
RESEARCH ARTICLE

A metric learning method for estimating

myelin content based on T2-weighted MRI

from a de- and re-myelination model of

multiple sclerosis

Glen Pridham1,2, Shahnewaz Hossain3, Khalil S. Rawji1, Yunyan ZhangID
1,2,4*

1 Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada, 2 Hotchkiss Brain

Institute, University of Calgary, Calgary, Alberta, Canada, 3 Department of Medical Sciences, University of

Calgary, Calgary, Alberta, Canada, 4 Department of Radiology, University of Calgary, Calgary, Alberta,

Canada

* yunyzhan@ucalgary.ca

Abstract

Myelin plays a critical role in the pathogenesis of neurological disorders but is difficult to

characterize in vivo using standard analysis methods. Our goal was to develop a novel ana-

lytical framework for estimating myelin content using T2-weighted magnetic resonance

imaging (MRI) based on a de- and re-myelination model of multiple sclerosis. We examined

18 mice with lysolecithin induced demyelination and spontaneous remyelination in the ven-

tral white matter of thoracic spinal cord. Cohorts of 6 mice underwent 9.4T MRI at days 7

(peak demyelination), 14 (ongoing recovery), and 28 (near complete recovery), as well as

histological analysis of myelin and the associated cellularity at corresponding timepoints.

Our MRI framework took an unsupervised learning approach, including tissue segmentation

using a Gaussian Markov random field (GMRF), and myelin and cellularity feature estima-

tion based on the Mahalanobis distance. For comparison, we also investigated 2 regres-

sion-based supervised learning approaches, one using our GMRF results, and another

using a freely available generalized additive model (GAM). Results showed that GMRF

segmentation was 73.2% accurate, and our unsupervised learning method achieved a cor-

relation coefficient of 0.67 (top quartile: 0.78) with histological myelin, similar to 0.70 (top

quartile: 0.78) obtained using supervised analyses. Further, the area under the receiver

operator characteristic curve of our unsupervised myelin feature (0.883, 95% CI: 0.874–

0.891) was significantly better than any of the supervised models in detecting white matter

myelin as compared to histology. Collectively, metric learning using standard MRI may

prove to be a new alternative method for estimating myelin content, which ultimately can

improve our disease monitoring ability in a clinical setting.

1 Introduction

Myelin plays an important role in maintaining neurological functions. It can enhance signal

conduction speed directly by 20–100 times, and provides critical neuroglial support for the
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underlying axons [1]. The integrity of myelin is implicated in normal development, ageing,

and numerous pathological conditions of the nervous system such as multiple sclerosis (MS)

[2]. Thus the availability of a non-invasive method to reliably characterize myelin content is

critical.

There have been significant effort in deriving myelin assessment methods previously

using magnetic resonance imaging (MRI) techniques. Example measures include: myelin

water fraction [3, 4], quantitative T1 or T2 [3–5], radial diffusivity [4, 6], and magnetization

transfer [3–5, 7]. An alternative approach is assessing the distribution pattern (texture) of

MRI pixels. Image texture refers to the unique inter-pixel relationships associated with a spe-

cific tissue. In MRI, such relationships highlight the intrinsic biophysical property of the

underlying tissue as reflected by its signal intensity and relaxation [8]. Therefore, macro-

scopic analysis of MRI texture provides an integral estimation of the biochemical properties

of tissue microstructure as done in histology. Combining with pertinent characterization

techniques, texture analysis may enable robust evaluation of myelin content using myelin-

sensitive MRI. Indeed, texture analysis of T2-weighted MRI has shown considerable poten-

tial to detect changes in myelin integrity using various methods: first and second order statis-

tics [9], directional statistics [10, 11], or spectral analysis [12], although their sensitivity and

specificity require further verification.

Analysis of MRI texture also includes methods that combine parameter estimation with tis-

sue classification, such as Markov random fields (MRFs) [13, 14]. In a MRF, image texture is

modelled as a local interaction between neighbouring pixels. The outcome of a MRF classifica-

tion model can directly serve as input for subsequent regression, or for latent variable analysis

based on Mahalanobis distances [15], if the MRF is Gaussian (GMRF). Mahalanobis distance

is a measure of the distance between a point and a distribution, characterized by the number

of standard deviations that a point is away from the mean of a distribution. It takes account

the covariance between variables in multi-dimensional measures and is scale invariant. Co-

registering the Mahalanobis metric space to a physically meaningful metric space, such as his-

tological myelin density, may allow direct, unsupervised prediction of tissue microstructural

properties. Notably, advances in machine learning technologies over the past 20 years [16]

have made supervised training of statistical models highly attractive, particularly given the

availability of robust non-linear image co-registration algorithms [17, 18]. Supervised learning

is also typically easier to conduct and may perform better than unsupervised learning [19], but

the ground truth is not always available [20].

In this study, we proposed an unsupervised learning approach for predicting histological

myelin, and its counter-staining tissue, cellularity, based on T2-weighted MRI acquired from a

mouse model of de- and re-myelination of MS [21, 22]. Feature estimation used the Mahalano-

bis distance, following GMRF segmentation. Subsequently, we compared the derived MRI

features to histology, and to results from two supervised regression models trained using histo-

logical myelin and cellularity standards; one model based on our GMRF segmentation results.

To ensure accuracy, we also compared segmentation between our GMRF and an established

MRF [14].

2 Materials and methods

This study was approved by the Health Sciences Animal Care Committee at the University of

Calgary (ID: AC13-0246). During animal model creation, imaging, and tissue sampling, anes-

thetic agents including ketamine and xylazine were used to ensure optimal comfort of the ani-

mals and quality of the data.
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2.1 Animal model

The source data used in this experiment have been previously reported in another study [12].

In brief, we examined 18 female C57BL/6 mice aged 8–10 weeks (Charles River, Quebec, Can-

ada). Demyelinated lesions were induced by an expert (KSR) to the ventral white matter of

thoracic spinal cord (T3/4) using a chemical toxin, lysolecithin. This model featured peak

demyelination at 7 days post lysolecithin injection, active remyelination at 14 days, and nearly

complete recovery by 28 days, as established in various studies [3, 21, 22].

2.2 MR imaging

Cohorts of 6 mice underwent MRI at each time-point (7, 14 and 28 days), totaling 18 animals.

Image acquisition used a 35-mm-diameter volume coil at our 9.4T animal scanner (Bruker

Biospin, Germany), following head and limb fixation with dedicated tapes and intraperitoneal

injection of anesthesia (100 mg/kg ketamine/xylazine) immediately before MRI to keep the

animals still. Throughout the experiment, the animals were under respiratory gating, and tem-

perature and heartrate monitoring. The MRI protocol included a RARE T2 sequence with the

following parameters: TR/TE = 2500/15 ms, echo train length = 8, slice thickness = 0.75 mm

for 7 slices, field of view = 1.5x1.5 cm2, matrix = 256x256, and pixel size = 0.06x0.06 mm. As

lesion induction was stereotactically controlled at a single injection site in each animal, we

focused only on the MRI slice at the centre showing the largest lesion area.

2.3 Histology procedure

Post imaging, the animals were sacrificed immediately through transcardial perfusion with 4%

paraformaldehyde. The thoracic spinal cords were then sampled and prepared for histology.

Specifically, 20 μm-thick transverse slices were cut using a cryostat centered at the lesion, total-

ing 10–80 sections per animal to ensure complete coverage of the thickness of an individual

MRI slice at the location (750 μm-thickness). The sections were stained with eriochrome cya-

nine for myelin, and neutral red counter stain for nuclei/cellularity [23], and digitalized using

a confocal microscope (Olympus BX51, Japan). The section with the largest lesion area in each

animal was used for MRI correspondence. Overall, 4 of the 18 animals were excluded from sta-

tistical analysis: 3 were sliced longitudinally (one per time-point), and one (1) did not show a

MRI-matching lesion (mouse 4).

2.4 Image pre-processing for MRI and histology

Image processing was primarily performed using R, version 3.4.3 [24], via the EBImage pack-

age [25]. For histological images, we first manually removed background artifacts and loose

tissue strands using Adobe Photoshop CC (2017.1.0). Then, we separated the myelin and cell

nuclei staining as blue and red channels using R, and performed image normalization in 2

steps: pixel-wise, which divided each pixel value in a channel by the total pixel intensity across

colors, and channel-wise, to the range [0, 1]. Standardization of MRI included masking of the

spinal cord using ImageJ 1.5 [26] and intensity normalization to [0, 1].

The next step was image co-registration. This included primarily affine transformations

[18] to align the longitudinal images in both MRI and histology, and to align histology and

MRI cross-sectionally per subject. For the latter, we first embedded individual histological

images in a white background such that each had a 4096x4096 dimension, and then down

sampled them to 64x64 to match the scale of MRI using the Gaussian pyramid approach [27].

Subsequently, we segmented the MRI and histology images and affine co-registered the seg-

mentation results from histology to MRI [18]. To further improve their alignment, we
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conducted a second, non-linear co-registration [17]. This co-registration included a pre-pro-

cessing step that regressed MRI signal intensity against affine co-registered histology density

using a random forest approach [28]. The purpose of the random forest was to linearize the

relationship between MRI and histology to enhance the quality of co-registration (Fig 1).

2.5 Texture analysis

For both supervised and unsupervised approaches, we incorporated local textural information,

derived from the pairwise relationships between an individual pixel and its neighbours,

namely, Markov texture. Our neighbourhood structure, N , was symmetric about the central

pixel and was sorted by radial distance then by angle with respect to the x-axis (Fig 2). In this

study, we chose 20 symmetric neighbours, which gave rise to 10 unique parameters. This

choice had shown to be highly effective previously in discriminating natural textures [29].

2.6 Unsupervised segmentation

The segmentation process seeks to convert a set of random variables, fx*ig, such as pixel inten-

sity values in an image, into a hidden label membership field Zil, defined by:

Zil ¼
1 if xi 2 label l

0 otherwise

(

ð1Þ

Based on histopathology, we a priori identified 4 major segmentation groups: background

(BG), white matter (WM), grey matter (GM), and cell body (CB). In particular, we combined

Fig 1. Image processing and analysis pipeline. Shown are the main steps involved in this study for image preparation, MRI and histology alignment,

and myelin and cellularity estimation using MRI. Note: RGB: red, green, blue; Myelin/cellularity GT: myelin and cellularity value ground truth; GMM:

Gaussian mixture model; Segmentation GT: segmentation ground truth of histology; GMRF: Gaussian Markov random field; Seg. reg: segmentation

regression; GAM: generalized additive model.

https://doi.org/10.1371/journal.pone.0249460.g001
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the substantia gelatinosa (SG) component with induced lesions to form the CB group, given

their similarity in staining properties. For MRI, we included a 5th label, partial volume (PV), to

account for the potential partial volume effect between WM and GM [30]. In this study, we

used a Gaussian Mixture Model (GMM) to segment histology images, and our customized

GMRF to segment MRI, with the latter further compared with a different MRF-based open-

source algorithm (FAST, Oxford, UK) as described below (Section 2.6.2).

2.6.1 Segmentation with GMMs. GMMs segment data into sub-populations with Gauss-

ian statistics. We used GMMs for two purposes. First, segment the color histology images into

4 tissue types (BG, WM, GM, and CB), to generate the ground truth for validating MRI seg-

mentations; calculate tissue means; and perform receiver operator characteristic (ROC) curve

analysis. Second, initialize the GMRF segmentation by preliminary segmenting the MRI into 5

labels using T2 signal intensity alone. All GMM estimations were performed using the Mclust

algorithm with default prior, which automatically selected the best model using the Bayesian

information criterion [31].

2.6.2 Segmentation with an open-source MRF. The FAST algorithm implemented in the

open-source FSL library is a common method for tissue segmentation in neuroimaging [14],

which uses a MRF akin to our GMRF model. For comparison, we used the R implementation

[32] of FAST. Using the best recommended parameter values, the FAST segmented MR

images into 3 options: BG/CB/GM/PV/WM, BG/CB/GM/WM, and BG/GM/WM. Based on

our preliminary results, the FAST segmentation was not as accurate as our GMRF, so metric

learning analysis used the latter only; our final results also confirmed the lack of competency

of FAST in the current study (Table 1).

2.7 Unsupervised segmentation and metric learning with a GMRF

2.7.1 GMRF theory. Given a vector of image intensities: x*, and a possibly non-constant

mean, m
*

, any GMRF can be written as:

p x*
� �
¼

1

2p
Q

�
�
�
�

�
�
�
�

1
2

exp �
1

2
ðx* � m*ÞTQ x* � m*

� �
� �

ð2Þ

Fig 2. Markov random field model. Shown are an example T2-weighted MR image from a mouse spinal cord (left), a

focal highlight in the left lateral white matter sized 5x5 pixels (blue square, left and top right), and the Markov model

parameters for an arbitrarily selected pixel within the blue (red square, bottom right). The pixel was modelled as a

function of its 20 nearest neighbours, with outcomes scaled by the 10 unique, symmetric parameters.

https://doi.org/10.1371/journal.pone.0249460.g002
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with inverse covariance Q [33]. Note that Qij = 0 if xi and xj are not neighbours and are there-

fore conditionally independent [33]. We hypothesized that tissues were classifiable based on

their differences in m
*

and Q. This also implied mathematically that these variables are hidden-

label-dependent. We used the following parameterization:

mi ¼
XNl

l¼1

Zilm
�
l

m� l ¼
1

Pj x* j
i¼1

Zil

Xj x
* j

i¼1

Zilxi

Qði;jÞði0 ;j0Þ � 0 if xði;jÞ or xði0 ;j0Þ 2 background ðexclusiveÞ

Qði;jÞði0;j0Þ ¼
�

1

2

XNl

l¼1

Zði;jÞlbl;i� i0 j� j0 þ Zði0;j0Þlbl;i0 � i j0 � j

bl;00

0

; for neighbours

; otherwise

8
>>><

>>>:

Qði;jÞði;jÞ ¼
XNl

l¼1

Zði;jÞl
bl;00

ð3Þ

where (i, j) denotes image indices before vectorization.

2.7.2 Hidden label field estimation/GMRF segmentation. Parameter estimation with

the GMRF included 2 steps: 1) estimating the hidden (tissue) label field (GMRF segmentation),

and then 2) estimating the parameters for each associated tissue label. These steps iterated

until convergence. The latter was done using least-squares as loss functions [29], with the back-

ground label fixed for optimal segmentation at: μ = 0, β00 = 10−30, and βij = 0.

We used results from the GMMs to initialize our GMRF segmentation for T2-weighted

MRI as described above. Iterative refinement of the label field took a classical approach known

as Gibbs sampling achieved pixel-wise, using the simulated annealing technique [34, 35]. Spe-

cifically, using an arithmetic coding structure [36], we iteratively updated the label field of all

non-neighbouring pixels according to the proposal distribution (S1 File):

pðZil ¼ 1jZ� il; x
*
;Q; m*Þt

� 1ðnÞ
�

1

P
pðxijN i;Q; m

*
;Zil ¼ 1;Z� ilÞ

t� 1ðnÞpðZil ¼ 1Þ
t� 1ðnÞ

ð4Þ

where {−i} is the set of pixels excluding the ith one. This distribution allowed to calculate the

probability of a pixel belonging to any associated label and then randomly sample a label for

Table 1. Segmentation confusion matrices (N = 6307).

GMRF FAST

CB GM WM CB GM WM

Histology CB 11‰ 25‰ 25‰ 31‰ 15‰ 15‰

GM 50‰ 270‰ 129‰ 236‰ 157‰ 56‰

WM 5‰ 34‰ 451‰ 27‰ 126‰ 338‰

‰: per mille.

https://doi.org/10.1371/journal.pone.0249460.t001
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the pixel based on its probability. According to Eq (3), the first term on the right-hand-side of

Eq (4) is:

p xijN i;Q; m
*
;Zil ¼ 1;Z� il

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pbl;00

s

exp �
1

2bl;00

ðxi � mi � JiðQÞbl;00Þ
2

 !

ð5Þ

where Ji� −∑B = {−i}(QiB(xB − μB)). To validate the fitting results of our GMRF model, we also

performed simulation via Gibbs sampling (S2 File) using Eq (5).

Next, the probability of each label pixel was set a priori to:

pðZil ¼ 1Þ ¼ gl ð6Þ

where g
*
¼ ½0:010; 0:045; 0:030; 0:061; 0:854�

T
¼ ½CB;GM; PV;WM;BG�T . These values

were estimated from the median of the day 28 MRI scans that were essentially lesion free. Fix-

ing g
*

allowed our algorithm to have a priori knowledge, which discouraged biologically

unlikely outcomes to have high likelihood values (e.g CB group).

Finally, the temperature at the nth iteration, tðnÞ, was set using the heuristic schedule,

which had the ability to converge to a physically realistic and stable solution [13, 35]:

t nð Þ ¼
logeð4Þ
logeð3þ nÞ

0

for n � 253

253 < n < 259

8
><

>:
ð7Þ

where the number of iterations was determined by the condition that the final temperature be

tf ¼ 0:25. When the temperature was 0 we picked the maximum of Eq (7), making it equiva-

lent to iterated conditional modes [34], where the most likely label was picked at each iteration.

MR images were initially segmented into 5 labels. When comparing to a segmentation with

fewer labels (e.g. histology), we removed obsoleted labels (e.g. PV) and re-normalized Eq (4).

2.7.3 Myelin and cellularity feature estimation. Our metric learning process enabled fea-

ture estimation. It involved constructing a metric space for MRI based on the output of GMRF

segmentation, and then co-registering the MRI metric space to the corresponding histological

metric space. The co-registration used tissue means as landmarks, which were estimated using

our down-sampled GMM segmentation of histology (literature standards could be used here

instead). For the MRI metric, we computed the Mahalanobis distance (d) between each pixel

and the mean of each label as: dWM, dGM, and dCB. Each of these Mahalanobis distances was

scaled by a constant optimized by Nelder-Mead, which gave the minimal root-mean-squared

distance between tissue means of the MRI and histology metric spaces. The scaled distances

were then used for numerical (Nelder-Mead) multilateration, which enabled co-registering the

MRI-space position (WM, GM, CB) to the histology-space position (myelin, cellularity), and

the histology-aligned MRI space positions for myelin and cellularity became our correspon-

dent MRI features, respectively. As this process required at least three reference points or tissue

groups, all of our segmentations contained three or more labels. The Mahalanobis distance of

the ith pixel from the lth tissue mean was calculated using the mean, μl, variance, βl,00, neigh-

bourhood parameters, βl,j and neighbour means μj as:

dil ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

bl;00

ðxi � mlÞ �
X

j2fN ig

bl;jðxj � mjÞ

 !2
v
u
u
t ð8Þ
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2.8 Supervised learning

Using histology results as the ground truth, we considered two non-linear regression models:

segmentation regression, based on outputs from our GMRF segmentation, and a black-

box generalized additive model (GAM). Regarding the latter, we also included a linear regres-

sion as the simplest type of GAM (linear GAM), for quantitative comparison. Furthermore, we

considered two loss functions for each model: root-mean-squared error (RMSE) and mean-

absolute-error (MAE). Where not explicitly stated, we refer to MAE. Finally, we explored the

impact of focal lesions by explicitly including a manual lesion mask, where for optimal reliabil-

ity, we focused only on the four day 7 mice because they had the largest lesions.

2.8.1 Segmentation regression. We extended our GMRF segmentation algorithm to

include a response variable, the staining density of myelin/cellularity, and then used the

GMRF outcomes and MRI signal intensity as predictors of the response. For the RMSE loss,

we used a linear random effects model [37], while for the MAE, we performed median regres-

sion independently for each segmented label [38]. Our final model included the manual lesion

masks as a new label using the modified GMRF segmentation achieved by overriding existing

labels.

2.8.2 Generalized Additive Models (GAMs). GAMs can capture non-linearities by allow-

ing arbitrary relationships between predictor variables. Each observation yi takes the form

[16]:

yi ¼ b0 þ b1f ðx
*

iÞ þ �i ð9Þ

where the unknown function, f, must be expanded along a user-specified basis. The linear

model (linear GAM) represents the identity case f(x) = x. Our other GAM models used a thin-

plate spline with the default number of knots [39, 40]. To understand the impact of predictors

on our blue and red histology standards, we performed step-wise regression using: 1) T2 signal

intensity alone (Markov- GAM), 2) T2 signal intensity plus texture (Markov GAM), and then

3) adding the manually identified lesion masks as a binary dummy variable, l, to #2 (Markov

+ GAM). The Markov texture here also used a 20-neighbourhood setting per pixel to ensure

comparability with our GMRF-based approach. The full GAM model was:

yi ¼ b0 þ b1f1ðxið1 � liÞÞ þ b2f2ðxiliÞ þ
X

j2fN ig

bjfjðxið1 � liÞ; xjð1 � liÞÞ þ �i ð10Þ

2.9 Time cohort analysis

To understand how MRI estimates performed over time, we conducted a group-level analysis

at each time-point for all three learning approaches and compared that with the corresponding

histology. This was done without inclusion of lesion masks. The estimated outcomes for each

learning method were combined per time-point after initial longitudinal co-registration of the

source images. For both MRI and histology, the median maps per time-point were calculated.

2.10 Model validation and statistical analysis

All models were validated using the 14 mice with corresponding histology. Unsupervised

approaches were assessed directly using Pearson correlation. Supervised approaches were

leave-one-out cross-validated, with error estimated by the standard deviation. In addition,

pairwise comparisons used the Mann-Whitney test, and segmentation accuracies used the

binomial test. To further test the ability of our unsupervised MRI myelin feature versus regres-

sion, ROC curve analysis was performed [41], using the co-registered histology myelin
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segmented in the WM as ground truth. Comparison of the area under the ROC (AUC) curves

used the Delong test. All statistics were computed using R [24]. A p < 0.05 was considered sig-

nificant. All reported confidence intervals were 95%. Members in the background label in

either histology or MRI were excluded in calculating summary statistics.

3 Results

3.1 Segmentation outcomes

3.1.1 Qualitative results. Overall, we analyzed the MRI of all 18 animals, and MRI versus

histology of 14 animals. Visually the GMM segmentation for histology was consistent with the

expected anatomy (Fig 3). In MRI, our GMRF segmentation appeared better than the FAST

segmentation in all animals. The GMRF correctly identified more tissue, and had smoother

and more continuous labels for the main tissues, such as WM and GM, than FAST (Fig 4). The

segmentation performance was the best for MR images that had relatively good visual contrast.

Fig 3. Histology segmentation. Shown are the original histological images (A) obtained from each animal (numbers), and the corresponding

segmented images (B) using the red-green-blue intensity. Row indicates time cohort: day 7 (row 1), day 14 (row 2) or day 28 (row 3). Note: mouse 4 did

not show a convincing lesion in histology to match MRI so was excluded from correlative analyses.

https://doi.org/10.1371/journal.pone.0249460.g003

Fig 4. MRI segmentation. Shown are the original T2 MRI images (A) from each animal (numbers), the corresponding

segmentation results of MRI using our GMRF (B) and the open-source software FSL FAST (C), and the associated

histology segmentation using our GMM method for comparison (D). Row indicates time cohort: day 7 (row 1), day 14

(row 2) or day 28 (row 3).

https://doi.org/10.1371/journal.pone.0249460.g004
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3.1.2 Quantitative results. Based on the GMM segmentation of histology, the estimated

tissue mean for myelin (blue) across all animals was (mean ± sd): 0.735 ± 0.119 (WM),

0.333 ± 0.117 (GM), and 0.341 ± 0.139 (CB). For cellularity (red), they were: 0.230 ± 0.113

(WM), 0.666 ± 0.120 (GM), and 0.785 ± 0.175 (CB) respectively.

Excluding background pixels, the GMRF segmentation was 73.2% (CI: 72.1%-74.3%) accu-

rate for MRI, significantly greater than both FAST [52.6% (CI: 51.3–53.8%)] and the initial

GMM [58.6% (CI: 57.4–59.8%)]. Tissue-wise, the FAST appeared to be more specific to CB

than the GMRF, showing 2.8 times as many true positive CB labels. However, the FAST also

had 4.7 times as many false positive CB due to mislabeling of GM (Table 1). Overall, the total

number of CB pixels was small (382/6307 = 6.1%) as compared to the WM (3092/6307 = 49.0)

and GM (2833/6307 = 44.9%).

Out of the 12 texture parameters in the GMRF model, 4 were significantly different from

zero (Fig 5): the mean (μ), conditional variance (β00) and the first 2 of the 10 neighbouring

parameters (β01 and β01). Moreover, using the parameters generated by the GMRF segmen-

tation (S1 Table), our simulated images showed a high similarity to the initial MRI in all

Fig 5. GMRF MRI segmentation parameters. Shown are boxplots of the GMRF segmentation parameters across all subjects. Parameters showing no

overlap of the inter-quartile ranges between tissues (WM, PV, GM, CB) suggest tissue-dependent and approximately independent of the test subject.

The symbol, ?, indicates parameters significantly different from zero based on Bonferroni-corrected Wilcox test. Note: WM: white matter; PV: partial

volume; GM: gray matter; CB: cell body.

https://doi.org/10.1371/journal.pone.0249460.g005
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but one animal (mouse 14), although the simulation showed a notably pixelated appearance

(S1 Fig).

3.2 Estimation outcomes for the myelin feature

3.2.1 Visual inspection. The estimated myelin content of GM and WM was consistent

with the histological findings from all methods, except for mice with poor MRI contrast: 13

and 14, or with large lesion cores: 2, 11 and 16 (Fig 6). Compared to histology segmentation,

there appeared to be a systematic under-fit in MRI models, especially using RMSE, as indicated

by the residual correlations (Table 2), and residual images (S2 Fig). In addition, the segmenta-

tion regression and the Markov GAM outcomes appeared smoother and with smaller lesion

core discrepancies than the unsupervised GMRF features, with the segmentation regression

predictions having less intra-mouse variability than the GAMs (e.g. mouse 14). Between loss

functions, all MAE regressions showed better contrast than RMSE regressions in supervised

learning (S3 and S4 Figs).

3.2.2 Quantitative results. The correlation between the GMRF myelin feature and histol-

ogy myelin was 0.67 (top quartile: 0.78). It was 0.70 (top quartile: 0.78) for segmentation

regression and 0.70 (top quartile: 0.78) for the Markov GAM (Table 2; Fig 6). The AUC analy-

sis showed that the GMRF myelin feature had a stronger diagnostic ability than any of the

regression models (p<10−15; Table 3). In addition, segmentation regression was more diagnos-

tic than the GAMs in general (p = 10−2), where the Markov GAM was more diagnostic than

Markov- GAM based on T2 intensity alone (p<10−11). With inclusion of manual lesion masks

into the regression models (S2 Table), the GMRF myelin feature was still more diagnostic than

the best segmentation regression+ (p<0.0010), but not significantly greater than the Markov

Fig 6. Myelin predictions. Shown are the myelin feature images learned from the MRI of the 14 mice that have

histological correspondence using: our GMRF (A), segmentation regression associated with our GMRF (B), Markov

GAM using a freely available software (C), and the histological standard (D). Note: there is no clear myelin/WM

structure detected using Markov GAM in mice 10 and 14, and the lesion cores appear to be overestimated in mice 2

and 10 in the MRI methods.

https://doi.org/10.1371/journal.pone.0249460.g006
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Table 2. Mean ± standard deviation (min to max) cross-validated error and 95% confidence interval (min to max, last row) of myelin model accuracies.

Model Loss R2 Pearson Correlation Residual Correlation

Linear GAM RMSE 0.36 ± 0.17 0.68 ± 0.11 0.83 ± 0.05

(−0.05 to 0.60) (0.47 to 0.85)

MAE 0.36 ± 0.21 0.68 ± 0.11 0.76 ± 0.07

(−0.17 to 0.64) (0.47 to 0.85)

Segmentation Regression RMSE 0.46 ± 0.16 0.70 ± 0.12 0.71 ± 0.10

(0.17 to 0.70) (0.43 to 0.84)

MAE 0.43 ± 0.18 0.70 ± 0.11 0.55 ± 0.15

(0.06 to 0.72) (0.43 to 0.85)

Segmentation Regression+ RMSE 0.59 ± 0.05 0.78 ± 0.04 0.60 ± 0.09

(0.51 to 0.64) (0.73 to 0.81)

MAE 0.57 ± 0.05 0.78 ± 0.04 0.41 ± 0.13

(0.50 to 0.61) (0.73 to 0.80)

Markov- GAM RMSE 0.39 ± 0.18 0.69 ± 0.11 0.81 ± 0.07

(0.00 to 0.64) (0.45 to 0.86)

MAE 0.37 ± 0.22 0.69 ± 0.11 0.70 ± 0.11

(−0.11 to 0.66) (0.44 to 0.85)

Markov GAM RMSE 0.41 ± 0.20 0.69 ± 0.12 0.75 ± 0.10

(−0.09 to 0.63) (0.37 to 0.84)

MAE 0.40 ± 0.22 0.70 ± 0.12 0.70 ± 0.11

(−0.13 to 0.67) (0.39 to 0.85)

Markov GAM+ RMSE 0.58 ± 0.11 0.78 ± 0.08 0.59 ± 0.14

(0.43 to 0.67) (0.67 to 0.84)

MAE 0.58 ± 0.11 0.79 ± 0.07 0.53 ± 0.17

(0.44 to 0.67) (0.68 to 0.85)

Myelin Feature - - 0.67 -

(CI: 0.66 to 0.69)

Note: Bold highlights the best results. Segmentation Regression+: segmentation regression plus lesion masks; Markov- GAM: GAM based on T2 signal intensity alone;

Markov+ GAM: Markov GAM plus lesion masks.

https://doi.org/10.1371/journal.pone.0249460.t002

Table 3. AUC analysis for WM detection using the myelin predictions.

Model Loss Lesion Mask Cohort(s) used AUC CI Low CI High

Linear GAM RMSE n all 0.832 0.822 0.832

MAE n all 0.833 0.823 0.834

Segmentation Regression RMSE n all 0.854 0.844 0.863

MAE n all 0.856 0.846 0.866

Markov- GAM RMSE n all 0.826 0.815 0.826

MAE n all 0.827 0.816 0.827

Markov GAM RMSE n all 0.844 0.835 0.855

MAE n all 0.843 0.833 0.853

Myelin Feature - n all 0.883 0.874 0.891

Segmentation Regression+ MAE y day 7 0.904 0.888 0.918

Markov+ GAM MAE y day 7 0.910 0.895 0.924

Myelin Featuree - y day 7 0.919 0.905 0.932

Note: Bold highlights the best results. CI: confidence interval, 95%. Segmentation Regression+: segmentation regression plus lesion masks; Markov- GAM: GAM based

on T2 signal intensity alone; Markov+ GAM: Markov GAM plus lesion masks.

https://doi.org/10.1371/journal.pone.0249460.t003
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GAM+. Further, according to the cross-validated R2 values (MAE models), the Markov GAM

was significantly better than the Markov- GAM (p = 0.0031) and the linear GAM (p = 0.0040).

With inclusion of lesion masks, the Markov+ GAM also tended to be better than without

(p = 0.13; S5 Fig).

3.3 Estimation outcomes for the cellularity feature

The patterns and trends in the estimation of tissue cellularity were similar to those of myelin

quantitatively. Overall, the correlation was 0.60 (top quartile: 0.70) between the predicted fea-

ture and histology cellularity using our GMRF, 0.69 (top quartile: 0.77) using segmentation

regression, and 0.69 (top quartile: 0.77) using Markov GAM. Based on the R2 values (MAE

models), the supervised models performed better with inclusion of the texture parameters

than without (p = 0.0023 for Markov GAM). The Markov GAM was also better than the linear

GAM (p = 0.0067), and tended to be better with inclusion of lesion masks than without

(p = 0.25). Visually, the regression methods showed an under estimation in all lesions, and

Markov GAM appeared to be the least accurate in mice 10 and 14 predictions (Fig 7 and

Table 4).

3.4 Myelin and cellularity outcomes by time cohort

Preliminary group-level analyses between time-points from all associated animals showed that

there was a continual recovery of myelin estimates, and loss of cellularity estimates over time,

consistent with the evolving pattern in histology. The MRI outcomes appeared to recover

faster than histology outcomes in both myelin and cellularity, particularly in lesion cores, and

this observation seemed to be present in all three of the MRI-based learning methods (Fig 8).

Fig 7. Cellularity predictions. Shown are the cellularity feature images learned from the MRI of the 14 mice that have

histological correspondence, using our GMRF (A), segmentation regression associated with our GMRF (B), Markov

GAM using a freely available software (C), and the histological standard (D). Note: The brighter the area, the greater

the cellularity, except for the large lesion cores in mice 2 and 11, which show ‘dark signal’ paradoxically with the MRI

methods.

https://doi.org/10.1371/journal.pone.0249460.g007
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Table 4. Mean ± standard deviation (min to max) cross-validated error and 95% confidence interval (min to max, last row) of cellularity model accuracies.

Model Loss R2 Pearson Correlation Residual Correlation

Linear GAM RMSE 0.31 ± 0.23 0.66 ± 0.11 0.84 ± 0.08

(−0.36 to 0.51) (0.48 to 0.84)

MAE 0.29 ± 0.30 0.66 ± 0.11 0.77 ± 0.09

(−0.58 to 0.56) (0.48 to 0.84)

Segmentation Regression RMSE 0.44 ± 0.17 0.69 ± 0.12 0.73 ± 0.08

(0.08 to 0.66) (0.44 to 0.85)

MAE 0.39 ± 0.24 0.69 ± 0.12 0.57 ± 0.09

(−0.12 to 0.70) (0.43 to 0.84)

Segmentation Regression+ RMSE 0.55 ± 0.05 0.79 ± 0.03 0.58 ± 0.09

(0.50 to 0.62) (0.75 to 0.83)

MAE 0.52 ± 0.07 0.79 ± 0.03 0.46 ± 0.13

(0.43 to 0.61) (0.75 to 0.82)

Markov-GAM RMSE 0.35 ± 0.22 0.68 ± 0.12 0.82 ± 0.08

(−0.26 to 0.59) (0.45 to 0.86)

MAE 0.31 ± 0.29 0.67 ± 0.11 0.70 ± 0.10

(−0.48 to 0.61) (0.45 to 0.84)

Markov GAM RMSE 0.36 ± 0.26 0.68 ± 0.12 0.76 ± 0.08

(−0.41 to 0.61) (0.38 to 0.84)

MAE 0.36 ± 0.29 0.69 ± 0.12 0.70 ± 0.10

(−0.47 to 0.66) (0.42 to 0.85)

Markov GAM+ RMSE 0.54 ± 0.07 0.79 ± 0.06 0.57 ± 0.14

(0.49 to 0.64) (0.72 to 0.86)

MAE 0.54 ± 0.07 0.80 ± 0.06 0.50 ± 0.18

(0.49 to 0.66) (0.73 to 0.87)

Cellularity Feature - - 0.60 -

(CI: 0.59 to 0.62)

Note: Bold highlights the best results. Segmentation Regression+: segmentation regression plus lesion masks; Markov- GAM: GAM based on T2 signal intensity alone;

Markov+ GAM: Markov GAM plus lesion masks.

https://doi.org/10.1371/journal.pone.0249460.t004

Fig 8. Myelin and cellularity predictions by cohort and time-point. Shown are the median outcomes for myelin obtained using our GMRF (A),

segmentation regression associated with our GMRF (B), Markov GAM using freely available software (C), and the median histological myelin map (D),

at days 7, 14, and 28. Similarly, images E-H demonstrate the median cellularity outcomes from GMRF, segmentation regression, Markov GAM, and

histology, respectively, at the corresponding time-points. Note that the MRI predicted outcome in the lesion areas at day 28 are close to normal, while

the histology myelin and cellularity in the corresponding sites remain abnormal.

https://doi.org/10.1371/journal.pone.0249460.g008
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These observations were consistent with the quantitative outcomes as seen in the affected

ventral white matter. The median myelin feature increased by 31 ± 12% and 78 ± 14% at days

14 and 28 from day 7, and cellularity decreased by 28 ± 5% and 46 ± 3%. The degree of changes

in segmentation regression and Markov GAM were similar over time for both the tissue types.

On the other hand, myelin content increased by 18 ± 8% and 47 ± 11%, and cellularity

decreased by 15 ± 4% and 43 ± 3% in histology at days 14 and 28 from day 7, less than MRI

changes. Correlation analyses showed a similar pattern, where the correlation coefficient

between MRI and histology was much higher at days 7 and 14 than at day 28, but all values

remained >0.8 (Tables 5 and 6).

4 Discussion

In this study, we developed a new unsupervised metric learning method for assessing myelin

content using T2-weighted MRI and compared the outcomes against histology and 2 super-

vised approaches. In general, T2-weighted MRI is pathologically non-specific in MS [42].

However, based on a well-established de- and re-myelination model of MS, we discovered that

Markov texture in T2 MRI was highly associated with the myelin integrity in mouse spinal

cord. Further, integrating Markov texture into either unsupervised or supervised machine

learning models helped extract valuable myelin content information from standard MRI.

Our prediction models were anatomically robust for most tissue groups segmented except

for a few lesion cores. In particular, while lacking smoothness, our unsupervised GMRF fea-

tures correlated strongly with histology, similar to the supervised models. In addition, the

GMRF features were less susceptible to inter-subject variability than the GAM-based models,

and more robust in identifying myelin rich structures than all supervised models as shown by

the AUC. The two regression-based supervised learning approaches performed similarly, and

both appeared to be better with use of: Markov texture, the MAE loss function, and lesion

masks, than without. The non-significant difference between results with or without inclusion

of lesion masks in the regression models may be due to the small number of animals (only 4),

and the relatively small number of lesion pixels, deserving further verification. Notably, our

GMRF model contributed to both unsupervised and supervised learning in the present study,

where it performed metric learning directly in the former, and provided robust results

Table 5. Cohort-level Pearson correlation (95% confidence interval) between myelin models and histology standards over time.

Model Loss Day 7 Cor Day 14 Cor Day 28 Cor All Days Cor

Myelin Feature - 0.93 (0.91 to 0.94) 0.93 (0.91 to 0.94) 0.84 (0.81 to 0.87) 0.89 (0.88 to 0.90)

Segmentation Regression RMSE 0.93 (0.91 to 0.94) 0.92 (0.91 to 0.94) 0.83 (0.80 to 0.86) 0.88 (0.87 to 0.89)

MAE 0.93 (0.91 to 0.94) 0.92 (0.91 to 0.94) 0.84 (0.81 to 0.87) 0.88 (0.87 to 0.89)

Markov GAM RMSE 0.91 (0.90 to 0.93) 0.92 (0.90 to 0.93) 0.84 (0.81 to 0.86) 0.87 (0.85 to 0.88)

MAE 0.91 (0.90 to 0.93) 0.93 (0.92 to 0.94) 0.85 (0.82 to 0.88) 0.87 (0.86 to 0.88)

https://doi.org/10.1371/journal.pone.0249460.t005

Table 6. Cohort-level Pearson correlation (95% confidence interval) between cellularity models and histology standards over time.

Model Loss Day 7 Cor Day 14 Cor Day 28 Cor All Days Cor

Cellularity Feature - 0.89 (0.87 to 0.91) 0.82 (0.78 to 0.84) 0.70 (0.65 to 0.75) 0.81 (0.79 to 0.82)

Segmentation Regression RMSE 0.91 (0.90 to 0.93) 0.89 (0.86 to 0.91) 0.82 (0.78 to 0.85) 0.87 (0.86 to 0.89)

MAE 0.92 (0.90 to 0.93) 0.90 (0.88 to 0.92) 0.82 (0.79 to 0.85) 0.88 (0.87 to 0.89)

Markov GAM RMSE 0.88 (0.86 to 0.90) 0.87 (0.85 to 0.89) 0.82 (0.79 to 0.85) 0.85 (0.83 to 0.86)

MAE 0.89 (0.87 to 0.91) 0.89 (0.87 to 0.91) 0.84 (0.81 to 0.86) 0.86 (0.84 to 0.87)

https://doi.org/10.1371/journal.pone.0249460.t006
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enabling segmentation regression in the latter. Therefore, the GMRF can be a useful technique

for both.

Compared to previously reported myelin predicting metrics using advanced MRI, our

results were equally accurate. Prior R2 values were 0.49–0.61 (quantitative T1), 0.32–0.59

(quantitative T2), 0.67 (MWF), and 0.2–0.71 (MTR) in MS brain, and 0.56 (MWF) in rat sci-

atic nerve [43]. Our R2 values were similar to those with T1 and T2, and likely better with

inclusion of manual lesion masks in supervised learning. In fact, our best fit (mouse 5, MAE

segmentation regression) achieved a much higher R2 than all of the above reports, even

without the use of lesion masks. In addition, based on the same experiment, a prior study

has investigated the utility of high angular resolution diffusion imaging (HARDI), which is

hypothesized to be more specific to myelin and axonal changes than the traditional diffusion

tensor imaging metrics (e.g. radial and axial diffusivity). In that study, a HARDI measure

termed orientation dispersion index showed a considerable increase with demyelination and

recovery with remyelination in mouse spinal cord, with continuing increase of myelin content

as reflected by the neurite density index [12]. Our cellularity predictions performed similarly

to but somewhat worse than that of myelin in the present study, and appeared to be more spe-

cific when including lesion masks, as indicated by the high cellularity versus myelin contrast in

lesions and the GM. It is worth noting that at least 5 of the 6 studies done previously used

ROI-based analyses in histology-MRI correlation, which may have overestimated the R2 values

relative to the pixel-wise approach done in our present study.

Tissue segmentation was a critical intermediate step in this study. Our GMRF segmentation

was 15% more accurate than the initiating GMM, indicating the importance of texture infor-

mation. In contrast, while also using a MRF, FAST segmentation performed 6% worse than

the GMM. Technically, the FAST differs from our GMRF in three key respects: 1) FAST is

optimized using iterative conditional modes, 2) it does not allow a priori tissue proportions,

and 3) it uses a Markov hidden label field [14] whereas we used the Markov property directly

on source MRI signal intensity. The increased performance of GMRF was likely due to our use

of the optimizer, which applied increased iterations, and the temperature parameter that pre-

vented convergence to a local minimum. The use of a priori tissue proportions might also help

explain the difference, although our ad hoc tests suggested that the main contribution of

including tissue proportions was preventing empty labels. Notably, the FAST showed a higher

sensitivity to CB than the GMRF, although at the cost of a much greater false positive rate

from GM to CB simultaneously. One potential explanation is that the two CB populations (SG

and lesion pixels) were primarily similar in staining identity rather than texture. The GMRF is

much stronger texture-dependence, making it more sensitive to the differences between SG

and lesions than the FAST, and hence a lower detectability to the CB as a group. Our overall

outcomes also indicate that proper lesion detection in MRI is critical for improving model

accuracy. While we applied manual lesion masks, there is extensive literature on the topic of

lesion identification using unsupervised approaches [20], which however is out of the scope of

the present study.

The main challenge of our GMRF model was in classifying lesions with a relatively large

core that contained unusually dark signal intensity on T2 MRI. Most of these lesion pixels

were classified as GM rather than CB, which likely also propagated errors to the estimation of

GMRF features and segmentation regression. This was most obvious in a few day 7 lesions,

which were mistakenly characterized as having increased myelin and decreased cellularity

before mask use. The exact cause of low T2 signal intensity within the lesions remained

unclear. As our lesions were induced by the injection of a chemical toxin, the decreased signal

could be due to the following factors: mechanical damage, the impact of degraded myelin

(debris), and an iron susceptibility effect associated with the myelin-forming cells and
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inflammatory cells [44]. Given the purpose of the current study, degraded myelin was not eval-

uated (eriochrome cyanine detects only healthy myelin). Previous work [45] reported the same

problem when segmenting lesions using a similar model. Nonetheless, such intra-lesion signal

loss on T2-weighted MRI is not common in the MRI of humans with MS, so the potential limi-

tations related to the lesion core are not expected to have a major effect on future testing of our

method in a clinical setting. Moreover, with application of lesion masks in supervised learning,

our results demonstrate the feasibility to achieve reasonable estimates of myelin and cellularity

features for these lesions.

Using co-registered longitudinal data, we also explored the changes in myelin and cellular-

ity at a cohort level. By ‘averaging’ (median) outcomes across individuals per time-point, this

analysis allowed to minimize random errors while preserving anatomy, including the lesions.

We observed a significant increase in Pearson correlation between our models and histology

in both myelin and cellularity. Over time, there was a reduction of cellularity in lesions, and a

recovery of WM in lesion periphery (decreasing lesion size) in all model outcomes. Moreover,

the MRI-based myelin and cellularity estimates seemed to recover faster than histology, as con-

firmed both visually and quantitatively: there was a near-complete resolution of lesions by

day 28 in MRI measures in contrast to histology, and a sudden drop in Pearson correlation

between them at day 28 versus days 7 and 14. These observations may suggest that the MRI

features reflect more physical changes than lipid content (blue) and cell nuclei (red) as

highlighted in histology [23]. T2-weighted MRI is sensitive primarily to water content, but that

may also depend on the presence of macromolecules such as lipids, and proton-proton inter-

actions [46]. We suspect that due to the recovery differences between MRI and histology met-

rics, the MRI models could no longer distinguish tiny lesion areas from the WM when the

amount of macromolecules dropped below a certain threshold such as that occurred at day 28.

We note a few limitations in this study. First, the number of animals per time-point was

small, limiting broad conclusions. Second, the inherent challenges in histological analysis may

have affected the results. The presence of tears and bubbles in stained images is not uncom-

mon, requiring pre-processing to optimize segmentation accuracy. Moreover, it is difficult to

wash the blue staining out of nuclei without also washing the stain off of myelin [23], causing

the nuclei to be stained with both red and blue (purple). While almost unavoidable in this type

of studies, it may have created ambiguity in the ground truth. Variations in staining density is

another common issue, for which we performed image normalization to compensate. Third,

accurate MRI and histology correspondence has been a long-term challenge, potentially add-

ing uncertainties to the analyses. One issue comes from the resolution differences between the

modalities. In this study, we applied several image preparation steps to improve alignment,

including 2 iterations of image co-registration. Another issue relates to the ex vivo nature of

histology versus in vivo MRI. However, immediately before MRI, we applied high-dose anes-

thesia to keep the animals still, making optimal acquisition of images possible. In addition, all

animals had their tissue samples prepared immediately after imaging for histology, which

allowed best preservation of tissue integrity. Further, histological validation of MRI measures

has been one of the standard approaches in both animal and human studies, and our current

observations are highly consistent with results from prior studies using the same model [3, 12].

Fourth, our image contrast in MRI is relatively modest. Our in-house experiments show that

images with better quality would result in greater accuracy in both segmentation and feature

estimation with the GMRF, consistent with the rule-of-thumb stating that good contrast facili-

tates good segmentation [14]. Therefore, our current results seemed to set a low threshold for

the requirement of the quality of MRI scans, and our findings are rather conservative. Finally,

we did not have a true longitudinal cohort, limiting systemic time series analyses. However,

cohort-level analysis following strict longitudinal co-registration served as an alternative
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approach, particularly for this established animal model, which is highly predictable in both

disease course and lesion location [21, 47]. In the future, we seek to extend our GMRF model

to a full Gaussian random field or beyond [36, 48], replace it with a multi-scale approach [49],

or modify it with outlier detection [20, 50] to improve performance. Notably, our approach

was purposefully designed as stepwise and modular, to enable further validation and extension.

In addition, we plan to test alternative metrics, such as an exact geodesic distance [51] to com-

pare with the Mahalanobis distance, and test additional imaging sequences [45] and anatomi-

cal regions (e.g. the brain) to further validate our method.

5 Conclusions

Using standard T2-weighted MRI and a robust model for de- and re-myelination, we imple-

mented a novel GMRF algorithm for both unsupervised and supervised learning of myelin

and cellularity. Our MRI myelin feature performed similarly well to the literature that used

advanced MRI, and to supervised learning approaches. Likewise, our GMRF segmentation

outperformed a common FSL FAST model by>20% in accuracy. Collective results suggest

that image analysis using adequate mathematical models has the ability to extract valuable

myelin information from standard MRI. With further confirmation, the GMRF method can

be similarly applied to interrogate myelin characteristics concealed in clinical MRI of humans

with MS or similar diseases. This will be achievable as long as there is a dedicated tissue group

that has high cellularity in the images, such as focal lesions, which in fact are the hallmark

pathology of many demyelinating disorders. Integrating such novel approaches in clinical

practice can advance the use of standard MRI, provide new information about myelin injury

and repair, and add new quantitative measures in disease diagnosis and management.

Supporting information

S1 Fig. GMRF MRI segmentation simulations. Shown are both the original T2 MRI (A) and

the simulated images using the GMRF parameters (B) estimated for each animal (1–18). Row

indicates time cohort: day 7 (row 1), day 14 (row 2) or day 28 (row 3). The simulated image for

mouse 14 appears to be an outlier.

(TIF)

S2 Fig. Segmentation regression versus GAM residuals. Shown are the residual images from

segmentation regression using the MAE as a loss function following myelin (A) and cellularity

(C) predictions, in comparison with the corresponding residual images from the Markov

GAM on myelin (B) and cellularity (D). Higher visibility of the anatomical structures (e.g. the

‘H’ shaped GM region) indicates poorer fitting of the models.

(TIF)

S3 Fig. Mean (RMSE) versus median (MAE) myelin regression. Shown are segmentation

regression using the RMSE (A) and MAE (B), and Markov GAM regression using RMSE (C)

and MAE (D). In both cases, using MAE showed better contrast between tissue types than

using RMSE.

(TIF)

S4 Fig. Mean (RMSE) versus median (MAE) cellularity regression. Shown are segmentation

regression using the RMSE (A) and MAE (B), and Markov GAM regression using RMSE (C)

and MAE (D). In both cases, using MAE showed better contrast between tissue types than

using RMSE.

(TIF)
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S5 Fig. Regression results with inclusion of lesion masks. Shown are the myelin (a, top) and

cellularity (b, bottom) predictions for the four day 7 mice (numbers) that contain the largest

lesions. The demonstrations include the original T2 MRI overlaid with manual lesion masks

(A, red outline), prediction results from the supervised, cross-validated models using segmen-

tation regression (B) and Markov GAM (C), and histological standards (D).

(TIF)
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