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Abstract
Background: Neuropathological consequences of neuroinflammatory processes have been implicated in a wide 
range of diseases affecting the central nervous system (CNS). Glial cells, the resident immune cells of the CNS, respond 
to tissue injury by releasing proinflammatory cytokines and free radicals such as nitric oxide. We explored the 
possibility that neuroimmune responses are involved in parasitic manipulation of host behavior in a trematode-
crustacean association. The cerebral larva of the flatworm Microphallus papillorobustus alters responses to 
environmental stimuli - and thus reflex pathways - in the crustacean Gammarus insensibilis, in a way that enhances 
predation of the crustacean by birds, definitive hosts of the parasite.

Results: Immunocytochemical experiments followed by confocal microscopy were performed to study the 
distribution of glutamine synthetase, a glial cell marker, and nitric oxide synthase in the brain of gammarids. Astrocyte-
like glia and their processes were abundant at the surface of the parasites while levels of nitric oxide synthase were 
elevated at the host-parasite interface in the brain of gammarids harboring mature cerebral larvae and demonstrating 
altered behavior.

Conclusion: Taken together these results lend support to the neuroinflammation hypothesis whereby a chronic CNS 
specific immune response induced by the parasite plays a role in the disruption of neuromodulation, neuronal 
integrity, and behavior in infected hosts.

Background
Some parasites alter the behavior of their intermediate
host in a way that favors the predation of the intermediate
host by the definitive host of the parasite, thereby
enhancing transmission [see reviews in [1-4]]. Such cases
are referred to succinctly as parasitic manipulation [5,6].
Relatively few studies have investigated the proximate
mechanisms through which trophically transmitted para-
sites alter their host behavior. Here, we suggest that spe-
cific defense responses of the central nervous system are
implicated in the aberrant behavior induced by a cerebral
trematode in a crustacean. The larva (metacercaria) of
the trematode Microphallus papillorobustus (Rankin

1940) encysts in the brain of the crustacean Gammarus
insensibilis (Stock 1966) and changes the responses of the
gammarid to various environmental stimuli, in particular
photic, geotactic, and mechanical stimuli [7-10]. The
resulting aberrant escape behavior leads to increased pre-
dation by birds, the definitive hosts of the parasite [11]. It
is important to stress that the parasite does not just
induce sluggishness or a general pathological state in the
gammarid host. It impinges on the nervous system and
alters reflex arcs. Only very specific behaviors are modi-
fied. In addition, the larvae are not inducing behavioral
alterations from the start of the infection. It is only after a
few weeks when the metacercariae are mature and infec-
tive to the definitive hosts that the behavioral responses
are changed [8] - a common delay in systems involving
parasitic manipulation [12]. Therefore, the trematode is
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modulating the behavior of its host with precise timing
and in very subtle ways.

Some acanthocephalans and cestodes [e.g. [13]] present
in the hemocoel rather than in the brain of gammarids
also modify the behavior of their intermediate hosts. The
acanthocephalan Polymorphus paradoxus changes the
photic and escape behaviors of Gammarus lacustris in
much the same way as M. papillorobustus in G. insensibi-
lis [14,15]. In both cases the definitive hosts are birds.
Other invertebrates, but also vertebrates, are the subjects
of parasite-induced altered responses to environmental
stimuli. For example, the protozoan Toxoplasma gondii
induces in rodents a specific attraction to the odor of cat
urine [[16,17]; see also [18] for example on rabies virus in
mammals].

While the ecological and evolutionary implications of
parasitic manipulation have drawn considerable atten-
tion, the neural basis of the altered behavior remains
poorly understood [see reviews in [6,19-21]]. It is how-
ever established that the serotonergic system is altered in
manipulated gammarids harboring acanthocephalans
[22-24] as well as trematodes [25,26]. Serotonin modula-
tion has been demonstrated in parasitized vertebrates as
well. The concentration of serotonin and other neu-
rotransmitters is selectively altered in parts of the brain of
fish infected by cestodes [27] and trematodes [28], and of
rodents infected by the nematode Trichinella spp [29,30].

This study focuses on the biochemical events upstream
of the neurotransmitter dysfunction. Accumulating evi-
dence on the neuropathological consequences of neu-
roinflammation in vertebrates, coupled with a growing
awareness of the common properties of the innate
immune response in the vertebrate and invertebrate cen-
tral nervous systems (CNS), lead to the following hypoth-
esis: The cerebral larva of M. papillorobustus causes
chronic inflammation in the brain of gammarids, and the
pathology associated with this immune response is
involved in the neuromodulation and in the altered
responses to environmental stimuli manifested by
infected gammarids.

The CNS lacks the adaptive arm of the immune system
and relies on an innate system involving resident glial
cells. In vertebrates, activated glial cells respond to tissue
injury by releasing a complex array of inflammatory fac-
tors that act on, and engender responses in target cells.
Activated glia are known to mediate chronic neuroin-
flammatory responses that are associated with neurode-
generation and neurological disorders through the
release of proinflammatory cytokines, nerve growth fac-
tors, and free radicals such as nitric oxide [e.g. [21,31-
35]]. Neuropathological consequences of neuroinflam-
matory responses have been implicated in a wide range of
diseases of the nervous system from Parkinson's disease
[e.g. [36]], to HIV, multiple sclerosis, Alzheimer's disease

[e.g. [37,38]], and rabies [e.g. [39]], as well as in parasitic
diseases involving the cerebral larvae of flatworms. For
example, the larva of Taenia solium (Cestoda) causes
neurocystercosis, a common parasitic disease of the
human central nervous system worldwide. Much of the
pathology of neurocystercosis (epilepsy, chronic head-
aches) is attributed to the host immune response to the
larva in the brain [e.g. [40]]. Immune cascades similar to
those observed in vertebrates have been described in
invertebrates [41-45]. Thus, the system M. papillorobus-
tus/G. insensibilis stands to help our understanding of the
debilitating conditions mentioned above, as it represents
a simple invertebrate model of chronic cerebral parasitic
disease.

The possibility that parasites influence neuromodula-
tion and thus host behavior through the activation of
their host's immune response has been invoked in a num-
ber of studies over the past decade [reviews in [6,19-
21,46-49]]. Behavioral changes in a fish have been con-
nected to the systemic immune response induced by an
hemocoelian cestode parasite (Schistocephalus solidus)
[50]. Ultimately, at least in instances of altered reflex
pathways, neuronal disruption has to be involved in host
behavioral alteration (e.g. changes in neurotransmitter
release and receptor distribution, neurodegeneration of
specific pathways, etc.). To our knowledge, the effects of
parasites on neuroimmune function in the brain of
manipulated hosts have not been tested and are the focus
of this research. Immunocytochemical experiments fol-
lowed by confocal microscopy were performed to find
evidence of two main components of the neuroinflamma-
tory response: glial cells and nitric oxide associated with
the larva of M. papillorobustus in infected brains of G.
insensibilis.

Methods
Infected and uninfected brains were incubated in solu-
tions of commercially available antibodies raised against
glutamine synthetase (GS), a glial cell marker, and against
nitric oxide synthase (NOS), an enzyme that catalyzes the
oxidation of L-arginine to produce L-citrulline and nitric
oxide (NO). An understanding of the pathology induced
by the metacercaria of M. papillorobustus can only be
achieved through a detailed knowledge of the various
regions of the gammarid brain. Therefore the fluorescent
label propidium iodide was used to visualize and study
the nuclei of cerebral cell populations.

Gammarid collection and characterization of populations
The life cycle of Microphalus papillorobustus necessitates
two intermediate hosts (a mollusk of the genus Hydrobia
and a crustacean of the genus Gammarus), and a defini-
tive host, a bird, which harbors the adult intestinal para-
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site. Two free stages, egg and cercaria infect the mollusk
and gammarid respectively [51].

Gammarus insensibilis were collected in the brackish
waters of the south of France (Etang de Thau, 43°25'N,
3°35'E) in June 2007, September 2007, and June 2008.
Gammarids with altered behavior were gathered at the
surface of the water near the shore [see for instance [52]].
Normal gammarids were harvested in stacks of algae at
the bottom of the lake (about 1.5 m deep). The June 2007
and 2008 samples were sent live to the USA, and dis-
sected and processed for immunocytochemistry at
Wellesley College, Massachusetts. The September sam-
ple, the largest one, was dissected at the Institut de
Recherche pour le Development, Montpellier, and trans-
ported in 0.1 M phosphate buffer to the Wellesley labora-
tory for immunocytochemical processing.

A simple behavioral test, knocking on the side of the
glass aquarium, was used to ascribe each gammarid to
one of two categories: "altered behavior" if the animal
swam to the surface toward the overhead light, or "nor-
mal behavior" if the animal did not swim to the surface
following disturbance. For each brain of the September
sample, the following characteristics were noted: behav-
ioral status, presence of metacercariae of M. papilloro-
bustus in the brain, presence of metacercariae belonging
to various species in the body (M. papillorobustus, Mari-
trema subdolum, and other microphallids), and presence
of nematodes including Gammarinema gammari (Table
1). All the gammarids with abnormal behavior were
infected with at least one fully-developed cerebral meta-
cercaria of M. papillorobustus but harbored up to 13
cysts (length of cysts: 280 to 330 μm; thickness of cyst
wall: 15 to 25 μm). A large proportion of normal gam-
marids (38%) was also infected with cerebral metacercar-
iae, young ones with thin cyst walls, but also larvae
encapsulated and melanized (Fig. 1), and larvae appar-
ently mature. Signs of melanization were observed in 13%
of the brains (n = 115) but were not seen in the abdomen.

Immature metacercariae, melanized metacercariae, and
metacercariae of M. papillorobustus and other trematode
species located in the thorax and abdomen do not induce
the altered behavior [7,53,54]. Thus, two categories of

gammarids are referred to thereafter: "MAD" gammarids
(with cerebral Metacercaria and Altered Demeanor), and
"normal" gammarids.

Immunocytochemical protocol
Brains were dissected in cool oxygenated Van Harreveld
crustacean saline (per liter, in grams: NaCl, 12; KCl, 0.4;
CaCl2 2H2O, 1.5; MgCl2 6H2O, 0.25; Na HCO3, 0.2; pH,
7.3-7.4). They were fixed in 4% paraformaldehyde in 0.1
M phosphate buffer (PB) overnight. The 4% paraformal-
dehyde fixative was aliquoted, stored frozen, then thawed
just prior to use [55]. Brains were rinsed in 0.1 M PB,
immersed in 0.1 M PB with 0.2% Triton X-100 (0.1 M
PBTX), incubated at 4°C with the primary antibodies
against NOS or GS diluted in PBTX, rinsed in 0.1 M PB
and then incubated overnight at 4°C with the secondary
antibody diluted in PBTX. Subsequently the brains were
rinsed in PBTX then in PB; they were bathed in propid-
ium iodide (Invitrogen, P1304 MP) at 25 mg/ml in 0.1 M
PB for 15 minutes. After further rinsing in 0.1 M PB, the
brains were mounted in 80% glycerol in 0.1 M PB.

Table 1: Characterization of helminth populations in the September gammarid sample.

Gammarids'
behavioral
status

Total number of 
gammarids

Gammarids with metacercariae of

M. papillorobustus in brain

Gammarids with metacercariae 
of various species in thorax and 

abdomen

Gammarids with 
nematodes

(%) (%) (%)

MAD 55 100 69 62

Normal 60 38 30 70

Figure 1 Larvae of Microphallus papillorobustus in whole mount 
brains of G. insensibilis. (a) The arrow indicates a mature metacercaria 
encysted in the protocerebrum, while the arrowhead points to a 
young larva partially melanized in the deutocerebrum of a gammarid 
with altered behavior (MAD). Red lipidic granules are seen at the surface 
of the brain. (b) A dead metacercaria is encapsulated and melanized in 
the protocerebrum of a normal gammarid. Anterior is up in these 
whole mounts viewed with a stereomicroscope. The brains are ap-
proximately 1 mm wide.
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Glutamine synthetase
A purified mouse anti glutamine synthetase monoclonal
antibody (BD Biosciences Pharmingen, 610517) was used
as a marker of glial cells. The immunogen for this anti-
body is the amino acid sequence 1-373 of sheep glu-
tamine synthetase. (Product specific information
available at http://www.bdbiosciences.com/ptProd-
uct.jsp?prodId=29070).

Western blots with the anti glutamine synthetase anti-
body reveal that rat cerebrum lysate displays an immuno-
reactive band at approximately 45 kDA (product specific
information from BD Biosciences); western blots of brain
homogenate show a single band at approximately 44 kDa
in the crayfish Procambarus clarkii [56], and at 42 kDa in
the spiny lobster Panulirus argus [57].

In the present study, incubation in the glutamine syn-
thetase antibody lasted between 24 and 48 hours at a final
dilution of 1:100. A total of 51 brains from three experi-
mental batches were processed. Thirty six brains (18
from MAD gammarids, 18 from normal gammarids)
were of sufficient quality to be observed in confocal
microscopy (Table 2). An additional 6 brains were tested
in the absence of glutamine synthetase antibody but with
the appropriate secondary antibody; all staining was abol-
ished.

Nitric oxide synthase
To study NOS-like immunoreactivity the gammarid
brains were incubated in a polyclonal antibody (anti uni-
versal Nitric Oxide Synthase, uNOS) raised in rabbit
against synthetic peptide DQKRYHDIFG (uNOS, Affin-
ity BioReagents, PA1-039). This peptide sequence corre-
sponds to residues Q 1113 to G1122 of murine inducible
NOS and brain NOS. The uNOS antibody shows broad
recognition of NOS isoforms (inducible, neuronal, and
endothelial NOS), and extensive species crossreactivity in
both vertebrates and invertebrates (product specific
information from Affinity Bioreagents available at http://
www.bioreagents.com/products/productDetails/pro-
ductDetails.cfm?catnbr=PA1-039). Preadsorption con-
trols with the immunogen (DQKRYHDIFG) used for the
production of the Affinity BioReagent antibody abolishes
completely immunolabeling in the stomatogastric gan-
glion of the crayfish Cherax quadricarinatus [58].

In the present study, the uNOS antibody was applied to
the brains overnight at a final dilution of 1:200. A total of
67 brains from four experimental batches were processed.
Thirty nine preparations (22 from MAD gammarids, 17
from normal gammarids) were of sufficient quality to be
observed in confocal microscopy (Table 3). An additional
8 brains were processed in the absence of uNOS antibody
but with the appropriate secondary antibody. All specific
staining was abolished in these "no primary" controls.

NOS-like immunoreactivity (NOS-IR) was found as a
punctate signal in the gammarid brain. To quantify this
phenomenon, the number of NOS-IR particles was ana-
lyzed with the application Image J of the National Insti-
tute of Health http://rsbweb.nih.gov/ij/. The number of
IR particles was computed in all the infected brains pre-
senting a single mature metacercaria in MAD gammarids
(n = 8, 5 with metacercaria in the protocerebrum, 3 in the
deutocerebrum), and in brains of normal gammarids with
one metacercaria at various stages of development (n = 3,
all in the protocerebrum) (Table 3). A paired t-test com-
pared the number of IR particles in the infected side of
the brain and in the contralateral region (protocerebrum
or deutocerebrum depending on the location of the meta-
cercaria).

Secondary antibodies
Two secondary antibodies were used following incuba-
tion with the mouse anti glutamine synthetase antibody:
CY2-conjugated AffinityPure donkey anti-mouse IgG
(H+L) (Jackson Immunoresearch, 715-225-150), over-
night at a final dilution of 1:100; and Alexa 488 goat anti-
mouse IgG (H+L) (Invitrogen, A11029) overnight at 1:50.
Alexa 488 donkey anti-rabbit IgG (H+L) (Invitrogen,
A21206) was used overnight at a dilution of 1:50 after
incubation of the brains in the primary antibody rabbit
anti-uNOS.

Brain whole mounts were viewed with a Leica TCS-NT
scanning confocal microscope. The fluorophores Alexa
Fluor 488 and CY2 were visualized with an argon gas
laser (emission line 488 nm) and propidium iodide was
observed with a krypton gas laser (emission line 561 nm)
allowing the study of the various cell clusters (Fig. 2).

Table 2: Characterization of Microphallus papillorobustus populations in gammarid brains used for Glutamine Synthetase 
(GS) experiments.

Gammarids' 
behavioral status

Number of brains Number of infected brains Number of metacercariae per infected brain 
Mean (Range)

MAD 18 18 1.8 (1 - 4)

Normal 18 7 1.1 (1 - 2)

http://www.bdbiosciences.com/ptProduct.jsp?prodId=29070
http://www.bdbiosciences.com/ptProduct.jsp?prodId=29070
http://www.bioreagents.com/products/productDetails/productDetails.cfm?catnbr=PA1-039
http://www.bioreagents.com/products/productDetails/productDetails.cfm?catnbr=PA1-039
http://www.bioreagents.com/products/productDetails/productDetails.cfm?catnbr=PA1-039
http://rsbweb.nih.gov/ij/
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Results
Putative glutamine synthetase immunoreactivity
Putative glutamine synthetase immunoreactive (GS-IR)
cell bodies were distributed throughout the brain at the
level of the neuropils in both MAD (with metacercaria
and altered demeanor) and normal gammarids. GS-IR
cells showed a variety of morphology: "astrocyte"-like, x-
shaped, or globular (Fig. 3). Large astrocyte-like cells
spanning more than 100 μm extended fine processes ter-
minating in end feet and flocculent material (Fig. 3a).
Other GS-IR cells were more compact (Fig. 3b). The most
noticeable glial cell bodies formed a sheath at the surface
of the neuropils and extended thin processes within the
tangle of neurites, thus staining the entire neuropil. The
antennal neuropils were generally the most intensely
immunoreactive whereas the olfactory lobes were less
densely labeled. A pair of prominent identifiable cells was
present in every individual laterally on either side of the
brain, projecting fine extensions toward the center of the
optic lobes (Fig. 3c).

In MAD gammarids, GS-like immunoreactivity was
found at the surface of the ovoid cysts (Fig. 3d). The pro-
cesses of astrocyte-like GS-IR cells were lining the cyst
wall of the part of the metacercariae in contact with brain
tissues. Filiform (Fig. 3e), or flocculent (Fig. 3f) GS-IR
profiles, were found apposed to the surface of the para-
site. In some cases, a meshwork of thin processes invaded
the intercellular space between the neuronal somata adja-
cent to the cyst wall. Confocal sections tangential to the
cyst wall showed that GS-IR was also present in invagina-
tions extending into some of the metacercariae (Fig. 3f
and 3g). The tissues surrounding encapsulated larvae
appeared devoid of GS-IR cells or processes (Fig. 3h). In
this figure, one metacercaria was partially encapsulated
but alive and still located amidst some living tissues as
shown by the presence of the nucleic acid label propid-
ium iodide within and around the larva. Eventually, only
black areas mark the location of dead encapsulated lar-
vae.

Putative nitric oxide synthase immunoreactivity
Putative NOS-immunoreactivity (NOS-IR) was distrib-
uted throughout the brain of both MAD and normal
gammarids (Fig. 4). NOS-IR was concentrated at the level
of specific bilateral cell clusters: paramedial protocerebral
cell cluster (pmptc), anterior lateral ventral cell cluster
(alvc), anterior lateral dorsal cell cluster (aldc), olfactory
cell clusters (ofc), and ventral posterior lateral cell cluster
(vpolc), forming a ring in the brain (Fig. 4a; see Fig. 2 for
gammarid brain anatomy). The fluorescent label was also
in evidence in the ventral paramedial cell clusters (vpmc)
along the sagittal axis of the brain. The intensity and the
appearance of the NOS label were highly variable. In
some brains the label was concentrated at the level of the
cell clusters as described above (Fig. 4a); some punctate
label was also visible. In other brains the typical distribu-
tion at the level of the cell clusters was clear, but the sig-
nal was more diffuse and presented a wide-spread
punctate appearance. The more concentrated label corre-
sponded to neuronal somas (approximate diameter: 10 to
15 μm) or to small groups of somas in which the cyto-
plasm was filled (Figs. 4b) or partially filled (Fig. 4c) with
NOS immunoreactivity. The punctate label present at the
level of the neuropils was formed by particles measuring
between 1 and 3 microns.

The distribution of NOS-IR was similar in the brains of
MAD and normal gammarids. However, the intensity of
the NOS punctate label was increased in the tissues adja-
cent to mature metacercariae in the brain of MAD gam-
marids (Fig. 4d to 4j). On average, the number of IR
particles was 33 percent higher in the infected region
than in the contralateral uninfected region in the 8 brains
of MAD gammarids presenting a single mature metacer-
caria (Table 3). The difference in the mean number of
NOS-IR particles between the two regions was signifi-
cant (paired t-test, df = 7, t = 2.64, p = 0.03). In the few
normal gammarids harboring one metacercaria (n = 3),
the number of IR particles was only 3.4 percent higher in
the infected region than in the contralateral uninfected
region (Table 3). The difference between the two regions

Table 3: Characterization of Microphallus papillorobustus populations in gammarid brains used for Nitric Oxide Synthase 
(NOS) experiments, and NOS-IR levels in brains infected with one metacercaria (mc).

Gammarids' 
behavioral status

Number of brains Number of 
infected brains

Number of mcs 
per infected brain

Number of brains 
with one mc*

Percent difference in the 
number of NOS-IR particles**

Mean (Range) Mean (Range)

MAD 22 22 2.2 (1 - 7) 8 32.6 (-7 to 83)

Normal 17 5 1.6 (1 - 3) 3 3.4 (-9 to 17)

*one single mature metacercaria in MAD gammarids; one developing or fully-developed metacercaria in normal gammarids
** [(ni - nu)/nu] × 100; ni represents the number of NOS-IR particles in the infected region of the brain, and nu the number of particles in the 
contralateral uninfected region in brains with one metacercaria.
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was not significant (paired t-test, df = 2, t = 0.44, p =
0.70). Moreover, young larvae developing in the brain of
MAD gammarids (n = 5) did not appear to be surrounded
by increased levels of NOS-IR (Fig. 4g and 4h). The GS
positive invaginations within the cyst wall that were
observed in some parasites (Fig. 3g) were also NOS posi-
tive (Fig. 4i and 4j).

Discussion
So far, little attention has been given to the potential
involvement of neuroinflammatory processes in the
altered reflex pathways induced by some parasites in their
hosts. In the brain of M. papillorobustus-infected gam-

marids, immunocytochemistry revealed two components
of the neuroimmune response: glial cells and nitric oxide.
Astrocyte-like glia and their processes lined the cyst wall
of the metacercariae, and high levels of nitric oxide syn-
thase were present at the host-parasite interface.

Nature and significance of the glutamine synthetase signal
The enzyme glutamine synthetase catalyzes the amina-
tion of glutamic acid to form the amino acid glutamine.
Glutamine synthetase has been used as a reliable marker
of glial cells in the vertebrate brain [e.g. [59]] and in crus-
taceans [56,57,60,61]. However, the neuroimmune role of
glia in crustaceans has not been investigated. In G. insen-
sibilis, we found large, GS-IR, star-shaped, astrocyte-like
cells (Fig. 3a) that exhibit morphological similarities with
their counterparts in the Drosophila brain [see review in
[62]]. Microglia-like cells, which are GS immunoreactive
in mammals [63], were not observed in this study. Again,
the small gammarid brain shows similarities with the
Drosophila brain. In this insect, a category of glia dedi-
cated to immune functions, such as the mammalian
microglia, does not appear to be present. Instead, all glial
cells seem competent to perform immune functions [62].

The salt of glutamic acid, glutamate, is an important
excitatory neurotransmitter in the vertebrate and crusta-
cean CNS while GABA, downstream in the same syn-
thetic pathway, is the main inhibitory transmitter. In
arthropods [reviews in [57,62,64,65]] as in vertebrates,
glia plays a role in a variety of functions including the
reuptake of presynaptically released neurotransmitters
from the synaptic cleft. The enzyme GS is specifically
involved in converting glutamate into glutamine, a non
neuroactive amino acid. Glutamine is then released by
glia and recycled by neurons. In HIV infection, neuronal
damage results mainly from glial activation and involves
glutamate-mediated neurotoxicity [see review in [66]].
The presence of GS immunoreactive glial cells adjacent to
the metacercariae suggests a potential alteration in gluta-
mate metabolism in the brain of infected gammarids, in
addition to other functions such as the release of proin-
flammatory cytokines and free radicals.

Nature and significance of the nitric oxide synthase signal
NOS was concentrated at the level of the neuronal cell
clusters in both normal and MAD gammarids and was
found as a more intense signal surrounding the cyst wall.
The synthesis of the gaseous signaling molecule NO from
L-arginine is catalyzed by the enzyme nitric oxide syn-
thase (NOS). NO acts as a membrane permeant diffuse
signaling molecule. The antibody used in the present
study, universal NOS, detects the three isoforms of the
enzyme: neuronal, endothelial, and inducible. The same
universal NOS antibody (Affinity BioReagents, PA1-039),
used in the present study revealed NOS immunoreactiv-

Figure 2 Brain morphology in G. insensibilis. (a) and (b) Single hor-
izontal confocal sections in the dorsal and ventral regions of the brain 
respectively. Cell nuclei stained with propidium iodide appear black 
(high density of nuclei) or grey (low density). The compound eyes lo-
cated on either side of the protocerebrum have been removed. (c) 
Schematic outline of prominent cell clusters, and location of neuropil 
regions. Terminology [adapted from 86] and abbreviations; aldc, ante-
rior lateral dorsal cell cluster; alvc, anterior lateral ventral cell cluster; 
an1n, antennal 1 neuropil; an2n, antennal 2 neuropil; cc, circumesoph-
ageal cell cluster; cg, circumesophageal ganglion; DT, deutocerebrum; 
lptc: lateral protocerebral cell cluster; mt: medulla terminalis; ofc, olfac-
tory cell cluster; ofl, olfactory lobe; opc, optic cell cluster; opl, optic lobe; 
opn, optic nerve; pmptc, paramedial protocerebral cell cluster; PR, pro-
tocerebrum; sg, sinus gland; TR, tritocerebrum; vpmc, ventral parame-
dial cell cluster; vpolc, ventral posterior lateral cell cluster. The width of 
the brain is approximately 1 mm.
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ity in somata and neuropils in the cardiac ganglion [67],
in the stomatogastric ganglion [58] and in the brain [68]
of crayfish. In these studies, punctate NOS immunolabel-
ing was observed in the cytoplasm of neuronal cell bodies
[58] as well as in neuropil regions [68].

It could be argued that the voluminous metacercariae
displace and compress the adjacent tissues in the host
brain, and that the higher density of NOS particles sur-
rounding the metacercariae is a consequence of this phe-
nomenon. If this were the case, similar numbers of NOS-
IR particles would be found in infected and uninfected
regions, with a more widespread signal in the uninfected
region unencumbered by the bulky parasite. However,
the fact that, on average, the number of NOS particles
was higher in the infected region than in the contralateral
region of the brain speaks against the "compression"
hypothesis and in favor of an actual increase in NOS lev-
els in the presence of the parasite. The variability
observed in NOS levels could be accounted for by chang-
ing immunogenic properties of the parasite over time [see
[50]], and by inter-individual variations in the efficacy of
the innate immune system of the host. The variability in

the degree of parasite-induced behavioral manipulation
has been demonstrated in various host-parasite associa-
tions [e.g. [12,24]].

NO has already been implicated in the M. papillorobus-
tus-G. insensibilis association. Proteomics studies indi-
cate that arginine kinase - a regulating factor in NO
synthesis - is differentially expressed in the brain of M.
papillorobustus-infected G. insensibilis as well as in a
gammarid/acanthocephalan system [26]. But neither the
proteomics study nor the present study ascertained the
origin - glial or neuronal - of the NOS signal at the host-
parasite interface. In mollusks, NOS is activated in both
microglial cells and neurons in the presence of specific
immune challenges [43]. Converging lines of evidence
show that bidirectional signaling molecules mediate
some interactions between the immune and nervous sys-
tems in insects [69].

Whether of glial or of neuronal origin, changes in NO
levels could have a variety of effects. NO has been shown
to mediate neurotoxicity in some aminergic systems [e.g.
[70,71]]. In rodent brains, NO alters the levels of sero-
tonin [72-74], and dopamine [73,74]. NO may also play a

Figure 3 Putative glutamine synthetase immunoreactivity (GS-IR, green) in the brain of G. insensibilis. Cell nuclei are counterstained with pro-
pidium iodide (red label). (a) to (c) Various glial cell morphologies. Note the end feet and the flocculent profiles of the astrocyte-like cell shown in (a). 
(d and e) GS-IR in brains of MAD gammarids. Glial cell bodies are present at the surface of the metacercariae. Fine processes (arrow) are apposed to 
the cystic wall in this stack of confocal sections through a metacercaria (e). (f) and (g) Confocal sections at different levels of an invagination of the 
cyst wall in a metacercaria. The sections are tangential to the cyst; a section at the surface of the metacercaria (f) shows flocculent glial profiles around 
the opening of the invagination (arrow); a section taken through the cyst wall reveals the GS-IR wall of the invagination (g); (h) Brain of a MAD gam-
marid with one live and one encapsulated metacercaria. The asterisk indicates a larva encapsulated and presumably moribund. The arrow points to 
the invagination of the cyst wall presented in pictures (f) an (g) in a second metacercaria. In (c), (f), (g), (h), single confocal sections; in (a), (b), (c insert), 
(d), (e), stacks of confocal sections. For clarity the propidium iodide counterstain has been omitted in (a) and in the insert of (c). Anterior is up; h, host; 
p, parasite. Scale bars: (c), (d), (h) 300 μm; (a), (b), (e), 50 μm; (f), (g), 20 μm.
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general role in the development of discrete neural net-
works [75]. NO is already known as a systemic immune
effector in vertebrates and invertebrates [review in [76]].
The examples cited suggest that increased levels of NO at
the host-parasite interface could not only participate in
the host defense response but also potentially affect neu-
romodulation and/or neuronal development in the brain
of M. papillorobustus- infected G. insensibilis.

Encapsulation of metacercariae and CNS-specific defense 
responses
In many instances, the immune response in the brain of
the gammarid host leads to encapsulation and parasite
death. In the sample studied, 13% of cerebral metacercar-
iae showed signs of partial or complete melanization (Fig.
1, Fig. 3h). When the parasite is encapsulated, host
behavior is not modified [7,53,54]. The cell population
responsible for larval encapsulation in gammarid brains
has not been characterized and the components of the
cerebral reaction have not been elucidated. What is
known is that macroparasites located in the body of
arthropods elicit an encapsulation response that involves
two elements: the deposition of eumelanin resulting from
the prophenol oxydase system activation, and the adhe-
sion of numerous hemocytes around the parasite
[reviews in [77-79]]. Encapsulation and melanization
always indicate the failure of parasitism. It is conceivable
that both the systemic immune response (hemocytes
infiltrated through the blood-brain barrier) and endoge-
nous cerebral immune cells (glia) are involved in interac-
tions with the cerebral cysts of M. papillorobustus at
various stages of the host response to infection. The ini-
tial penetration of the perineurium by the cercaria could
also have long-term consequences for tissue repair and
glial proliferation. Indeed, one month after the surgical
lesion of the perineurium, hemocyte-like granule con-
taining cells were found within the brains of cockroaches
in the vicinity of the cut surface [80], whereas a stab
injury in the brain of Drosophila induced prolific glial
division [81].

Small developing metacercariae are wrapped in a thin
membrane that must expand as the parasite enlarges dur-
ing metamorphosis from cercaria to metacercaria. Fully-
developed metacercariae are contained in a rigid, thick
(15 to 25 μm) ovoid cyst wall. In Microphallus opacus
[82], this final cyst wall is composed of three layers com-
pleted in about 30 days. The changing surface of the cyst
wall is likely to have different properties with regard to
host recognition [50]. Thus, different immune evasion
tactics might be deployed by the M. papillorobustus lar-
vae over the course of the infection [review in [83]]. The
presence of elevated NOS-IR found at the surface of
mature metacercariae but not of young larvae suggests
that the latter are mostly avoiding detection in the brain

Figure 4 Putative nitric oxide synthase immunoreactivity (NOS-
IR, green) in the brain of G. insensibilis. (a) Entire brain showing the 
bilateral NOS-IR distribution. The signal is concentrated at the level of 
the cell clusters pmptc, alvc, ofc, vpolc, and vpmc (arrows, see Fig. 2 for 
abbreviations). (b) and (c) NOS IR in somata and neuropils. NOS-IR is lo-
calized in the somata of neuronal cell clusters [arrows in (b) and (c)]. 
NOS-IR is also found in neuropil regions as a punctuate signal [asterisks 
in (c)]. (d to f) Metacercariae in the protocerebrum of MAD gammarids 
surrounded by intense punctate NOS-IR. (g) and (h) One juvenile (as-
terisk) and two mature metacercariae in the protocerebrum of a MAD 
gammarid. The NOS label is shown in (g) whereas the propidium io-
dide signal is seen in (h); the white arrows indicate NOS-IR tissues pres-
ent around a mature metacercaria but not around a young larva 
(asterisk). The black arrow points to the invagination of the cyst wall 
displayed in pictures (i) an (j). (i) and (j) Confocal sections at different 
levels of an invagination of the cyst wall in a metacercaria. The sections 
are tangential to the cyst; the arrows point to NOS-IR particles. In (b), 
(e), (g), (h), (i), (j), single confocal sections; in (a), (c), (d), (f), stacks of con-
focal sections. For clarity the propidium iodide counterstain has been 
omitted in (a) and (d). Anterior is up; cw, cyst wall; h, host; p, parasite. 
Scale bars: (a), (d), (g), (h), 300 μm; (e), 100 μm; (c), 30 m; (b), (f), (i), (j), 20 
μm;.
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of their hosts. Mature metacercariae would trigger a
response, but, protected by a sturdy cyst wall, would gen-
erally avoid encapsulation and survive the chronic attack
of the host immune system. In less resilient metacercar-
iae, the GS-IR (Fig. 3f and 3g) and NOS-IR (Fig. 4i and 4j)
positive invaginations penetrating the cyst wall may rep-
resent the first signs of weakening of the larvae and her-
ald the demise of the parasites through encapsulation.

Eslin & Prevost [84] investigating a host/parasitoid sys-
tem suggest the existence of a race between the encapsu-
lation reaction by the hemocytes of the host and the safe
embedment of the parasitic eggs within the host tissue.
By analogy, the interaction between M. papillorobustus
and G. insensibilis could be envisioned as an arm wres-
tling contest between cerebral larva and host: If the grow-
ing parasite avoids being detected and reaches a mature
stage protected by a thick cyst wall, then the host's
response becomes a chronic neuroinflammatory condi-
tion with neuropathological and behavioral conse-
quences. However, the host innate immune system may at
times overcome mature metacercariae (Fig. 3h). The time
course of neural events - e.g. switches in enzymatic activ-
ity, up and down regulation of neurotransmitters and
receptors, synaptic reorganization, axonal sprouting and
growth - may unfold over several days. It is therefore rea-
sonable to assume that a delay might exist between
inflammatory response and changes in behavior [85].

Further investigations could aim at strengthening the
connection between the neuroinflammatory condition
and behavioral disruption. For example, a longitudinal
study of the NOS-IR signal might reveal the precise tim-
ing of neuroinflammatory events in relation to the
appearance of the altered behavior. In addition, an ethop-
harmacological approach, such as injecting MAD gam-
marids with anti-inflammatory drugs, could help
establish the link between the host cerebral immune
response and the neural and behavioral pathology. While
further evidence is needed to demonstrate the relation-
ship between glia, nitric oxide, and serotonergic dysfunc-
tion, the present research constitutes a first empirical
step in the exploration of the role of neuroimmune pro-
cesses in parasitic manipulation of gammarid behavior.
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