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Abstract More than 90% of disease- and trait-associated human variants are noncoding. By systematically screening
multiple large-scale studies, we compiled REVA, a manually curated database for over 11.8 million experimentally tested
noncoding variants with expression-modulating potentials. We provided 2424 functional annotations that could be used to
pinpoint the plausible regulatory mechanism of these variants. We further benchmarked multiple state-of-the-art compu-
tational tools and found that their limited sensitivity remains a serious challenge for effective large-scale analysis. REVA
provides high-quality experimentally tested expression-modulating variants with extensive functional annotations, which

will be useful for users in the noncoding variant community. REVA is freely available at http://reva.gao-lab.org.
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Benchmark

Introduction

Noncoding regions occupy the majority of the human
genome [1]. It has been demonstrated that noncoding varia-
nts can affect the regulation of genes [2], and more than
90% of disease- and trait-associated variants are noncoding
variants [3]. Noncoding variants that could affect gene ex-
pression can be considered as expression-modulating varia-
nts [4]. Several experimental assays have been developed to
characterize expression-modulating variants.
editing technologies such as transcription activator-like

Genome

effector nucleases (TALENS), zinc finger nucleases (ZFNs),

*Corresponding author.
E-mail: gaog@mail.cbi.pku.edu.cn (Gao G).
"Equal contribution.

and clustered regularly interspaced short palindromic
repeats with Cas9 nuclease (CRISPR/Cas9) provide
high-quality validated data but are generally low
throughput [5-7]. Recently developed massively parallel
reporter assays (MPRASs) can identify transcriptional regu-
latory elements in an efficient way, allowing systematic
screening of tens of thousands of genetic variants for pin-
pointing the causal variants of complex traits [4,8,9]. All
expression-modulating variants stored in MaveDB [10] are
validated by the MPRA experiments. MPRAs have genera-
ted over 10 million human expression-modulating
variants [11]; however, only around 30 thousand of them
have been collected by MaveDB without any functional
annotation, which hinders the further utilization of these

data.
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Although experimental assays for characterizing non-
coding expression-modulating variants have generated a
huge amount of data, it is still inadequate for covering
all noncoding variants identified in human genomes.
Therefore, multiple computational tools have been develo-
ped for identifying expression-modulating variants
(Table 1). Transcription factors (TFs) could regulate genes
through binding to sequence motifs [12], and noncoding
variants could affect gene regulation by changing
motifs [13]. FunSeq2 integrated a module for detecting
motif-breaking and -gain events through the change of po-
sition weight matrix (PWM) and other functional annota-
tions to prioritize cancer driver mutations [14]. Methods
based on machine learning have been used wildly in bio-
logical researches [15]. CADD [16] used support vector
machine (SVM) to classify variants into functional and
nonfunctional variants, and GWAVA [17] used random
forest to predict disease-related variants. Both CADD and
GWAVA were based on supervised learning methods, while
Eigen [18] implemented unsupervised learning methods to
classifyvariants. All these tools highly depend on existing an-
notations at corresponding loci. In 2015, Alipanahi et al. [19]
developed DeepBind based on convolutional neural net-
works (CNNs) to predict the binding affinity between
TFs and DNA or RNA binding proteins and RNA.
DeepSEA [20] applied similar methods to predict the effect
of noncoding variants on binding affinity and then classified
variants through logistic regression into functional or non-
functional groups. All tools mentioned above identified
expression-modulating variants through indirect inference,
because they were not trained on expression-modulating
variants or expression-related data. EnsembleExpr [21]
used MPRA data to train an ensemble-based model for
characterizing expression-modulating variants directly.

Table 1 Properties of involved computational tools

ExPecto [22] ab initio predicted the variants’ effects on
gene expression from 40-kb promoter-proximal sequences
and then pinpointed expression-modulating variants.
However, there is no comprehensive evaluation of these
computational tools based on high-quality expression-
modulating variants; therefore, it is difficult for users to
choose appropriate tools for their tasks.

Here, we present a repository for expression-modulating
variants (REVA). The current release of REVA consists of
over 11.8 million experimentally validated expression-
modulating variants in the human genome, curated with
extensive functional annotations. We further benchmark
seven popular computational tools in identifying
expression-modulating variants [14,16—-18,20-22] based on
high-quality data in REVA. All data and benchmarking re-
sults are publicly available at http://reva.gao-lab.org.

Construction and content

Data collection and integration

To ensure unified and high-quality data, all records in
REVA were collected and curated using a standard proce-
dure (Figure 1). We used a list of keywords, “MRPA”,
“STARR-seq”, “CRE-seq” with “mutation”, “variant”, and
“variation”, to retrieve publications from PubMed (https://
pubmed.ncbi.nlm.nih.gov/) and then manually checked the
abstracts and full texts of the matching publications to ob-
tain literatures that experimentally validated the effects of
noncoding expression-modulating variants.

For filtered literatures, we extracted related information
of the variants from the main texts as well as supplementary
materials of publications and converted them to the same
format (Table 2). Variants that failed to be mapped to both

Tool Modeling approach Model feature Output Website Refs.

FunSeq2 Knowledge-based Evolutionary parameters; ENCODE Cancer driver mutations  http://funseq2.gersteinlab.  [14]
summaries; PWMs; likely target genes; org/
biological networks; recurrent elements
across cancer samples

CADD Supervised learning Evolutionary parameters; ENCODE Functional variants https://cadd.gs.washington. [16]
summaries; population frequencies; edu/
transcript information; protein-level
scores

GWAVA Supervised learning Evolutionary parameters; ENCODE Disease-related variants ~ https://www.sanger.ac.uk/  [17]
summaries; population frequencies science/tools/gwava

Eigen Unsupervised learning Evolutionary parameters; ENCODE Functional variants http://www.columbia.edu/  [18]
summaries; population frequencies ~ii2135/eigen.html

DeepSEA Supervised learning (DL) Local sequences; evolutionary para- Functional variants http://deepsea.princeton.edu/ [20]

EnsembleExpr Ensemble-based

ExPecto Supervised learning (DL)

meters

Including features used by DeepSEA,
DeepBind, KSM, and ChromHMM

Local sequences

Expression-modulating
variants

Expression-modulating
variants

http://ensembleexpr.csail.
mit.edu/

[21,23,24]

https://hb.flatironinstitute.  [22]
org/expecto/

Note: ENCODE, Encyclopedia of DNA Elements; PWM, position weight matrix; DL, deep learning; KSM, k-mer set memory.
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Figure 1 Overview of the structure of REVA

Manually curated noncoding variant data, as well as supplementary information, were stored in the database at two levels: accession and variant data.
Accession contained the information about the publication, and variant data contained all related information about the variant. A web interface was built
for users to access the data in the database. TF, transcription factor; SNP, single nucleotide polymorphism.

Table 2 Variant information extracted during the data collection process

Information

Note

Genome location

Reference SNP ID
Reference allele
Alternative allele
Raw P value
Adjusted P value
Cutoff

Label

Effect size

Fragment effect
Experimental cell line
Genomic region

TF

TF effect

Genome location of the variant in both GRCh37 and GRCh38
Strand information was also included

Reference SNP ID of the variant

Reference allele of the variant

Alternative allele of the variant

Raw P value given by the publication

If the publication did not provide adjusted P value, the method of Benjamini and Hochberg was conducted

The cutoft for the adjusted P value
If the publication did not provide a cutoff, the cutoff was set to 0.05

Given based on the cutoff for the adjusted P value provided in the publication
If the adjusted P value was less than the cutoff, the label would be 1; otherwise, the label would be 0

Effect size provided by the publication

The effect of the fragment carrying the variant, given based on the effect size: activation, repression, or no effect
The cell line used to conduct the experiment

The genomic region in which the variant was located, such as the particular gene and intron

TF related to the variant

The effect of the aforementioned TF: activation or repression

Note: SNP, single nucleotide polymorphism; TF, transcription factor.
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GRCh37 and GRCh38 were removed. Variants only
mapped to the coding region were also removed. For
missing information, we used “.” as a placeholder. In
addition, the detailed protocols and raw data of the
experiments were also extracted.

For variants with the same chromosome, genome
location, reference allele, alternative allele, and experi-
mental cell line from different publications were subjected
to a meta-analysis to integrate data. The harmonic mean P
value (HMP) method [25] was used in the meta-analysis,
and the cutoff for the meta P value was set to 0.001 to
generate the meta-label. The variants involved in the meta-
analysis but without a raw P value were also removed.

The label of variants was given based on the cutoff for
the adjusted P value or meta P value, and then variants were
classified into positive variants and negative variants based
on label or meta-label. If the variant’s label was 1, the
variant was a positive variant and considered to have effects
on gene expression; otherwise, it was a negative variant
without effect on gene expression.

Database construction

All manually curated variant data, as well as meta-
information, were stored in MongoDB (https://www.mon-
godb.com/) at two levels: accession and variant data (Figure
S1). Each accession entry consisted of an accession number,
created time, last updated time for the accession, informa-
tion about the assay used in the publication (method type,
original reference genome version, link to raw data, and
summary of the assay), and the reference. Variant data in-
cluded all related information about the variant, and each
variant data entry was linked to one accession. For the data
involved in the meta-analysis, the variant data contained the
results of the meta-analysis and were linked to all related
variants and accessions.

We also integrated DisGeNET v7.0 (https://www.dis-
genet.org/) [26] variant-disease associations, GWAS cata-
log (https://www.ebi.ac.uk/gwas/), ClinVar (https://www.
ncbi.nlm.nih.gov/clinvar/), COSMIC (https://cancer.sanger.
ac.uk/cosmic), and three-dimensional interacting genes and
chromatin state from 3DSNP [27] to our database for pro-
viding more variant information.

Variant annotation

In efforts to pinpoint plausible regulatory mechanisms for
these variants, we used 2403 trained CNNs to annotate the
functional effects of sequence variations [28] based on 1249
TF binding profiles, 766 histone modification profiles, 280
DNA accessibility profiles, and 108 DNA methylation
profiles from the recent Encyclopedia of DNA Elements
(ENCODE) data.

NVIDIA Tesla P100 Graphics Processing Units with the
implementation on the deep learning framework
TensorFlow (https://www.tensorflow.org/) and Python
(https://www.python.org/) were used for training models.
We adopted stochastic gradient descent (SGD) as the
optimizer, and the initial learning rate was 0.01.

The final output layer of the CNN model was a fully
connected layer with a sigmoid function used to scale the
output between 0 to 1. The input layer was a one-dimen-
sional convolution layer with the thresholded rectified
linear unit (ReLU) as the activation function. Next, the max-
pooling layer was performed to reduce the complexity of the
data. Then, the dropout layer was used to mitigate the
overfitting problem. The next two layers were a fully con-
nected layer with thresholded ReLU as the activation
function and a dropout layer.

For TF binding, histone modification, and DNA acces-
sibility models, the positive data for training CNNs were the
200-bp sequences centered on the peak in ENCODE pro-
files. Then we removed positive sequences from the human
reference genome and split the rest into 200-bp bins. Ran-
dom sampled 200-bp bins with the same number of positive
data were used as negative data. For DNA methylation, the
200-bp sequences centered on the target base with the me-
thylation rate more than 0.5 or less than 0.5 in whole-
genome bisulfite sequencing (WGBS) data were considered
as positive data and negative data, respectively.
One-hot encoding was conducted to transform each se-
quence to a 200 x 4 binary matrix for model training.

A five-fold cross-validation strategy was used to train
models. During each iteration of model training, 15% of the
input data were randomly selected as the independent
testing dataset to evaluate model performance. The
remaining data were split with 70% to train models and 15%
as the validation dataset to optimize parameters. Model
performance was evaluated with the area under the receiver
operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC) to test the sensitivity and
specificity, and models with the best performance were
selected for variant annotation. An average AUROC and an
average AUPRC of 2403 models were reported.

To character the binding affinity changes of the variant,
we used 2403 trained CNNss to predict on 200-bp sequences
centered with the reference allele and alternative allele,
respectively. For each chromatin profile, the log, fold
change (as the method shown in DeepSEA) [20] was cal-
culated as the variant effect on chromatin profile. Specifi-
cally,

P, P
Effect = logz[ T _Pr] - logz[l _“Pa ]

where P. was the prediction of sequence with reference

allele, and P, was the prediction of sequence with
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alternative allele.

Furthermore, we incorporated 13 DNA physicochemical
properties and 8 evolutionary features into the annotation
pipeline. The 13 physicochemical properties were calcu-
lated as described by Li et al. [29], and 8 conservation
scores were downloaded from UCSC Genome Browser
(http://genome.ucsc.edu/).

Benchmarking

To prepare the benchmarking dataset for evaluating the
performance of state-of-the-art computational tools in
calling expression-modulating variants based on the curated
data in REVA, we first excluded loci tested in mice (n =
15,152). There are overlapping variants between the train-
ing datasets of state-of-the-art tools and the REVA bench-
marking dataset. If the benchmarking dataset contains these
variants, the performance of related tools will be overes-
timated. To avoid the influence of these variants and make a
fair comparison, we further removed variants (n = 47,518)
that were either found in the GWAVA [17] and
EnsembleExpr [21] training datasets or used to compute the
empirical background distributions by DeepSEA [20]. For
the remaining 5,809,991 loci (37,816 positive and
5,772,175 negative), we ran CADD (v1.4, https://cadd.gs.
washington.edu/download) [16], DeepSEA (http://deepsea.
princeton.edu/), EnsembleExpr (https://github.com/gifford-
lab/EnsembleExpr/), and ExPecto (https://hb.flatironin-
stitute.org/expecto/) [22], and used precomputed score sets
of Eigen (vl.1, http://www.columbia.edu/~ii2135/down-
load.html) [18], FunSeq2 (v2.1.6, http://funseq2.ger-
steinlab.org/downloads) [14], and GWAVA (https://www.
sanger.ac.uk/science/tools/gwava), to obtain the corre-
sponding predicted score for evaluation. The thresholds
used in the evaluation were those recommended by the
corresponding papers or official websites (Table S1).

All variants in the benchmarking dataset were variants
with expression-modulating potential. One of the biological
mechanisms by which disease-related or phenotype-related
variants function is having effects on gene expression regu-
lation [30]. Pinpointing disease-related or phenotype-
related variants is more useful for biomedical researches.
Therefore, we further selected the GWAS, ClinVar, and
HGMD subsets of the benchmarking dataset to test these
tools’ power.

Results
Characterization and distribution of expression-modulating
variants

All curated expression-modulating variants were validated
by experiments, and we applied standard data collection and

integration procedure to ensure the high-quality data with
the unified format. By the end of November 2019, REVA
consisted of 11,862,367 entries covering 5,948,789
experimentally tested noncoding loci across 18 cell cultures
from 14 publications [4,8,11,31-41]. We first excluded loci
tested in mice (n = 15,152) and with more than one
alternative allele (n = 26,276). Among the remaining
5,907,361 loci (34,700 positive and 5,872,661 negative),
most were located in intergenic (positive: 49.96%, negative:
53.83%) and intronic (positive: 35.96%, negative: 39.62%)
regions (Figure 2A; Table S2). We found that both positive
and negative variants were unevenly distributed on chro-
mosomes, and no variants were located on the Y chromo-
some (Figure 2B; Table S3). Specifically, fewer positive
variants were located on chromosomes 1, 3, 5, 13-15, and
21, and the X chromosome, and more positive variants were
located on chromosomes 6, 8, 10-12, and 16-20. Fewer
negative variants were located on chromosomes 9, 13—15,
21, and 22, and the X chromosome, and more negative
variants were located on chromosomes 1-8, 10-12, and
16-20. Biochemical activities were detected for 93.53%
positive and 90.80% negative cases in at least one cell
culture (Figure S2A; Tables S4 and S5). Of note, more
positive than negative variants were found in TF binding
regions, highlighting the contribution of TF binding chan-
ges to expression modulation (Figure S2B).

Extensive functional annotation of expression-modulating
variants

We used 2403 trained CNNs to annotate the functional
effects of expression-modulating variants [28]. Most of the
trained CNNs were accurate, with an average AUROC of
0.908 and an average AUPRC of 0.904. Among the
5,789,688 variants annotated, both positive and negative
variants were found to lead to significant changes in binding
affinity for 22 and 12 TFs on average, respectively, which
also suggested that expression-modulating variants may
affect gene expression regulation through changing the
binding affinity of TFs. Moreover, 8.72% positive and
3.56% negative variants were located at evolutionary con-
served loci (phastCons100way score > 0.6).

Benchmarking of state-of-the-art computational tools

To evaluate the power of state-of-the-art computational
tools in calling expression-modulating variants, we further
benchmarked multiple state-of-the-art computational tools
based on the curated data in REVA. With the benchmarking
dataset containing 5,809,991 loci (37,816 positive and
5,772,175 negative), we found that 1289 could not be pre-
dicted by DeepSEA (since their evolutionary features were
not available), and 560,577 were not included in the
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A Positive variants Negative variants

Figure 2 Annotation of the variants in REVA

A. Distribution of positive and negative variants in human genome. B. Density distribution of positive and negative variants on chromosomes. A two-sided
Fisher’s exact test with Benjamini and Hochberg correction [42] was used in the analysis of the chromosome distribution of variants. The cutoff for the
adjusted P value was set to 0.05. The density distribution plot was constructed with the karyoploteR package [43] in R. No variants were located on the Y
chromosome.

precomputed score set of Eigen, FunSeq2, and GWAVA, so time, we assessed its performance based on the average
we further excluded these 561,866 cases from follow-up metrics over 5 randomly sampled sub-datasets with 368
analysis. Meanwhile, as EnsembleExpr could not finish the positive and 56,026 negative cases on average.

whole benchmarking dataset in a reasonable amount of Overall, the best-performing tool was DeepSEA, with
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Figure 3 Performance of involved tools on the benchmarking dataset

A. Performance comparison of involved tools. Bubbles are colored by F1 scores. The tools are ordered by F1 scores. B. The ROC curves for involved tools.
C. Performance comparison of involved tools except for EnsembleExpr on variants that were also included in GWAS catalog. D. Performance comparison
of involved tools except for EnsembleExpr on variants with different phastCons100way scores. E. Performance comparison of involved tools except for
EnsembleExpr on variants from different cell lines. “All” represents the F1 score shown in (A). F. Performance comparison of involved tools except for
EnsembleExpr on variants that were also included in HGMD. “All” represents the F1 score shown in (A). “All HGMD?” represents the F1 score on all
variants that were also included in HGMD. “DM?”, “DP”, “FP”, and “DFP” refer to the classes of related variants documented in HGMD. AUROC, area
under the receiver operating characteristic curve; N.A., not available.
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the highest AUROC and F1 score (Figure 3A and B;
Table S6). All tools performed well in terms of specificity
but poorly in terms of sensitivity. EnsembleExpr had the
highest sensitivity but the lowest specificity, whereas
ExPecto showed the best specificity and worst sensitivity
(Table S6).

There were 52,672 variants in the benchmarking dataset
that overlapped with the GWAS catalog (v1.0.2), and 658 of
them were positive variants. All tools performed better on
variants overlapping with the GWAS catalog, and DeepSEA
still had the best performance (Figure 3C). Meanwhile,
ExPecto and FunSeq2 showed better performance on varia-
nts at evolutionarily conserved loci, while DeepSEA dis-
played moderate performance (Figure 3D).

The coverage and quality of training data may contribute
significantly to the performance of machine learning-based
models [44]. To test whether variants from different cell lines
would affect the performance of these tools, we further
evaluated these tools separately on seven cell lines (Table S7).
On GMI18507, GWAVA-Unmatch performed best; on
HEK293T and NAI12878&NA19239, Eigen-PC had the
highest F1 score; DeepSEA had the best performance on
HepG2, K562, and K562 GATA1; and CADD performed
best on SH-SY5H (Figure 3E), which suggested that the di-
versity of the original training data contributes to the perfor-
mance differences of these tools. Of note, thus far, only
ExPecto outputted cell type-specific scores for various tissues.

To provide a further explanation of the potential me-
chanisms of disease-related variants, we evaluated the
benchmarking dataset on disease-related variants. There
were 1400 variants in the benchmarking dataset that over-
lapped with HGMD (2019.3 professional), and 69 of them
were positive variants (Table S8). Moreover, 8 of 69 varia-
nts were verified to regulate gene expression by in-
dependent experiments; 40 of 69 variants were associated
with diseases such as colorectal cancer, nervous system
diseases, and autoimmune diseases. To test computational
tools’ power on disease-related variants, we compared their
performance on these variants. All tools performed better on
variants overlapping with HGMD, and DeepSEA still had
the best overall performance (Figure 3F), same on variants
with class “DM?” and “DFP”. Eigen-PC showed the best
performance on variants with class “DP”. Interestingly,
ExPecto performed best on variants with class “FP” but
worst on variants with other classes. We also evaluated
variants overlapping with ClinVar (2019.10.08), and
DeepSEA had the best overall performance, and Eigen
showed the best performance on “Drug response” related
variants (Figure S3; Table S9).

Web interface

REVA (http://reva.gao-lab.org) provides an interactive web

interface for users to explore all data entries and analysis
results (Figure 4, Figure S4). Users can start a quick search
by chromosome position, rs ID, gene name, ensemble gene
ID, or disecase name. “Advanced search” provides a cus-
tomized search and batch search for users. The query result
is presented as a table, which includes basic information,
expression information (such as the label, effect size, and
adjusted P value), and the related genomic region. Users
can directly click the link of position and rs ID to access
UCSC Genome Browser and dbSNP (https://www.ncbi.
nlm.nih.gov/snp/) for more information. Users can also
click the “details” link for more information. The detail
page contains eight modules: “Basic Information”, “Cell
Line and Expression”, “Three-dimensional Interacting
Gene”, “Chromatin State”, “Disease and Phenotype”,
“Meta Sources” (only available for variants involved in
meta-analysis), “Accession”, and “Annotation”. In the
“Annotation” module, chromatin profile features are ren-
dered as a heatmap by cell line and a boxplot by category,
and DNA physicochemical properties and evolutionary
features are presented as responsive tables. Users can
download the annotation for further analysis. Moreover, we
also provide benchmarking results of state-of-the-art
computational tools. Users can download all variants in
REVA and the benchmarking dataset through the “Down-
load” page.

Explore plausible regulatory mechanisms of expression-
modulating variants

Autoimmune diseases are caused by the abnormal immune
response to attack and damage functional tissues due to
complex interactions between environmental and genetic
factors [45]. GWAS and fine-mapping studies have identi-
fied thousands of noncoding variants associated with au-
toimmune diseases [46]. Since the mechanisms of
autoimmune disease are complicated, pinpointing causal
variants and exploring their possible functional mechanisms
remain a challenge [47].

Ankylosing spondylitis is a kind of chronic autoimmune
disease, but the pathogenesis remains unclear [48]. On the
advanced search page of REVA (Figure S5), we filtered the
label to positive and searched with “ankylosing spondyli-
tis”. The search result contained 8 entries, and among them,
the variant rs4456788 (near the /COSLG locus) had the
largest effect size tested in HepG2 cell line and was con-
sidered to repress expression. It was also tested in K562
cell line and resulted in the same conclusion. Through the
annotation module of the detail page, we found that in
HepG2 cell line, the alternative allele of rs4456788 could
decrease the binding affinity of TFs MAZ and FUS. MAZ
has been proven to have bidirectional transcriptional
regulation [49], and FUS has a transcriptional activation
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function [50]. It could be the possible regulatory mechani-
sm of rs445678, and this might be helpful for further
researches on the mechanism of pathogenesis of ankylosing
spondylitis.

Discussion

REVA is a database specifically designed for storing
experimentally validated expression-modulating data. It
currently consists of 11,862,367 entries covering 5,948,789
experimentally tested noncoding loci across 18 cell cul-
tures. Both experimentally validated expression-modulating

variants and meta-information about assays were curated.
Comparing with the existing database, REVA is the largest
database designed for curating experimentally validated
expression-modulating noncoding variants specially.
Besides, we provide 2424 functional annotations, including
TF binding, epigenetic modifications, DNA accessibility,
DNA physicochemical properties, and evolutionary
features.

Most of the variants in REVA were located in intergenic
and intronic regions and were unevenly distributed on
chromosomes. Several factors may contribute to the uneven
distribution. First, it has been well demonstrated that the
functional elements are unevenly distributed across
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chromosomes [51,52]. Consistently, we found that the
numbers of both positive and negative variants were highly
correlated with the gene numbers across all chromosomes
(Pearson’s » = 0.80, P = 2.6 % 10°° for positive variants;
Pearson’s » = 0.82, P = 7.1 x 10"’ for negative variants).
Moreover, technical challenges counted too. In particular,
the Y chromosome had long been taken as a “genetic
wasteland” [53] and excluded from genomic analyses for
quite some time due to its genetic and structure
complexities [54]. Although this idea has been shifted with
more researches on chromosome Y, the underrepresentation
of chromosome Y on commonly used arrays still exists [55].
We also noticed that certain experimental designs may lead
to reporting bias [8,33,38-41]. However, after removing
data generated from studies designed for assessing parti-
cular regions [38] or elements [8,33,39—41], we found that
the uneven distribution remains.

Furthermore, we provide a high-quality benchmarking
dataset for evaluating state-of-the-art computational tools
designed for identifying expression-modulating variants
as well as benchmarking results of multiple published
computational tools as a reference for users to select the
best tools for their particular tasks. Overall, all seven tools
have high specificity but low sensitivity. DeepSEA has the
best performance on the whole benchmarking dataset in
terms of AUROC and F1 score, and all tools have better
performance on disease-related or phenotype-related
variants, suggesting that the diversity of the original
training data of these tools contributes to different per-
formance across different benchmark subsets. We noticed
that not all tools involved in the benchmark were designed
for identifying expression-modulating variants originally,
and a ‘“negative” expression-modulating noncoding
variant might also be associated with disease via non-
transcription mechanisms like epigenetic marks [56] or
chromatin structuration [57].

It should be noted that not all variants collected in our
database were tested by identical experimental protocols.
Non-saturation mutagenesis-based studies examine several
elements at a time, and each fragment usually contains one
variant, with the effect size calculated by counting reads
directly [8] or employing a linear model [32]. Meanwhile,
saturation mutagenesis-based studies focus on a few ele-
ments; each fragment contains two or more variants, and the
effect size is calculated through linear regression [41].
Protocol details for each variant were documented
during curation to help users interpret records effectively
(Figure S6).

We believe that this database will be useful for not only
computational but also bench biologists in genomics,
bioinformatics, and genetics communities, and we will keep
the resources updated with new data and annotations that
emerge in the coming years.

Data availability

REVA is freely accessible at http://reva.gao-lab.org.

Code availability

Source code for all analyses and benchmarking is available
on GitHub at https:/github.com/gao-lab/REVA-Data -
Source Code.
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