partial peptide sequences for the

Thrombin-like serine protease isolated from the venom of

we next compared the algorithm-predicted immunogenicity

of the E. ocellatus serine protease cluster cDNA sequences
with those of all the published SPs from vipers of African
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Ficure 3: Differentiation of the fourteen cDNA-encoding E. ocellatus venom gland serine proteases. The predicted surface probabilities
(Emin algorithm, DNASTAR, USA) of the 14 E. ocellatus serine protease cDNAs were aligned. The boxed areas indicate group specific
structural motifs.

TABLE 1: Percent sequence similarity between E. ocellatus serine proteases and analogous molecules from related viper species.

Species Accession no. References Serine protease EoSP-1  EoSP-3  EoSP-7  EoSP-17
V. lebetina CAB62591 Siigur et al. [44] Serine proteinase 65 66 80 64
B. gabonica AAR24534 Francischetti et al. [45] Serine protease 1 62 63 82 65
D. acutus AAK12273 Liang et al. [46] Thrombin-like enzyme pre. 67 67 71 70
T. stejnegeri AANS52350 Lee and Zhang [47] Venom serine protease 5 66 66 65 69
T. gramineus 013063 Deshimaru et al. [48] Serine proteinase 3 pre. 71 71 61 76
B. jararaca QIPTUS Murayama, [49] Serine proteinase A pre. 66 68 66 74
T. gramineus 013060 Deshimaru et al. [48] Serine proteinase 2A pre. 65 65 73 70
B. jararacussu AAP42416 Kashima et al. [50] Serine protease 63 63 72 68
B. jararaca BAA20283 Serrano et al. [51] KN-BJ2 69 68 62 69
T. jerdonii AAG10788 Luetal. [52] Serine proteinase 1 pre. 65 65 71 70
G. ussuriensis AAL68708 Zhao et al. [53] Thrombin-like serine protease 67 67 72 71
C. atrox AAL77226 Tsai et al. [54] Serine protease catroxase I pre. 66 65 63 65
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FIGURE 4: Amino acid sequence similarity between EoSP Variants and serine proteases from related vipers. The residues shaded in black

correspond to residues that are identical to EoS

P-01. The asteriks [*] represented the tweleve conserved cysteine residues. The catalytic traid

His/Arg (67), Asp (110) and Ser (208) are represented in red circules. Activated peptide where the mature proteine cleaved is represented by

green rectangle.

domains conservation common to all the new and published
African viper venom SPs sequences as demonstrated in

origin (Figure 5). The predicted antigenic profiles of the

published and new E. ocellatus serine proteases were analysed

Figure 5.

as shown in Figure 5 using Protean Software (DNASTAR,

USA) [53]. The deduced signal peptide domains of the EoSP

1scussion

D

Serine proteases are a major component of viper ven-

4

as these

would normally be cleaved from the native proteins during
posttranslational. The thin vertical boxes depict the residues

variants are separated by a vertical dotted line,

oms and are thought to disrupt several distinct elements

comprising the catalytic traid, H/R/N, D/G/N, and S/P/N/T
(67, 110, and 208), that show the greatest immunogenic

of the blood coagulation system of envenomed victims.
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TaBLE 2: Comparison of amino acid motifs which are responsible for the potent effects and characterisation of some published venom serine
proteases with the four EoSP cDNAs.

Amino acid TSV-PA Batroxobin Ancrod EoSP-1 EoSP-17 EoSP-3 EoSP-7 References
H/R H57 H57 H57 H67 H67 H67 R67
D Dio2 D2 Doz D2 D2 D2 D2

Braud et al. [57]
S 195 §l95 195 §208 208 §208 T208
H Hl92 G192 N192 KZOS LZOS KZOS K205
F F193 G g193 G206 G206 G206 A206
D D189 D% D18 G202 D202 G202 D202 Guinto et al. [58]
P p22s p22s p22s Pp235 p235 P35 p23s
P P219 P219 P219 PZZS V228 PZZS P228 Braud et al. [57]
D D96 N96 R96 Y106 Y106 Y106 Y106
D D% VY7 T 107 T07 07 T7 Lee and Zhang [47]
E B8 98 998 Lo 108 K108 R108

HDS: Catalytic Traid; H/F: substrate specificity; D & P: Architecture of water channel; P: Evolutionary region to kallikrein; DDE: substrate specificity to plasminogen.
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A detailed understanding of the functions of these enzymes
is important for both acquiring a full understanding of
the pathology of envenoming and because these venom
proteins have shown a vital role in treating blood coagulation
disorders.

In general, serine proteinases including fibrinogenolytic
enzymes are very abundant in Viperidae venoms in which
they may account for 20% of their total protein content
[61]. The unique specificity of snake venom proteinases
makes them potentially useful in research of fibrinogen-
depletion and limited proteolysis [62, 63]. This may be
due to the existence of multiple forms of serine proteases
in the venom of a single viper species which is likely to
contribute to the diverse biological effects exerted by the
whole venom. Therefore, screening the E. ocellatus cDNA
library to isolate different isoforms or variants of serine
proteases was the aim of this research work. The results
obtained in this work provide the first molecular sequence
data for E. ocellatus serine proteases they also reveal that
the serine protease composition of E. ocellatus is as complex
as that of the better characterised Viperidae species. The
utilization of PCR amplification of E. ocellatus venom gland
c¢DNA with the new viper serine protease-specific primers
was successful and produced fourteen cDNAs sequences that
were identified (BLAST) as belonging to the serine protease
enzyme family. All EoSP cDNAs were of similar total length
(approximately 0.80 kb, Figure 1) and encoded 260 amino
acids (Figure 2(b)) with a predicted molecular weight of
28.5 kDa. To differentiate between the isolated EoSP clones
a surface probability algorithm was used to assign the 14
E. ocellatus serine protease cDNAs into four main groups
(Figure 3). A single representative clone from each group
was chosen for further analyses as described earlier. The
sequence similarity between the EoSP variants proteins was
less than 60% for the mature protein-coding region but
over 90% for regions coding both the signal peptide and
the carboxyl-terminal end. Thus the latter two regions are
highly conserved, which explains why the PCR experiment
to amplify the cDNAs-encoding EoSP clones was successful.

The EoSP cDNA sequences were confirmed by BLAST
searches as encoding serine proteases (Figure 4). The greatest
sequence similarity was between EoSer-7 and B. gabonica and
V. labetina (80% and 85%) with the remaining EoSP cDNAs
showing 60%-76% sequence similarity with other snake
venom serine proteinases as illustrated in Table 1. From the
proteins with known biological activity, sequence similarities
of the EoSP variants (i.e., EoSer-01, EoSer-03, EoSer-07
and EoSer-17) were 62%—69% with the kinin-releasing and
fibrinogen-clotting serine protease (KN-BJ) from venom
of B. jararaca [51] (Table 1). The putative 18 amino acid
signal-peptide of the EoSP variants was as conserved (over
90% sequence similarity) as that in the serine proteases of
other viper species (Figure 4, arrows). Following the signal
peptide all the EoSP variants contained the predicted six-
amino acid cleavage (activation) site Q-K/T/M/E-S-S-E-L/P
(Figure 4 in green) as proposed for batroxobin [64]; thus
cleavage generates a hydrophilic zymogen peptide, based on
the processing site of pre-peptides of mammalian serine
proteinases [65-67]. Comparison of the EoSP variants with

analogous members of the serine protease family revealed
that all EoSP variants encoded the presumed catalytic triad,
which is common to venom serine proteases H67, D110
and S208 as shown in Figure 4. Such residues were highly
conserved in groups 1-3, except proteins of group 4 (Figures
2(b) and 4) which contain R instead of H at the same
position (Figure 4). Furthermore, comparison of the EoSP
amino acid sequence alignment with analogous venom
serine proteases (Figure 4) revealed a conserved consensus
active site of L-T/S-A-A-H/R/N-C corresponding to position
63-68, as previously determined [68]. Most SVSPs are likely
to be glycoproteins showing a variable number of N- or
O-glycosylation sites in sequence positions that differ from
one SVSP to the other [69]. Using the primary structure of
EoSP variants (Figure 4) the putative N-linked glycosylation
sites, Asn-X-Thr/Ser [45], were found and are located at
two different positions. EoSer-01, EoSer-03, and EoSer-17
[N44_X45_S46 and NZS7_x258_T259] and EoSer-07 [N124_R125_
T!26 and N%7-T2%8-T258]_ Although such motifs are thought
to be needed for protein stabilization rather than for the
catalytic function of the venom enzymes [30], confirmation
of the roles of such motifs in venom proteases remain to
be investigated. All serine proteases have a common pattern
of 6-disulfide bridges [69, 70]. They contain twelve cysteine
residues, ten of which form five disulfide bonds, based on
the homology with trypsin [64]; the remaining two cysteines
form a unique and conserved bridge among SVSPs, involving
Cys245e (chymotrypsinogen numbering), found in the C-
terminal extension [35].

From the results obtained this was found in all EoSP
clones (Figure 2(b)) that encoded the common 12 cysteine
residues in which are strongly conserved forming putative
disulphide bridges which are located at Cys®! Cys>, C%,
Cl00, C145, C165, C176, C204, C2M4, C22%, and C2 (Figure 4).
This suggests that the EoSP proteins possess a similar tertiary
structure to that of other serine proteases which are well
characterized.

Despite such sequence and structural conservation, viper
venom serine proteases show very divergent effects on
haemostasis as previously stated. In some cases certain amino
acid sequences have been shown to be responsible for such
effects as demonstrated in Table 2. Although such table gives
a preliminary prediction of the functional characterization
of the EoSP ¢cDNAs in comparison with well-known char-
acterized venom serine proteases, it cannot be considered as
a functional confirmation or even a categorization strategy
to differentiate between the four EoSP cDNAs. However,
from Figure 4 and Table 2 it can be generally concluded that
such comparison demonstrates that the enzymes encoded
by the four EoSP c¢DNAs confer multiple haemostasis-
disruptive activities to E. ocellatus venom. Furthermore, the
sequence and predicted structural similarities of these four
EoSP groups suggest that an antibody generated to one
group may be capable of neutralizing the other group of
EoSPs. To examine this permeability the sequences of EoSP
groups were subjected to a more specific algorithm that
predicted amino acid motifs of high immunogenicity. A
protein structure-predicting algorithm [56] has been used
(i) to identify domains of strong antigenic potential in the
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toxin gene product and (ii) to determine whether these
domains are conserved in analogous venom toxin gene
products of related vipers. The signal peptide was separated
from the mature protein by dotted line as would be cleaved
posttranslationally. The peaks shown by the EoSPs profile
indicate the numerous domains predicted to have a surface
location and potential for antibody induction. Although
the antigenic peaks of the catalytic traid of the EoSPs
showed less similarity with that of the analogous venom SPs
particularly those at residues 67 and 110, many antigenic
residue similarities of EoSPs are shared with other SVSPs of
related vipers. Therefore, it is likely that antibodies raised by
EoSP DNA immunisation are likely to possess considerable
cross-reactivity and might competitively inhibit the function
of these domains in the similar venom toxins of related
vipers. However, binding of antibodies specific to conserved
antigenic domains without a known function are equally
as likely to disrupt protein function by virtue of steric
hindrance. The veracity of these speculations need to be
confirmed experimentally and thus is a focus of our current
research.

In conclusion, the predicted Jameson-Wolf antigenic
profiles (DNASTAR, USA) of the EoSP variants aligned
with very low identity to their (BLAST) analogous serine
proteases. This observation strongly suggests that an anti-
body raised by immunisation with group one EoSP DNA
is likely to be less effective against the gene products of
groups 2, 3, or 4. Therefore additional antibodies generated
against antigenic index that showed less conservation will be
required.
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