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Inference of the biochemical systems (BSs) via experimental data is important for understanding how biochemical components in
vivo interact with each other. However, it is not a trivial task because BSs usually function with complex and nonlinear dynamics.
As a popular ordinary equation (ODE) model, the S-System describes the dynamical properties of BSs by incorporating the power
rule of biochemical reactions but behaves as a challenge because it has a lot of parameters to be confirmed. This work is dedicated to
proposing a general method for inference of S-Systems by experimental data, using a biobjective optimization (BOO) model and a
specially mixed-variable multiobjective evolutionary algorithm (mv-MOEA). Regarding that BSs are sparse in common sense, we
introduce binary variables indicating network connections to eliminate the difficulty of threshold presetting and take data fitting
error and the L -norm as two objectives to be minimized in the BOO model. Then, a selection procedure that automatically runs
tradeoff between two objectives is employed to choose final inference results from the obtained nondominated solutions of the
mv-MOEA. Inference results of the investigated networks demonstrate that our method can identify their dynamical properties

well, although the automatic selection procedure sometimes ignores some weak connections in BSs.

1. Introduction

Biochemical systems (BSs) consist of many components,
which interact with each other in a complex way to act as inte-
grated dynamic systems. Inference of biochemical systems
is dedicated to identify how these components interact with
each other and helpful to investigate the dynamical properties
of these complex systems. In the past decades, the (prob-
abilistic) Boolean networks [1, 2], the (dynamic) Bayesian
networks [3, 4], and some other probabilistic or statistical
methods [5, 6] have been proposed to confirm connections
between components in BSs. Although the probability- or
statistics-based models can properly address the negative
effects of data noise, they cannot precisely incorporate the
dynamical properties of BSs. Because ordinary differential
equation (ODE) models that produce directed signed graphs
are not only suited for steady-state and time-series profiles
but also able to work entirely in classical category [7],
they are widely utilized to model various kinds of BSs
(8, 9].

In biochemical system theory (BST), the S-System model
incorporating the pow-law formalism is considered as an
effective and consistent mathematical model to represent
and analyze the biological systems [10]. Its mathematical
formalism is a nonlinear ODE system:

dXi a Iij i h;; .
W:a,ﬂxj -g[ X" i=1...N, 1)
j=1 j=1

where X represents the concentration of reaction component
iand N is the total number of components in the investigated
network. In the S-System, there are totally N(2N + 2) param-
eters, including the positive rate constants ;, 3; € R™ and the
kinetic constants gi)j,hi)j € R, i,j =1,...,N. Although the
number of parameters to be determined is relatively large for
inference of S-System, it is also employed to reconstruct large-
scale GRNs [11-13], attributed to its powerful approximation
of dynamics of biochemical reactions.

Inference of S-Systems is available when there is a
time-course experimental data set {X;.,(£), £ = 0,...,T,
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i =1,..., N} of all components, implemented by minimizing
the differences between experimental data and numerical
results. To address the ill-posedness of this reverse problem,
minimization of the differences is usually normalized and
penalized as [14, 15]

min err ()

)
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where X; (¢, ®) is the numerical results of X; at time t and A
is the penalization parameter that is problem-dependent. To
make the objective function continuous, L(®) is commonly
taken as

N N
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Nonlinear model (2) of S-Systems has a complicated
landscape, which results in the preference to solve it by
evolutionary algorithms (EAs) [16, 17]. When evaluating the
candidate network parameters in the population of EAs,
the ODE system should be solved via some numerical
method such as the Runge-Kutta method, which could lead
to a computationally-heavy evaluation process. Thus, Tsai
and Wang [18] used an allocation method to decouple the
ODE system. However, this method introduces an allocation
parameter for evaluation of candidate solutions, which is hard
to debug for its dependence on the investigated problems
and available data sets. Liu et al. [19] developed a separable
parameter estimation method (SPEM) to decouple the S-
System. But, in their method, the rate constants are numer-
ically determined by the least square method, which could be
computationally difficult because it has to compute inverse
of a 2 X 2 matrix that is the product of a 2 x N matrix and
its transpose (the computational difficulty concerns not only
the time complexity but also the stability of algorithm for
computation of inverse matrices).

Since inference of BSs simultaneously addresses sev-
eral issues, multiobjective optimization models could be an
available alternative for this problem. Liu and Wang [20]
proposed a three-objective optimization model simultane-
ously minimizing the concentration error, slope error, and
interaction error and then transformed it to a single-objective
optimization problem by converting two objectives into
constraints. However, transformation of the multiobjective
model to the single-objective model greatly depends on a
prior information on network connections of the investigated
network. Koduru et al. [21] and Cai et al. [22] simultaneously
minimized data error for several different data sets, but they
did not try to minimize the network connections/parameter
norms to get sparse networks, which makes it more difficult
to set a threshold for pruning net connections. To address
the defect of model (2) that A has to be regulated to ensure
that its global optimal solutions do lie around the true
network parameters, Spieth et al. [23] took the data error and
connection number as two minimization objectives and solve
it using a multiobjective evolutionary algorithm. However,
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they did not work on how to choose an appropriate Pareto
solution as the final inference result.

This work is dedicated to address the aforementioned
shortcomings in existing works. To eliminate the difficul-
ties of debugging regularization parameters in regularized
methods, we construct a biobjective optimization (BOO)
model that tries to simulate the dynamical properties of
S-Systems by minimizing the error between computed
derivatives and estimated slopes, simultaneously driving
the network topology as sparse as possible. Meanwhile,
fitting of derivatives also makes it possible for decoupling
S-Systems without incorporation of extra parameters. For
solution of the proposed BOO model, we propose a mix-
variable multiobjective evolutionary algorithm (mv-MOEA)
in which a candidate network configuration is represented
with combination of binary variables indicating network
connections and real variables of parameter values. Then,
an automatic selection procedure (ASP) is employed to
take the final inference results as one from the obtained
nondominated solutions of BOO. Because the ASP runs
tradeoff between fitting errors and network connections
by locating the knee regions on the curves of normalized
objective values, it can obtain a preferred sparse network con-
figuration with the absence of a prior information on network
connections.

The rest of this paper is organized as follows. Section 2
introduces the inference method proposed in this work.
Then, effectiveness of our method is validated by benchmark
S-Systems in Section 3. Finally, Section 4 draws the conclu-
sions and presents the future work.

2. Method

The inference method based on multiobjective evolution-
ary optimization (IM-MOEO) consists of three parts: the
biobjective optimization (BOO) model, the mixed-variable
multiobjective evolutionary algorithm (mv-MOEA), and the
automatic selection procedure (ASP), which are, respectively,
presented in the following.

2.1. The Biobjective Optimization Model

2.11. Decoupling the S-System. To decrease number of param-
eters to be confirmed, the S-System is firstly decoupled before
we try to infer it by experimental data. At the same time,
decoupling the S-System also reduces the time complexity of
evaluation process. Dynamical properties of the autonomous
S-System can be fitted by approximating the derivative values
of component concentration at each time point: for the ith
equation in (1) we try to minimize the difference between two
sides of each equation as

min err;(®,;) = "Si - El”z, i=1,...,n (4)
where S; represents the vector of dX;(t)/dt at all time
points, approximated by the five-point numerical formula.
S;, the slope vector corresponding to parameter vector @, is
computed via the right part of the ith equation for all time
points [19].
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2.1.2. Representation of an S-System. By decoupling the S-
System (1), we can infer N equations one by one. The
ith equation is characterized as network connections and
parameter values and represented by x; = (bx;, rx;), where
bx; = (bx;;,....bx;,5y) and rxy = (rX; ..., 7% 5N,0)
are binary and real vectors, respectively. Then, the kinetic
constants can be confirmed by

9ij = bxi,j RESAT

©)

hij = bxi,N+j T TXiN+j>

Vj = 1,...,N. Moreover, we can also get values of rate
constants by a; = rx; yn,; and f; = rx; ).

2.1.3. The Biobjective Optimization Model. Once the S-System
is decoupled, we can infer N ODEs one by one. The biobjec-
tive optimization model for inference of the ith ODE is

min err; (®,)
(6)
Ly (),

where ©; = (gi1>- - -> gin» Pit»> - - - » Bin» &5 B;) 1s the parameters
to be confirmed, Ly(®,) is the L, norm of (g;;>-.-.»>Jin>
hi, ..., h;y). Minimization of L,(®;) is dedicated to obtain
a sparse network topology. Thanks to introduction of binary
variables, the L-norm can be computed as

N
Ly(©;) = bei,j' (7)

=1
So, no threshold is needed to prune the network connections.

2.2. 'The Mixed-Variable Multiobjective Evolutionary Algo-
rithm. Because there are at most N connections for each
component in (1), the BOO model (6) has at most N +
1 Pareto solutions (for an N-order S-System, values of
Ly(®,) are restricted in {0,1,...,N + 1}). So, no diversity
keeping strategy is necessary to obtain a set of uniformly
distributed efficient vectors if the population size is set greater
than N + 1. Meanwhile, the BOO model includes mixed
variables and mixed-objectives, which make it difficult to
solve it. Thus, we propose a mixed-variable multiobjective
evolutionary algorithm (mv-MOEA) for this model. The mv-
MOEA employs a respective evolution strategy for discrete
and binary variables, which is beneficial to both the global
exploration in the mix-variable search region and the local
exploitation in the real variable subregion.

When inferring an equation of an S-System of N compo-
nents, mv-MOEA employs a population Pop with assistance
of OldPop to accelerate convergence of binary search [24].
Both Pop and OldPop are of size PopSize and separated into
the discrete section and real section as

Pop = [BPop, RPop] ,
®)
OldPop = [OldBPop, OldRPop] .

Considering that a solution is evaluated by combining
the binary and real variables, we also use an archive

Arc = [BArc, RArc] to save promising network topologies,
as well as a Pool; of real vectors for the ith solution in Pop to
promote the search in feasible regions of real variables. The
framework of mv-MOEA is described as follows.

Step 1 (initialization). Randomly generate Pop, OldPop, and
Arc of PopSize individuals and evaluate them. Vi = 1,...,
PopSize, initialize Pool; to be a set of PopSize randomly
generated (2N + 2)-dimensional real vectors. By combining
with the ith binary individual in BPop, evaluate all vectors
in Pool; via (6). Randomly select an individual in Pop to be
gbest = (bgbest, rgbest).

Step 2 (recombination). Generate PopSize offspring Off, =
(boff,,roff,), i = 1,...,PopSize and combine them with
Pop to construct the intermediate population IPop =
[BIPop, RIPop].

Step 3 (sorting). Sort Pool;,i = 1, ..., PopSize via their fitting
errors (the fitting error refers to the first objective of model
(6)) and denote the worst one as pool; ,,. Compute dominance
ranks of individuals in IPop via the Pareto dominance
relation. For individuals of the same rank, sort them in
ascending order via their L,-norm (the second objective of

(6)).

Step 4 (updating). Set OldPop = Pop and update Pool; by
Off,, i = 1,...,PopSize. Replace Pop with PopSize best
individuals in IPop and update Arc by the rest of IPop. gbest
is randomly selected from Pop or Arc.

Step 5. If the stopping criterion is not satisfied, go to Step 2;
otherwise, output the nondominated solutions and the itera-
tion process ceases.

2.2.1. Recombination. For i = 1,..., PopSize, Off; is gen-
erated by three randomly selected parents Parent,, Parent,,
and Parents:

(i) With a probability p,, Parent, and Parent, are ran-
domly selected from Pop, and Parent, is randomly
selected from OldPop.

(ii) Otherwise, Parent,, Parent,, and Parent; are ran-
domly selected from Arc.

Then, the binary and real part are, respectively, generated as
follows.

(i) The bit-string boff, is generated by the bit-strings of
Parent,, Parent,, and Parent , according to the binary
recombination strategy proposed in [24].

(ii) The real vector roff; is generated by the DE/rand/1
mutation and the binary crossover strategies [25].
With a probability p,, three parents are the real parts
of Parent,, Parent,, and Parents; otherwise, roff, is
generated by the real part of Parent, and two real
vectors randomly selected from Pool,.

Finally, we combine boff; and roff; to obtain the candidate
solutions of f; = (boff,, roff,), i = 1,..., PopSize.



2.2.2. Updating. If the fitting error of of f; is smaller than that
corresponding to pool; , in Pool;, replace pool; , with roff,.
gbest is selected from the population Pop with probability
ps; otherwise, it is selected from Arc. Since the archive
Arc is here adopted to guide the convergence, it is updated
with respect to the hamming distances. An offspring off, is
employed to update Arc as follows.

(i) If the hamming distance between broff; and barc is
greater than zero for any arc = (barc,rarc) € Arc,
update the archive member arc,, = (barc,,rarc,)
by x = (bx,rx) if x = (bx,rx) has a better fitting
error. Here, arc,, is the archive member with the worst
fitting error when the hamming distance between any
two archive members is greater than zero; otherwise,
it is the worst one of archive members that have
repeated bit-string;

(ii) otherwise, compare broff, with archive members
with repeated bit-strings and replace by it one with
the worst fitting error.

In this work, p;, p,, and p; are set to be 0.8, 0.7, and 0.8,
respectively.

2.3. Evaluation of the Obtained Nondominated Solutions. The
mx-MOEA generates a set of nondominated solutions of the
BOO model (6) for each equation in the S-System, where
each nondominated solution represents a configuration of
this equation. Because two objectives of the nondominated
solutions conflict with each other, all of them could be a
candidate configuration of the investigated equation. Thus,
selecting one from nondominated solutions needs to address
a tradeoff between network connections and fitting errors.
Considering that two objectives could be of different orders
of magnitude, we first normalize two objectives by their
maximum values. Then, two scores Scorel; ; and Score2; ; can
be obtained for the kth solution of equation i. Now, a tradeoff
strategy could be employed to select one solution as the final
inference result of equation i.

Assume that M; nondominated solutions are obtained for
the ith equation. A popular aggregation method is to compute
the linear aggregation sum (LAS):

LScore; ;. (A) = AScorel;; + (1 — A) Score2,;,
€
k=1,..., M,

1

for a given weight A € [0,1] and select one solution
with minimum sum as the inference result of equation i.
However, the LAS method, which is dedicated to compare the
difference of sum between all configurations, focuses on the
most acute decrease of sum as connection number increases.
As aresult, a “too sparse” network is obtained.

To address the merit of LAS method, we would like to take
the aggregation product (AP)

PScore;; (A) = Scorelik . ScoreZi;’\ (10)

as the criterion of result confirmation. For a given weight A €
[0, 1], we select the k;th solution with

P : = in P .
Score; . (A) kzl})l}.l”lMi Score; ;. (1) a1)
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as the inference result of equation i. Combining inference
results of all equations, we then get the overall inference
result of the investigated S-System and evaluate its quality
by numbers of the true positives (TPs), false positives (FPs),
true negatives (TNs), and false positives (FPs). With change
of parameter A, the Receiver Operator Characteristic (ROC)
curve is taken as the illustration of quality for the nondomi-
nated solutions of (6) obtained by the mv-MOEA.

2.4. The Automatic Procedure for Selecting the Final Infer-
ence Results from the Obtained Nondominated Solutions.
Although we can get an inference result for a given A, we
do not know which value of A corresponds to the “right”
tradeoft between two objectives of (6). In this work, we would
like to propose an automatic selection procedure (ASP) for
confirmation of the final inference result. When an inference
result of the investigated S-System is obtained for a given
weight A, we can simultaneously get a sum vector as

N N
Vec (1) = (Zm (i,1), ) 82 (i, /\)), (12)

i=1 i=1

where S§1(;,A) = Scorel;; and S2(i,A) = Score2;; are
the respective normalized objective values of the inference
result for equation i. When sampling A in [0, 1], we also get
a collection of sum vectors constituting a normalized Pareto
front in the objective space.

Since there are only two objectives to be considered,
improvement of one objective will lead to deterioration of
another. If small improvement of one objective results in a
severe deterioration of another, the solutions constitute the
so-called knee regions. According to the method proposed
in [26], Li et al. suggest to locate the knee region to select
one result from the Pareto front, where the angle-based
method [27] is employed to seek the knee points on the
combined Pareto front. In this method, two adjacent points
are incorporated to compute the tradeoft angle of a point,
and one with maximum tradeoff angle is selected as the
preferred sum vector. Recall the value of A corresponding to
this sum vector; we can get the final inference results of all
equations via (10) and (11) and combining them to get the
overall inference result of the investigated S-System.

3. Results and Discussions

In this section, performances of the IM-MOEQ are validated
by two investigated S-Systems. To demonstrate the inference
precision and the robustness of our method, we first infer
an artificial network via noise-free and noisy simulated data.
Then, the Ethanol Production System by Yeast is investigated
to show how our method obtains a sparse network by
focusing on simulation of its dynamical property. When
generating simulated data for two problems, we sample 15
time points uniformly in the same time intervals as those
investigated in the literatures for comparison.

3.1. Inference of an Artificial System by Noise-Free and Noisy
Data. The investigated artificial network S1 is an artificial
S-System illustrated in Table 1. Some previous researches
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TABLE 1: Parameter values of the artificial network S1.

i & 9i i i3 Yia Yis B hyy hy, hys hyy hys

1 5.0 0.0 0.0 1.0 0.0 -1.0 10.0 2.0 0.0 0.0 0.0 0.0
2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0
3 10.0 0.0 -1.0 0.0 0.0 0.0 10.0 0.0 -1.0 2.0 0.0 0.0
4 8.0 0.0 0.0 2.0 0.0 -1.0 10.0 0.0 0.0 0.0 2.0 0.0
5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0

[15, 20, 28-32] have been performed on this network to
demonstrate efficiencies of S-System inference methods.
Thus, we also reconstruct it to validate competitiveness of our
method.

3.1.1. Experimental Settings. To perform a fair comparison
with the method proposed in [15], noise-free data are time-
course series generated by sampling at 15 time points for
4 diverse initial conditions. Search regions for the kinetic
orders and rate constants are set as [—3, 3] and [0, 10], respec-
tively. Due to the difficulty of multiobjective optimization,
we employ a population of 100 individuals and report the
obtained nondominated solutions after 2000 iterations. For
each equation of this artificial system, the algorithm is inde-
pendently run for 10 times to obtain a satisfactory inference
result. The noise-free, 5%-noise, 15%-noise, and 25%-noise
data are generated with the same method proposed in [15].

3.1.2. Inference Results of SI. Performances of IM-MOEO
versus those of some previous researches are first investigated
by the true positive rate (TPR) and false positive rate (FPR)
which are computed as

TPR= 10
TP + FN
Ep (13)
FPR = ———,
TN + FP

where TP, FN, TN, and FP represent the true positive (TP),
false negative (FN), true negative (TN), and false positive
(FP) predictions of the parameters. Then, the ROC curves
are illustrated in Figure 1 for noise-free, 5%-noise, 15%-noise,
and 25%-noise data. It is noted that the proposed method can
generally identify the network via data of noise-free and 5%
noise; however, its performance deteriorates quickly when the
noise rate rises to 15%. It could be attributed to the inherent
mechanism of our method, that is, incorporation of binary
variables for identification of network connections. Since the
L, norm of parameter vectors to be minimized is confirmed
by binary variables, the proposed MOEA is dedicated to
search the sparse network topologies, which makes it less
compatible with the data noise.

Meanwhile, this method is significantly insensitive to the
parameter A. Thanks to incorporation of the L, norm instead
of the L, norm of the parameter vectors, the inference results
are not sensitive to values of A. As a result, 101 uniformly
sampled values in [0,1] of A only contribute to several
different results of the artificial system. This suggests that if
we can appropriately dispose of the difficulty introduced by
incorporation of L, norm in the optimization model, it could

True positive rate

0.4 0.6

False positive rate

0.8 1

—— 15% noise
—+ 25% noise

—%— Noise-free
—o— 5% noise

F1Gure 1: ROC plot of the inference results for the artificial network
SL.

be much more likely to select a preferred nondominated
result of the multiobjective optimization via the aggregation
method represented by (10) and (11).

By locating the knee region of the objective curve, we can
get the final reconstruction results of the artificial system S1.
The results again demonstrate that our method is not sensitive
to value of A, because the knee points are, respectively,
obtained for noise-free, 5% noise, 15% noise, and 25% noise
data when A varies in [0.31,0.68], [0.43,0.59], [0.49, 0.65],
and [0.40, 0.54], respectively. For comparison with L1-DPSO
[15], the obtained reconstruction results are included in
Table 2 for four different data sets.

It is shown that both our method and L1-DPSO can obtain
the correct network of S1 by noise-free data. Generally, our
method can obtain more accurate parameter values for noise-
free data, except that parameters of (3) are less precise. This is
because concentration of the 3rd component quickly reaches
its stationary state, and consequently, less information could
be extracted by fitting the time-series data of derivatives.

When it comes to the noise data, the competitiveness
of our method is highlighted by the inference results. Our
method can always obtain sparse network topologies of S1,
even if the noise rate (NR) varies from 5% to 25%. By contrast,
it is a mission impossible in the method proposed in [15]
to set a uniform threshold value for pruning of network
connections, because increase of NR definitely increases
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TABLE 2: Comparison between IM-MOEO and L1-DPSO for the artificial network S1.

NR i Method % 9in o 9i3 Gia Jis B; hy, hi his hiy his
1 IM-MOEO  4.928 0.0 0.0 0.996 0.0 -1.008  9.908  2.026 0.0 0.0 0.0 0.0
L1-DPSO 4.387 0.0 0.0 1.425 0.0 -0.896  9.567 1.465 0.0 0.0 0.0 0.0

) IM-MOEO 9985  2.002 0.0 0.0 0.0 0.0 9.983 0.0 2.003 0.0 0.0 0.0
L1-DPSO 9.324 1.789 0.0 0.0 0.0 0.0 10.562 0.0 2.058 0.0 0.0 0.0

Free 3 IM-MOEO  5.381 0.0 -1.309 0.0 0.0 0.0 4.040 0.0 -1.459 1984 0.0 0.0
L1-DPSO  10.879 0.0 -1.659 0.0 0.0 0.0 9.847 0.0 —1.245 1.875 0.0 0.0

4 IM-MOEO  7.966 0.0 0.0 2.023 0.0 -1.007  9.993 0.0 0.0 0.0 1.952 0.0
L1-DPSO 7.795 0.0 0.0 2.054 0.0 -1.021  9.739 0.0 0.0 0.0 1.975 0.0

5 IM-MOEO  9.962 0.0 0.0 0.0 2.005 0.0 9.967 0.0 0.0 0.0 0.0 2.014
L1-DPSO 9.632 0.0 0.0 0.0 2.056 0.0 9.567 0.0 0.0 0.0 0.0 2.136

1 IM-MOEO 5417 0.0 0.0 0.893 0.0 -0.1.011  9.834 1.527 0.0 0.0 0.0 0.0
L1-DPSO 4332 -0.070 -0.098 1.783 0.070  -0.568 10.235 1235 -0.030  0.138 0.042 0.027

2 IM-MOEO 8376  1.635 0.0 0.0 0.0 0.0 8.966 0.0 2,609 -0.674 0.0 0.0
L1-DPSO 9299 1549 -0.089 -0.025 -0.139 -0.139 11263 -0.133 2.432 0.048 -0.038 -0.150

50 3 IM-MOEO 1234 0.0 -0.690 -0.3555 -0.886 0.0 1.137 0.0 0.0 0.0 0.0 0.0
L1-DPSO  10.771 0.086  —2.568 0.003 -0.145 0.010 9.076  -0.101 -1569 2564 -0.092 -0.062

4 IM-MOEO 7513 0.0 0.0 1.379 0.0 -1.059  9.953 0.0 0.0 0.0 1.624 0.0
L1-DPSO 8214 -0.144 -0.092 2785  —0.048 -0.626  9.671 0.032 0.148  -0.087  2.568 0.039

5 IM-MOEO  10.00 0.0 0.0 0.0 1.686 0.0 8.316 0.0 0.0 0.0 0.0 1.586
L1-DPSO 9.490 0.135 0.090 0.081 1.865 0.101 11.167  0.142 0.118 0.023 0.040 2.461

1 IM-MOEO  4.355 0.0 0.0 0.619 0.0 -1.063  9.960 1.791 0 0 0 0
L1-DPSO 3987 -0.137 -0.432 2.654 0.426  -1.986  8.987 1.869 -0.086 -0.046 -0.137 0.078

) IM-MOEO  3.535 2.057  -0.779 0 0 0 0.00 0 0 0 0 0
L1-DPSO 11786  3.123 0.405 0.218 0.237  -0.258 11786 —-0.208  3.215 0.415 0.310 -0.461

15% 3 IM-MOEO  2.481 0.821 0.0 0.0 -2.379 0 1.737 0 0 0.0 0 0
L1-DPSO 11.126  -0.020 -3.126 0.083 0.011 0.207 11126 -0.244 -1.986  3.412 0.475 -0.369

4 IM-MOEO  5.779 0.0 0.0 1.897 -0.839 -0.942 6.983 0.0 0.0 0.0 0.0 0.0
L1-DPSO  6.976 0.0 0.0 0.0 L116 -0.646  4.722 0.0 0.0 0.0 0.0 0.0

5 IM-MOEO  6.976 0.0 0.0 0.0 1.116 -0.646 4.722 0.0 0.0 0.0 0.0 0.0
L1-DPSO 8.334  0.208 0.357 -0.327 3.214 0.295 8.334 -0.038 -0.428 -0.318 0.282 3.604

1 IM-MOEO 8150 -0.272 0.0 0.645 0.0 -0.495 8.089 0.0 0.0 0.0 0.0 0.0
L1-DPSO 7.894 0.481  —-0.759 3.879 0946  -2963 19.235 4.651 -0.326 0.356 0.738 0.526

2 IM-MOEO 10.00 0.8838 —0.2913 0.0 0.0 0.0 6.087 0.0 0.0 0.0 0.0 0.0
L1-DPSO  15.031 4.129 0.110 -0.491 -0.557 -0.423 18.605 -0.215 4.152 0.627  0.494 -0.723

25% 3 IM-MOEO  6.689 0.0 -0.257  -0.909 0.0 0.0 6.336 0.0 0.0 0.0 0.0 0.0
L1-DPSO  18.678  0.859 -4214 -0388 0305 -0.042 15.065 -0.581 -2.546 4.421 -0.170 0.556

4 IM-MOEO 72311 0.0 -0.290 0.0 0.0 -0.681  9.319 0.0 0.0 -0.591 0.0 0
L1-DPSO 6.579  -0.215 0.199 4.568 -0.635 -2.655 17036  0.250 0.859 0.258 5.123 0.190
IM-MOEO  6.773 0.0 0.0 0.0 0.0 0.0 1.342 0.0 0.825 0.0 —-1.415 0.0
L1-DPSO 6.598 -0.941  0.487 -0.833 4.125 -0.564 14.905 0.060 -0.106 0.785 -0.349 4.843

fitting errors of the LI-DPSO, which further influences the
inference result of the investigated S-System. Although the
data noise also lowers the precision of our inference results,
incorporation of the biobjective model and the automatic
confirmation scheme ensures that a sparse network can
always be obtained, and for most cases, sparseness (rate of
true connections versus possible connections) of the obtained
network is similar to the true network. The superiority is
highlighted by the inference result obtained when NR of
data is relatively low—our method can correctly identify the
correct network topologies via 5%-noise data. Meanwhile,

the automatic confirmation of sparse network also meets a
problem—sparse network topology is sensitive to data noise.
As a result, for 15%- and 25%-noise data, more network
connections are wrongly identified by our method.

3.2. Identification of the Yeast Fermentation Pathway Dynam-
ics. As an example of real biochemical networks, the yeast
fermentation pathway proposed in [33] is also investigated
in this work. Its S-System model contains five dependent
variables: glucose (X), glucose-6-phosphate (X,), fructose-
1,6-diphosphate (X5), phosphoenolpyruvate (X,), and ATP
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TABLE 3: Reconstruction result of IM-MOEO for the network S2.

i &xi 9i iz 9i3 Yia Yis Bi hiy hy, hys hiy hys

1 0.9009 0 —0.0495 0 0 0 1.4985 0.5970 0 0 0 0.0427
2 1.1871 0.5822 0 0 0 0.1835 0.3927 0 0.5368 0 0 -0.0732
3 05014 0 0.2768 0 0 0 0.2515 0 0 0.3901 0 0.2565
4 0.1935 0 0 0.5777 0 0.0599 1.9370 0 0 -0.0779 0.3684 0

5 0.8562 0 0 0.3766 0.1770 0.0581 1.5422 0.2863 0.2728 0 —0.0541 0.2691

(X5) and eight independent variables with the follow-
ing steady-state values: glucose uptake (X¢; 47.5 mM/min),
hexokinase (X;; 24.lmM/min), phosphofructokinase (Xg;
53.9 mM/min), glyceraldehyde 3-phosphate dehydrogenase
(X; 91.4mM/min), pyruvate kinase (X,,; 18.1mM/min),
polysaccharide storage (X,,; 82.9 mM/min), glycerol produc-
tion (X,,; 924 mM/min), and ATPase (X,3; 1.0 mM/min)
[34]. So, the S-System S2 is

dx )
£ = 100063, X, - 16497X} P XX,
ax
222 _ 16497 X<1).5582 X2A0465 X,
dt
— 0-5793X2'5097X;0'2218Xg'8322X(1)'11678,
dx,

- — 0.4536Xg.4407X;0.2665X8

(14)

0.4506 1-0.0441 1,0.092 -0.8547 4-0.1453
— 0.2456X54500 X §0441 y 0092 08547 x 01453,

ax
dt4 _ 0.2365X2'5285X(5)'0994X9

_ 2.0892X;0.0075X2.304X(5).0484X10,

dx
dtS — 1.406Xg‘2605X2.152X2‘0739Xg.5X(1)65
0.1962 1-0.1791 1,0.2354 0.3514 -0.2925 -0.0589 +-0.297
—2.9437X 01992 31791 2354 X 93514 x 02925 00589 309297

It is inferred via a time-course data generated by 10
random initial concentrations, with each initial condition,
that 15 time points are sampled. The search ranges of the
parameters are [0.0,3.0] for «; and f3; and [-1.0,1.0] for
gi; and h;;. Employing the mv-MOEA solving model (6),
we can obtain a collection of configurations (nondominated
solutions) for each equation. Then, the ROC curve could
be obtained by sampling A in [0, 1]. Finally, the automatic
selection strategy is implemented obtaining its final inference
result.

Although there are several weak connections in the sys-
tem S2, the mv-MOEA can get the correct network topologies
for all equations (it means that, for each equation, the mv-
MOEA can obtain one nondominated solution indicating
the correct network topology). To demonstrate a highlighted
illustration of the nondominated solutions obtained by mv-
MOEA, we only illustrate in Figure 2 the ROC curve obtained
by sampling A in [0,1]. The ROC curve demonstrates a
satisfactory result for inference of S2, which shows that the
biobjective optimization model (6) and mv-MOEA can work
well for this network. What should be noted is that the ROC

12
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FIGURE 2: ROC plot of the inference results for the real network S2.

curve does not include the point (0, 1), despite the fact that the
correct topology corresponding to each equation is included
in the obtained collections of nondominated solutions. The
reason is that for all equations the correct topologies corre-
sponding to various network connections and fitting errors,
a uniform setting of A possibly does not locate all correct
configurations at the same time. Consequently, the overall
inference result of S2 does not locate all correct network
topologies for all equations.

By employing the ASP on the obtained nondominated
solutions, we get the final inference result of system S2
included in Table 3. Just for the same reason, the final result
obtained by the ASP has got a false connection and missed
several weak connections. To evaluate how these wrongly
identified connections influence dynamical properties of the
investigated S-System, we compare the dynamical curves
of all components in one plot illustrated in Figure 3. It
is demonstrated that the dynamical properties of obtained
network are almost consistent to that of the true network,
even if several connections are wrongly identified. Premised
on the result of data fitting, IM-MOEO is dedicated to obtain
a sparse network. Because all the wrong identifications are
weak connections that do not significantly influence the
dynamic properties of this network, these weak connections
are not correctly confirmed when the ASP gets a tradeoff
between data fitting error and network sparseness. As a result,
it comes to a sparse network that has a low FPR and a high
TPR.
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FIGURE 3: Dynamic curves of the obtained results for bf S2.

4. Conclusion and Discussion

To address defects of existing inference methods, we propose
a biobjective optimization model for identification of S-
Systems, an efficient mix-variable multiobjective evolution-
ary algorithm to solve the biobjective model, and an auto-
matic selection scheme for confirmation of the final inference
result. Although introduction of binary variables and L-
norm make the biobjective optimization model harder to
solve, the proposed mv-MOEA can deal with it with satisfac-
tory performances. The automatic selection scheme demon-
strates to be intelligent in investigated benchmark networks;
however, it sometimes misses some weak connections due
to its preference to sparse network topologies. In general,
the biobjective optimization method accompanied with the
automatic selection scheme is a universal method for infer-
ence of BSs, because the biobjective model could be applied
to BSs of any size, and no problem-dependent parameters
are needed for its successful implement. By inferring two
widely investigated small-scale networks, we do validate its
effectiveness compared with previous researches. However,
when applied to large-scale BSs, mv-MOEA could be compu-
tationally expensive and perform unsatisfactorily attributed
to data noise as well as lack of sufficient samples. Thus,
data mining methods should be incorporated to boost its
applications on large-scale BSs. Further improvement of this
method could be focused on enhancement of its performance
on noise data and its applications on large-scale BSs.
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