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Abstract

Repetitive transcranial magnetic stimulation (rTMS) is used to investigate normal

brain function in healthy participants and as a treatment for brain disorders. Various

subject factors can influence individual response to rTMS, including brain network

properties. A previous study by our group showed that “virtually lesioning” the left

dorsolateral prefrontal cortex (dlPFC; important for cognitive flexibility) using 1 Hz

rTMS reduced performance on a set-shifting task. We aimed to determine whether

this behavioural response was related to topological features of pre-TMS resting-

state and task-based functional networks. 1 Hz (inhibitory) rTMS was applied to the

left dlPFC in 16 healthy participants, and to the vertex in 17 participants as a control

condition. Participants performed a set-shifting task during fMRI at baseline and

directly after a single rTMS session 1–2 weeks later. Functional network topology

measures were calculated from resting-state and task-based fMRI scans using graph

theoretical analysis. The dlPFC-stimulated group, but not the vertex group, showed

reduced setshifting performance after rTMS, associated with lower task-based

betweenness centrality (BC) of the dlPFC at baseline (p = .030) and a smaller reduc-

tion in task-based BC after rTMS (p = .024). Reduced repeat trial accuracy after rTMS

was associated with higher baseline resting state node strength of the dlPFC

(p = .017). Our results suggest that behavioural response to 1 Hz rTMS to the dlPFC

is dependent on baseline functional network features. Individuals with more globally

integrated stimulated regions show greater resilience to rTMS effects, while individ-

uals with more locally well-connected regions show greater vulnerability.
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1 | INTRODUCTION

Repetitive transcranial magnetic stimulation (rTMS) is a method of

noninvasively exciting (using high frequency [HF] stimulation, >5 Hz)

or inhibiting (using low frequency [LF] stimulation, ≤1 Hz) specific

brain regions and connected networks through electromagnetic induc-

tion (Pell, Roth, & Zangen, 2011; Brückner, Kiefer, & Kammer, 2013).

It is used to investigate brain function in healthy subjects (Luber &

Lisanby, 2014) and is becoming a common treatment in neurological

and psychiatric patient populations (Shafi, Westover, Fox, & Pascual-

Leone, 2012). However, individuals vary considerably in their

response to rTMS. This variation in response is associated with a num-

ber of factors, including baseline structural (Andoh, Matsushita, &

Zatorre, 2015) and functional connectivity (FC) (Fox, Buckner, White,

Greicius, & Pascual-Leone, 2012) of the stimulated brain network.

FC is a measure of the temporal correlation of activity between

anatomically separate brain areas (Van Dijk et al., 2010). FC of the

targeted area is predictive of the outcome of rTMS to the dorsolateral

prefrontal cortex (dlPFC) for the treatment of depression (Bailey

et al., 2018; Fox et al., 2012; Liston et al., 2014), dorsomedial PFC for

the treatment of eating disorders (Dunlop et al., 2015), and of change

in motor-evoked potential amplitude after rTMS of the motor cortex

(Nettekoven et al., 2015). However, given that rTMS also influences

the activity of areas distant to the stimulated site (Castrillon

et al., 2020; van der Werf, Sanz-Arigita, Menning, & van den

Heuvel, 2010), metrics that take the organisation of the wider func-

tional network into account may be a more useful predictor of rTMS

outcome than seed-based or region of interest (ROI)-based FC, which

are limited to measuring FC between a priori-defined brain regions.

An alternative method is to define the brain as a network consisting

of nodes (brain regions) and edges (functional connections between

regions), and then apply graph theoretical analysis to evaluate the orga-

nisation and topology of this network (van den Heuvel & Hulshoff

Pol, 2010). Graph measures can be extracted from the whole network,

individual nodes, or subnetworks of more densely interconnected

regions (also known as modules (Rubinov & Sporns, 2010)), allowing char-

acteristics of the network to be evaluated at different spatial scales.

While functional network features have been shown to be predictive of

HF rTMS outcome in depression (Downar et al., 2014; Fan et al., 2019),

and obsessive–compulsive disorder (Douw et al., 2019) this method has

not yet been applied to the prediction of cognitive outcomes of LF rTMS.

In an earlier study by our group in healthy participants (Gerrits,

van den Heuvel, & van der Werf, 2015), we applied LF rTMS to the

left dlPFC, a region important for executive function, specifically the

ability to flexibly adapt to changes in rules or environment (Mansouri,

Tanaka, & Buckley, 2009; Niendam et al., 2012). Following rTMS, sub-

jects showed a reduction in performance on a set-shifting task during

fMRI. Set-shifting tests cognitive flexibility, or specifically the ability

to flexibly switch between the rules used to complete a task—an abil-

ity that is associated with resilience to stress and is known to be

impaired in psychiatric conditions such as obsessive–compulsive dis-

order and autism spectrum disorder (Dajani & Uddin, 2015). In the

present reanalysis of resting-state and task-based fMRI data acquired

before and after rTMS, we aimed to determine whether baseline func-

tional network characteristics are associated with behavioural

response to inhibitory rTMS, and whether TMS-induced change in

network characteristics is associated with change in performance.

We limited our choice of graph measures to those known to be

markers of resilience and vulnerability to lesions, as we were investi-

gating LF rTMS, which causes a temporary “virtual lesion.” Centrality

(i.e., how well-connected a node is (Rubinov & Sporns, 2010)) is an

important determinant of network resilience (Alstott, Breakspear,

Hagmann, Cammoun, & Sporns, 2009). We applied three different

centrality measures to the stimulated region: node strength

(NS) which describes the total strength of a node's connections, and is

considered to be an indicator of local connectivity; betweenness cen-

trality (BC), which measures how many high strength paths in the net-

work pass through a node; and participation coefficient (PC), which

describes whether a node is connected mostly to its own module or

to other modules (Rubinov & Sporns, 2010). Different types of cen-

trality may have different implications for the rTMS-induced behav-

ioural effects. Since the loss of highly locally connected nodes (such

as those with high NS) is predictive of network disruption (Alstott

et al., 2009; Warren et al., 2014), we predicted that this measure may

be associated with greater vulnerability to the effects of inhibitory

rTMS. On the other hand, nodes with high global connectivity (such

as those with high BC or PC) are associated with greater cognitive

flexibility (Cole, Yarkoni, Repovš, Anticevic, & Braver, 2012),

suggesting that they may be resilient to cognitive disruption. There-

fore, we expected that higher BC and PC of the stimulated node

would be associated with higher resilience to inhibitory rTMS.

2 | METHODS

2.1 | Participants

Our sample consisted of 33 healthy participants originally recruited for a

previous study (Gerrits, van der Werf, et al., 2015). Participants were not

included if they suffered from neurological or psychiatric illnesses, sub-

stance abuse, cognitive deficits, or had a family history of epilepsy. Six-

teen participants (mean age of 55 ± 9 years, nine men) were randomly

appointed to dlPFC (verum) rTMS and 17 age and gender matched partic-

ipants (mean age of 57 ± 10 years, 11 men) to vertex (active control)

rTMS. All participants were screened for the presence of psychiatric dis-

orders using the Structured Clinical Interview for DSM-IV Axis-I Disorders

(Spitzer, Williams, Gibbon, & First, 1992), depressive symptoms using the

Beck Depression Inventory (Beck, Steer, Ball, & Ranieri, 1996), anxiety

symptoms using the Beck Anxiety Inventory (Beck, Epstein, Brown, &

Steer, 1988), and general cognitive status using the Mini-Mental State

Examination (MMSE) (Cockrell & Folstein, 1988). We used the Dutch ver-

sion of the national adult reading test (Schmand, Bakker, Saan, &

Louman, 1991) to provide an estimate of intelligence. The study protocol

was reviewed and approved by the Research Ethics Committee of the

VU University medical center (VUmc) and all participants provided written

informed consent.
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2.2 | Experimental procedure

Full details of the experimental procedure and set-shifting task are reported

in Gerrits, van den Heuvel, et al. (2015). In brief, participants performed a

set-shifting task during two fMRI sessions separated by an average of

16.9 ± 11.2 and 15.9 ± 7.7 days in the verum and control condition,

respectively (Figure 1a). Participants received LF rTMS to either the dlPFC

or vertex directly prior to the second fMRI session. For participants in the

verum group, fMRI data acquired during a set-shifting task in this first ses-

sion were used to determine coordinates for TMS coil localisation using

neuronavigation software (ASA4.1 software, ANT Neuro, The Netherlands).

Specifically, the peak voxel of the switch>repeat contrast was used – indi-

vidual coordinates were used per participant, but group mean MNI coordi-

nates were x = −42, y = 28, z = 31 (see below for more details about the

set-shifting task). For participants in the control condition, we used individ-

ual anatomical T1-weighted MR scans to determine the location of the

F IGURE 1 Study design and image processing/analysis. (a) Study design. All participants attended two sessions. During the first session,
participants underwent an rsfMRI scan and carried out a set-shifting task during two separate runs of fMRI. Participants were then randomised to
either verum (left dLPFC) or control (vertex) repetitive transcranial magnetic stimulation (rTMS) groups. After 16–17 days, participants attended
the second session. They received rTMS, followed directly by carrying out the set-shifting task during two separate runs of fMRI. (b) Image
processing steps: fMRI scans were preprocessed and parcellated into 225 regions. This was followed by exclusion of regions containing <4 voxels.
(c) Image analysis steps: FC and graph theoretical analysis: The BOLD timeseries was extracted from each parcellated region. Pearson correlations
were carried out between each pair of regions, giving a 193 × 193 correlation matrix for each participant. These matrices were then used to
calculate centrality graph measures
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vertex (mean stimulated MNI coordinates x = 0, y = −34, z = 70). During

the second session, 1 Hz rTMS was applied for 20 min (1,200 pulses total)

using a hand-held figure-of-eight TMS coil (Medtronic MagOption,

Medtronic Denmark A/S, Copenhagen, Denmark) at 110% of the individual

motor threshold to “virtually lesion” the dlPFC or vertex. Participants then

performed the set-shifting task for a second time during fMRI. The median

interval between stimulation and the beginning of the set-shifting task was

501900 for the verum and 505600 for the control condition.

2.3 | Set-shifting task and behavioural data

During the set-shifting task (programmed in E-Prime version 2.0, Psychol-

ogy Software Tools, Sharpsburg, PA), an arrow appeared either on one of

four sides of a fixation cross in the centre of the screen, pointing either

down, up, left, or right. The participant had to respond by pressing the up,

down, left, or right key depending on whether the current classification rule

for the arrow was location or direction. The participant was informed about

incorrect repeat trials or a change in the classification rule (i.e., set-shift) by

the presentation of a red screen. A green screen signalled a correct

response. The task continued until the participant had completed 48 correct

set shift trials, with a minimum of 15% correct trials. Two versions of the

set-shifting task were counterbalanced between the first and second ses-

sion that differed in the starting location and orientation of the arrow. All

behavioural responses were recorded using an MRI compatible response

box. The task was practiced prior to data collection to obtain a stable level

of performance. Each response during the task was classified as correct

repeat, incorrect repeat, successful shift, incorrect shift, or no shift/no

repeat. Data from these responses (reaction time [RT] and error rate [ER])

were used to calculate the following behavioural outcome measures:

• Percentage change in repeat RT and shift RT (SRT) from baseline:

RTSession2−RTSession1
RTSession1

× 100=%change inRT

• Percentage change in repeat ER (RER) and shift ER (SER) from

baseline. A constant (c) was added to the ER of Session 1 when cal-

culating percentage change to prevent dividing by zero:

Failed trials per session
Total trials per session

=ERper session

ERSession2−ERSession1
ERSession1+c

× 100=%change inER

2.4 | Image acquisition

Functional imaging was performed at the VUmc, Amsterdam using a

GE Signa HDxt 3-T MRI scanner (General Electric, Milwaukee, WI)

using whole-brain gradient echo-planar imaging (EPI) sequences.

Eyes-closed rsfMRI images (TR 1,800 ms; TE = 30 ms; 64 × 64 matrix,

flip angle = 80�), were acquired with 40 ascending slices per volume

(3.75 × 3.75 mm in-plane resolution; slice thickness = 2.8 mm; inter-

slice gap = 0.2 mm) and lasted 5.9 min in total (according to Van Dijk

et al. (2010), connectivity estimates are stable within a 4-min

timeseries). At baseline, rsfMRI scans were acquired before task-based

scans. Functional images during the set-shifting task (TR = 2,100 ms;

TE = 30 ms; 64 × 64 matrix, flip angle = 80�) with 40 ascending slices

per volume (same resolution as rsfMRI) were acquired in two runs;

runs varied in length between participants, as the set-shifting task

lasted for as long as it took to achieve 48 correct set shifting trials. In

the post-TMS task-based fMRI, the dlPFC group took on average

9.13 ± 0.95 min and 8.17 ± 0.39 min for the first and second runs,

respectively. The control group 9.17 ± 0.70 and 8.16 ± 0.61 min. A

sagittal 3D gradient-echo T1-weighted sequence (256 × 256 matrix;

voxel size = 1 × 0.977 × 0.977 mm; 172 sections) was also acquired

for coregistration and parcellation.

2.5 | fMRI analysis

We chose to analyse the task-based scans as two separate runs in

order to carry out a replication of our own analyses. Image processing

of the two runs of the task scan and rsfMRI scan was performed using

FMRIB's software library version 5.0.8 (FSL) (Smith et al., 2004)

(Figure 1b) and included discarding the first four volumes of the func-

tional scan to reach magnetization equilibrium, motion correlation,

5 mm spatial smoothing, and high-pass filtering (see Appendix A for

more details). The brain was parcellated into 225 brain regions using

210 cortical regions from the Brainnetome atlas (Fan et al., 2016),

14 individually segmented subcortical areas and one cerebellar ROI

from FSL's cerebellar atlas (Diedrichsen, Balsters, Flavell, Cussans, &

Ramnani, 2009). To account for EPI distortions near air/tissue bound-

aries during scanning, we excluded any nodes with less than four sig-

nal containing voxels (Meijer et al., 2017). A total of 193 regions

common to all fMRI runs remained: excluded regions were located in

the orbitofrontal gyrus, inferior temporal gyrus, parahippocampal

gyrus, and thalamus.

2.6 | Graph analyses

Connectivity analyses (Figure 1c) were performed using in-house

scripts and the Brain Connectivity Toolbox (Rubinov & Sporns, 2010)

in MATLAB R2012a (The MathWorks, Inc, Natick, MA). A connectivity

matrix was created for each subject by calculating Pearson correlation

coefficients between timeseries from all nodes. This was done sepa-

rately for the RS scan and for each run of the task-based scans. The

task-based scans were processed in one block without explicitly

modelling the different task events (i.e., both repeat trials and switch

trials were included in the task-based matrices). All weights in the con-

nectivity matrix were absolutised. Using the absolute values prevents
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loss of important interactions between brain regions (Fox et al., 2005)

and using weighted rather than thresholded or binarised connectivity

matrices avoids discarding weaker but potentially relevant connections

(Knock et al., 2009). We carried out additional motion correction by

“scrubbing” all time points with >0.5 mm of framewise displacement prior

to making the correlation matrices (as recommended by Power, Barnes,

Snyder, Schlaggar, and Petersen (2012)). Two participants had volumes

flagged for scrubbing during resting state (one in the vertex condition,

one in the DLPFC condition); a maximum of nine volumes were removed

per participant (6% of total scan length, leaving 5.5 min of scan

remaining). Thirteen participants had volumes flagged for scrubbing

across the two baseline and two post-TMS task-based fMRI runs (six in

the vertex condition, seven in the DLPFC condition); a maximum of

45 volumes were removed per participant per run (amounting to 17% of

total scan length, leaving a minimum of 7.7 min of scan remaining).

Graph measures were calculated on a global and nodal scale. In

order to identify the dlPFC node for each subject, we defined spheri-

cal ROIs (5 mm radius) corresponding to the coordinates of the stimu-

lated brain area, and selected the atlas region that the ROI overlapped

with most. An unstimulated node in the visual cortex (Node 202 from

the Brainnetome Atlas, left V5) was also selected as a control node.

We hypothesised that this node was unlikely to be affected by dlPFC

rTMS, and was the node that appeared least frequently across individ-

ual participants' dlPFC-containing modules as calculated by Louvain

modularity (see Appendix B for more details).

We calculated the following centrality graph measures in both

groups for the dlPFC node and the control node in the visual cortex

(Rubinov & Sporns, 2010):

• BC: The fraction of strongest weighted shortest paths that pass

through a given node. This suggests that high BC nodes will be well

connected throughout the entire network (Rubinov & Sporns, 2010).

• PC: An assessment of the type of connections a node has. Low PC

indicates more high weighted connections with one's own module;

high PC more high weighted connections to other modules

(Sporns, 2014).

• NS: The sum of all edge weights, indicating how strongly con-

nected a node is to its neighbours (Rubinov & Sporns, 2010).

2.7 | Statistical analyses

Statistical analyses were carried out in SPSS Statistics 22 (IBM Corp.,

Armonk, NY) and R. Independent samples t tests or Mann–Whitney

U tests (two tailed, α = .05) were used to compare demographic and

behavioural characteristics of verum and control conditions,

depending on the distribution. Since graph measures were not nor-

mally distributed, nonparametric tests were used for statistical analy-

sis. Mann–Whitney U tests were used to compare baseline and rTMS-

induced changes in graph measures between the verum and control

groups. Correlations between graph measures and behavioural out-

comes were carried out using Kendall's tau-b correlations with

bootstrapped 95% confidence intervals (CIs). Due to high levels of

correlation between network measures and the exploratory nature of

this study, these analyses were not corrected for multiple compari-

sons. The data did not meet the assumptions for regression analysis;

therefore, to compare Kendall's tau coefficient between verum and

control groups we converted Kendall's tau to Pearson's r using the

formula r = sin (0.5 π τ) (Walker, 2003) and calculated z scores using a

Fisher's r-to-Z transform (Diedenhofen & Musch, 2015).

3 | RESULTS

3.1 | Demographic characteristics and session
information

The verum and control groups were well matched in terms of age

(p = .606), sex (p = .619), and MMSE (p = .360), but the control group

had a higher estimated intelligence (p = .012) (Table 1). The interval

between Sessions 1 and 2 (p = .930) and between rTMS and task

(p = .053) did not differ significantly between groups (Table 1).

3.2 | Change in set shifting performance
after rTMS

Groups did not differ in set shifting performance at baseline (Gerrits,

van den Heuvel, et al., 2015) (see also Appendix C, Table S1). There

was a small rTMS-induced increase in SER in the verum group com-

pared with the control group (p = .049, Table 1). There were no other

significant between-group differences in rTMS induced changes in set

shifting performance. For both groups there was, in general, an

improvement in performance between Sessions 1 and 2 in all behav-

ioural measures except for SER. None of the changes in behavioural

outcomes correlated with intelligence, educational level, MMSE, or

rTMS-task interval (see Appendix C, Table S2).

3.3 | Association of behaviour change after rTMS
with baseline resting state graph measures

The verum and control groups did not differ significantly in any resting

state graph measures at baseline (see Appendix C, Table S3). In the

verum group, there was a positive correlation between the change in

(ΔRER and baseline NS of the dlPFC node (τ = 0.447, p = .017, 95% CI

[0.138, 0.781]) (Figure 2a)—that is, the higher the prestimulation NS,

the greater the increase in repeat errors after rTMS. This association

was not seen in the control group (τ = −0.170, p = .343, 95% CI

[−0.527, 0.214]), and the association in the verum group was also sig-

nificantly stronger than that seen in the control group (z = 2.696,

p = .007). In the verum group, there was no significant association

between NS in the control node within the visual cortex and ΔRER

(τ = 0.380, 95% CI [−0.049, 0.698]). None of the other resting state

graph measures examined (BC and PC) showed significant correlations

with change in cognitive performance (see Appendix C, Table S4).
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3.4 | Association of behaviour change after rTMS
with baseline task-based graph measures

In the verum group, BC of the dlPFC node correlated negatively

with percentage change in shift response time (ΔSRT) for both the

first (τ = −0.403, p = .030, 95% CI [−0.733, −0.031]) and second

run of task-based fMRI (τ = −0.367, p = .048, 95% CI [−.692, 0])

(Figure 2b); that is, the lower the BC, the greater the increase in

shift response time after rTMS. This relationship was not seen for

BC of the dlPFC in the control group (τ = −0.067, p = .710, 95% CI

[−0.327, 0.267]) or for the BC of the control node of the verum

group (τ = −0.017, p = .928, 95% CI [−0.482, 0.440]). The correla-

tion in the verum group was also significantly stronger than that

of the control group (z = −2.040, p = .04). Correlations between

other task-based graph measures (NS and PC) and changes in

behaviour were not significant (see Appendix C, Table S6).

3.5 | Change in task-based graph measures
after rTMS

There was no significant difference between verum and control

groups in terms of change in network topology after rTMS in either

the first or second run of task-based fMRI (see Appendix C,

Table S7).

3.6 | Association of change in behaviour with
change in task-based graph measures

In the verum group, percentage change in ΔSER between sessions

was positively correlated with change in BC (ΔBC) of the dlPFC node,

but only for the second run (τ = 0.424 p = .024, 95% CI [0.150,

0.669]) (Figure 3). In other words, subjects showing an rTMS-induced

decrease in BC also had a decreased SER after rTMS. Conversely,

those with no change or an increase in BC had an increased SER.

There was no significant correlation between ΔSER and ΔBC in the

control group (τ = −0.180, p = .319, 95% CI: [−0.454, 0.129]) and

there was no correlation with ΔBC of the control node (τ = −0.059

p = .752, 95% CI:[−0.581, 0.415]). Furthermore, the correlation coeffi-

cients differed significantly between groups (z = 2.617, p = 0.008).

There was no other significant correlation between changes in task-

based graph measures (NS, PC) and changes in behaviour (see

Appendix C, Table S8).

4 | DISCUSSION

We investigated whether functional network topology of

prestimulation rsfMRI or task-based fMRI was associated with the

change in set-shifting performance after inhibitory rTMS to the dlPFC,

and whether this change was also related to change in graph features

TABLE 1 Demographic characteristics, session information and change in set shifting performance after rTMS

Verum group n = 16 Control group n = 17 p

Demographics

Age (years) 55 ± 9 (39–75) 57 ± 10 (41–70) .606a

Sex (no./% men) 9/56% 11/65% .619b

Level of education reachedc (median, range, % >5) 6 (4–7) 69% 6 (3–7) 59% .721b

Estimated IQ 98 ± 12 (73–123) 110 ± 14 (82–130) .012

MMSE 29 ± 1 (28–30) 29 ± 1 (27–30) .360

Session information

Interval Session 1–Session 2 (days) 17 ± 11 (7–56) 16 ± 8 (7–35) .772a

Interval rTMS–task (s) 319 ± 54 (240–488) 356 ± 137 (277–800) .053

Total trials completed Day 1 276.6 ± 6.8 (263–289) 278.4 ± 10.9 (263–299) .578a

Total trials completed Day 2 274.6 ± 5.6 (265–288) 280.0 ± 9.4 (264–298) .054a

Change in set shifting performance after rTMS (% change from baseline)

RRT −2.44 ± 14.70 (−30.65–33.41) −6.00 ± 17.72 (−30.47–27.40) .488

SRT −5.08 ± 8.01 (−21.75–14.36) −9.17 ± 15.59 (−38.93–18.95) .465

RER −0.26 ± 0.54 (−1.50–0.73) −0.06 ± 0.65 (−1.09–1.67) .533

SER 0.43 ± 0.96 (−1.13–3.12) −0.27 ± 1.05 (−2.56–1.37) .049

Note: Values are presented as mean ± SD (range) unless otherwise indicated. Significance of group differences tested using an independent samples

Mann–Whitney U test unless otherwise indicated.

Abbreviations: MMSE, Mini-Mental State Examination; RRT, repeat response time; SRT, switch response time; RER, repeat error rate; rTMS, Repetitive

transcranial magnetic stimulation; SER, switch error rate.
aIndependent samples t test.
bPearson's χ2 test.
cLevel of education expressed as the Verhage 7-point scale (Verhage, 1964): 1 = no finished education; 5 = secondary school, medium level; 7 = university

training. Proportions of people scoring ≤5 and >5 compared using χ2 test.
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after stimulation. Our findings indicate that individuals with a higher

pre-TMS BC of the dlPFC during set-shifting are less affected by

inhibitory rTMS, and also show a large decrease in task-based BC fol-

lowing rTMS. Additionally, individuals with a higher pre-TMS NS of

the dlPFC during resting state are more affected by inhibitory rTMS.

4.1 | Functional network topology and response to
LF rTMS

BC gives an indication of the level of global integration of a node. In our

study, the detrimental effect of LF rTMS was greater in subjects with a

lower pre-TMS BC of the dlPFC (i.e., a more segregated dlPFC),

resulting in a post-rTMS increase in SRT. Conversely, subjects with a

higher BC of the dlPFC (i.e., a more integrated dlPFC) appeared to be

less affected and showed post-rTMS improvement in SRT. Other stud-

ies examining network topology predictors of rTMS effect have also

found evidence for a greater effect with less integration. The effect of

10 Hz dlPFC rTMS in depression (Fan et al., 2019) and obsessive–

compulsive disorder (Douw et al., 2019) is greater with a more segre-

gated salience network and a less promiscuous stimulated region,

respectively. This suggests that when applied to less well-integrated

brain areas, rTMS effects may be restricted to the local region and

therefore have a stronger effect on the specific function of that region.

We also found that subjects whose behavioural performance was least

affected by the LF rTMS not only had a higher baseline BC of the

dlPFC, but also showed the greatest rTMS-induced decrease in BC. This

suggests that the capacity to “lose” BC and thereby buffer the effects

of LF rTMS may be a possible mechanism of resilience to inhibitory

rTMS. This apparent resilience of globally well-integrated nodes to inhi-

bition may only be true in the case of inhibitory rTMS, where brain

excitability is temporarily reduced rather than blocked completely: a

computational lesion study showed that full deletion of nodes with high

BC resulted in global network dysfunction (Alstott et al., 2009).

We also found an association between higher resting state NS of

the dlPFC and rTMS-induced increase in repeat errors. This implies that

regions with a higher NS are more vulnerable to the inhibitory effects

of rTMS. As NS is a measure of the strength of the connections of a

node with its neighbours (Rubinov & Sporns, 2010), their loss may lead

to network dysfunction (Alstott et al., 2009). Previous seed-based FC

fMRI studies also suggest that the effectiveness of rTMS is dependent

on the strength of the connections of the stimulated site; stimulation of

regions that have a greater FC at baseline (Cárdenas-Morales

et al., 2014; Liston et al., 2014), results in a greater rTMS response.

F IGURE 3 Change in task-based betweenness centrality (BC) of
the left dorsolateral prefrontal cortex (dlPFC) after repetitive
transcranial magnetic stimulation (rTMS) is associated with change in
shift error rate after rTMS: Participants with no change in task-based
BC of the dlPFC after rTMS showed an increase in shift errors, while

participants with a decrease in BC after rTMS was showed an
improvement or no change in shift errors (verum group: τ = 0.424,
p = .024, 95% CI [0.150, 0.669]; control group: τ = −0.180 p = .319,
95% CI:[−0.454, 0.129], z = 2.617, p = .008). Shaded areas on plot
correspond to 95% CIs. Note that a linear correlation line and 95% CIs
are drawn in these figures, but this association was tested
nonparametrically

F IGURE 2 Correlations between baseline fMRI graph measures
and change in cognitive performance after low frequency
(LF) repetitive transcranial magnetic stimulation (rTMS): (a) Higher
resting state node strength (NS) of the left dorsolateral prefrontal
cortex (dlPFC) node is associated with an increase in RER in the
verum group (τ = 0.447, p = .017, 95% CI [0.138, 0.781]) but not in
the control group (τ = −0.170, p = .343, 95% CI [− 0.527, 0.214];
z = 2.696, p = 0.007). (b) Lower betweenness centrality (BC) of the
dlPFC node is associated with an increase in SRT in the verum group
after TMS (τ = −0.403, p = .03, 95% CI [−0.733, −0.031]) but not in
the control group (τ = −0.067, p = .710, 95% CI [−0.327, 0.267]; z =
−2.040, p = 0.04). Shaded areas on plot correspond to (linear) 95%
CIs. Note that a linear correlation line and 95% CIs are drawn in these
figures, but this association was tested nonparametrically
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Inhibitory rTMS may therefore be more effective in subjects with a high

baseline resting NS because it allows the effects of inhibition to spread

more easily to functionally connected regions. This effect is not limited

to LF rTMS: A study of network features predicting HF rTMS effects in

patients with obsessive–compulsive disorder also found that higher NS

of the stimulated network predicted greater distress reduction following

rTMS (Douw et al., 2019).

4.2 | Differences between resting state and task-
based graph measures

Interestingly, although resting state and task-based networks are similar

in structure (Smith et al. 2009), different graph measures were associated

with a reduction in different aspects of behavioural performance during

set-shifting after rTMS in task-based and rsfMRI. BC and ΔBC in task-

based scans were specifically associated with change in set shifting per-

formance, while NS in resting state scans was associated with errors on

repeat trials. The prominence of BC in the task-based fMRI and NS in

rsfMRI could be due to the changes in functional network topology that

take place when transitioning from rest to task states. The brain network

is more integrated during task execution (with higher BC of the relevant

nodes) (Bolt, Laurienti, Lyday, Morgan, & Dagenbach, 2016; Kitzbichler,

Henson, Smith, Nathan, & Bullmore, 2011; Rzucidlo, Roseman, Laurienti, &

Dagenbach, 2013), while measures related to NS are more important dur-

ing rest (Bolt et al., 2016; Rzucidlo et al., 2013). The specific prediction of

switch trial performance by the task-based network and repeat trials by

the resting state network could be explained by the association of these

networks with the different cognitive aspects of the task. The task-based

network predicts the effect of disruption of the brain region (i.e., DLPFC)

associated with that specific task (i.e., set shifting). Repeat trials, where

subjects respond to the direction or position of an arrow rather than

switching between response rules, involve more general, fundamental

cognitive abilities, such as working memory and attention (Braver

et al., 2003; Monsell, 2003). The impairment of these cognitive domains

is, in our study, predicted by the resting state network (the topology of

which has been previously associated with fundamental cognitive skills

such as working memory (Cole et al., 2012) Network measures derived

from task-based fMRI may therefore have more specificity for predicting

rTMS-induced behavioural changes on the same task. However, the fact

that RSfMRI can also predict rTMS effects has practical implications:

RSfMRI allows evaluation of multiple cortical systems within a single ses-

sion, is more reproducible between sites, and less dependent on partici-

pant factors than task-based fMRI (Fox & Greicius, 2010; Leuthardt

et al., 2018), and may therefore be more feasible to use in future clinical

trials and other clinical contexts as a predictor of rTMS outcomes.

4.3 | Limitations and strengths

Our exploratory study has some limitations. First, the relatively small

sample size means that our power is limited and any effects present

may be inflated (Yarkoni, 2009). Second, the rTMS-induced

performance changes are subtle. Tasks with higher cognitive loads or

stronger rTMS stimulation may give larger and more robust effects.

Third, the interval between pre-rTMS scan and the actual day of rTMS

was approximately 2 weeks—it is unknown how representative the

networks measured at Session 1 were of the prestimulation networks

actually present at Session 2 (though FC measures have been shown

to stay largely stable over time (Gratton et al., 2018; Laumann

et al., 2015). Our cohort also has a wide age range (39–75) and an

average age of 56. This may mean that our results are less applicable

to younger age groups as graph features have been shown to vary

with age (Iordan et al., 2018) (though graph measures showed no cor-

relation with age in our sample [Appendix C, Table S9]). Finally, since

we did not objectively monitor the wakefulness of the subjects during

the resting state scan (which can affect connectivity measures, see

Tagliazucchi & Laufs 2014), we cannot exclude possible differences in

vigilance between the vertex and DLPFC groups. Replication of this

study in a larger cohort with a more demanding task could help tackle

these problems. Our study also has a number of strengths. The associ-

ation of low baseline task-based BC with increase in switch response

time was reproduced in the second run of task-based fMRI. The

observed effects also survive strict “scrubbing” motion correction.

4.4 | Implications and future work

Our results have implications for the selection of rTMS targets. Base-

line functional network topology may be an important factor to con-

sider when choosing stimulation targets for therapies involving LF

rTMS (e.g., in the treatment of obsessive–compulsive disorder, stroke,

and auditory hallucinations (Shafi et al., 2012) or in the experimental

modelling of the cognitive deficits seen in these diseases in healthy

controls. Given that our study was carried out in healthy controls, we

cannot comment directly on the utility of this finding in a clinical con-

text. However, a similar analysis in a group of OCD patients (Douw

et al., 2019) showed comparable results (that low integration and high

segregation of the stimulated region predict a greater effect of rTMS),

suggesting that this finding may also be applicable in patient

populations. Future work could explore whether the effects demon-

strated in this exploratory study are consistent across other stimula-

tion sites, for other cognitive tasks, or for clinical improvement in

disease states across multiple sessions; which graph measures or com-

bination of graph measures are the best predictors of rTMS effect;

which graph measures predict the outcome of excitatory rTMS; and

whether specifically targeting nodes with high NS or low BC results in

more consistent rTMS outcome.

5 | CONCLUSIONS

We have shown that changes in cognitive performance after inhibi-

tory rTMS to the dlPFC are associated with baseline resting state and

task-based functional network graph measures. Subjects with stimu-

lated regions that are globally well-connected during a task are more
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resilient to the effects of inhibitory rTMS, while those with stimulated

regions with strong local connections in the resting state are more

vulnerable to inhibitory rTMS. These results have important implica-

tions for our understanding of individual variability in response to

rTMS, and for the practical application of this noninvasive brain stimu-

lation technique.
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APPENDIX A:

Image preprocessing steps

All image processing was performed using FMRIB's software library

(FSL) version 5.0.8:

• Removal of nonbrain tissue using the Brain Extraction Tool (Smith, 2002).

• Grey and white matter segmentation using FAST (Zhang, Brady, &

Smith, 2001).

• Parcellation into 225 regions in order to define nodes for graph analy-

sis. We used the Brainnetome Atlas (Fan et al., 2016) to define

210 cortical regions; 14 subcortical areas were individually segmented

using FSL FIRST (Patenaude, Smith, Kennedy, & Jenkinson, 2011); and

one cerebellar ROI from FSL's cerebellar atlas was segmented

(Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009).

• Preprocessing of fMRI data using the FSL MELODIC pipeline

(Beckmann, DeLuca, Devlin, & Smith, 2005): discarding the first

four volumes, motion correction, spatial smoothing (5 mm full

width at half maximum), and high-pass filtering (100 s cut-off).

• Coregistration to T1-weighted anatomical MR scans using linear

and nonlinear coregistration methods (Jenkinson, Bannister,

Brady, & Smith, 2002).

• To account for EPI distortions near air/tissue boundaries during

scanning, we applied a mask to the functional scan to exclude

voxels with signal intensities in the lowest quartile of the robust

range (Meijer et al., 2017). Any nodes containing <4 voxels were

excluded. A total of 193 regions common to all fMRI runs

remained: excluded regions were located in the orbitofrontal gyrus,

inferior temporal gyrus, parahippocampal gyrus, and thalamus.

• Extraction of timeseries from each parcellated region.

APPENDIX B:

Subdivision into dlPFC-containing modules

Networks can be subdivided into groups of regions that are densely inter-

connected, known as modules or subnetworks. In the context of func-

tional networks, they are thought to represent areas of segregated

processing (Rubinov & Sporns, 2010), and specific modules may corre-

spond to specific cognitive functions (Niendam et al., 2012). The Louvain

modularity algorithm from the Brain Connectivity Toolbox (Rubinov &

Sporns, 2010) (https://sites.google.com/site/bctnet/) was used to define

dlPFC-containing modules for each participant individually, and for RS

and each task-based run separately, as modularity is known to vary

between individuals and between task and resting states (De Salvo,

Douw, Takaya, Liu, & Stufflebeam, 2014). Since Louvain modularity is an

heuristic algorithm, and produces slightly different subdivisions of nodes

each time it is run (Lancichinetti & Fortunato, 2012), we permuted the

algorithm 1,000 times, calculated pairwise similarities between all itera-

tions, and used the iteration with the most similarity to all other iterations

as a consensus network (Doron, Bassett, & Gazzaniga, 2012). A resolution

parameter (gamma) of 1.1 was used as this gave on average seven mod-

ules per participant, which is a previously described stable subdivision of

known resting state functional networks (Yeo et al., 2011).
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