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Epilepsy affects∼5 out of every 10,000 children per year. Up to one-third of these children

have medically refractory epilepsy, with limited to no options for improved seizure control.

mTOR, a ubiquitous 289 kDa serine/threonine kinase in the phosphatidylinositol 3-kinase

(PI3K)-related kinases (PIKK) family, is dysregulated in a number of human diseases,

including tuberous sclerosis complex (TSC) and epilepsy. In cell models of epilepsy and

TSC, rapamycin, an mTOR inhibitor, has been shown to decrease seizure frequency and

duration, and positively affect cell growth and morphology. Rapamycin has also been

shown to prevent or improve epilepsy and prolong survival in animal models of TSC. To

date, clinical studies looking at the effects of mTOR inhibitors on the reduction of seizures

have mainly focused on patients with TSC. Everolimus (Novartis Pharmaceuticals), a

chemically modified rapamycin derivative, has been shown to reduce seizure frequency

with reasonable safety and tolerability. Mutations in mTOR or the mTOR pathway have

been found in hemimegalencephaly (HME) and focal cortical dysplasias (FCDs), both

of which are highly correlated with medically refractory epilepsy. Given the evidence to

date, a logical next step is to investigate the role of mTOR inhibitors in the treatment of

children with medically refractory non-TSC epilepsy, particularly those children who have

also failed resective surgery.

Keywords: mTOR, cortical dysplasia, hemimegalencephaly, pediatric epilepsy, non-tuberous sclerosis complex-

related epilepsy

INTRODUCTION

Epilepsy affects ∼5 out of every 10,000 children per year (1, 2), with up to one-third of these
children having medically refractory epilepsy. When looking only at children with metabolic or
structural epilepsy, as opposed to genetic or idiopathic epilepsy, the number of children who
continue to have seizures despite multiple antiepileptic drugs (AEDs) jumps to 50% (3–5). A
fraction of these patients are referred for surgical evaluation, and if deemed surgical candidates,
∼60–80% become seizure free after epilepsy neurosurgery (6–18). However, for children whose
seizures persist despite medical therapy and epilepsy surgery, there are limited to no options for
improved seizure control.

mTOR, a ubiquitous 289 kDa serine/threonine kinase in the phosphatidylinositol 3-kinase
(PI3K)-related kinases (PIKK) family (19) is dysregulated in a number of human diseases, including
tuberous sclerosis complex (TSC) and epilepsy. Inhibition of mTOR reduces cell proliferation,
angiogenesis, and glucose uptake by cells in both in vivo and in vitro studies (20–23). Widely used
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in the treatment of subependymal giant cell astrocytoma (SEGA)
in patients with TSC, including children <2 years of age, mTOR
inhibitors have been shown to be beneficial for tumor control and
also seizure control in this patient population (24–26). However,
there are still limited data on the use of mTOR inhibitors for the
treatment of non-TSC epilepsy.

mTOR AS AN ANTI-EPILEPTIC TARGET

In models of pilocarpine-induced seizures, representative of
acquired limbic epilepsy, it has been shown that after pilocarpine
injection, levels of phosphorylated S6K in the hippocampus and
cortex increase at about 30min and peak at 1 h (27). This rise
in phosphorylated S6K can be blocked by pre-treatment with
systemic rapamycin, an mTOR inhibitor, at 5 mg/kg/day for 3
days prior to pilocarpine injection, though the pre-treatment
does not affect the severity of the acute seizures. In contrast,
pilocarpine-treated animals with recurrent spontaneous seizures
who are treated with chronic systemic rapamycin (5 mg/kg/day
for 3 days, then every other day for 3 weeks) demonstrate a
reduction in seizure frequency and duration during treatment;
both of which then gradually increase following withdrawal of
rapamycin. In a model of pilocarpine-induced status epilepticus,
continuous infusion of rapamycin into the dorsal hippocampus
prevented mossy fiber sprouting in the molecular and granular
layers that then emerged upon withdrawal of treatment (28).
Interestingly, when rapamycin was administered after mossy
fiber sprouting began (2 months after seizure onset), no effects
were seen. This effect on mossy fiber sprouting has been
confirmed by others (27).

In anothermodel of temporal lobe epilepsy induced by kainate
injection, elevation in phosphorylated S6K in the hippocampus
and cortex was noted at 1 h after kainate injection with a peak
at 3–6 h and a return to baseline at 24 h (29). An additional
phase of rising phosphorylated S6K levels was noted in the
hippocampus only, starting at 3 days after injection, peaking
by 5 days, and returning to baseline by 5 weeks. Similar to the
studies by Huang et al. (27), when rapamycin was administered
systemically at a dose of 6 mg/kg/day for 3 days before
injection, the biphasic rise in phosphorylated S6K was blocked,
however the severity of the acute seizures was not affected.
Furthermore, rapamycin pre-treatment reduced kainate seizure-
induced hippocampal cell death, kainate-seizure induced dentate
granule cell neurogenesis, supragranular mossy fiber sprouting,
and chronic recurrent kainate-induced spontaneous epilepsy.
When rapamycin treatment was changed from a pre-treatment
to a post-treatment paradigm (6 mg/kg/day for 6 days starting
24 h after onset of kainate status epilepticus, then every other
day from that point forward), late phase mTOR activation,
mossy fiber sprouting, and chronic kainate-induced spontaneous
seizures were all reduced. There was no effect on cell death or
neurogenesis (27).

In WAG/Rij rats, a genetic model of absence epilepsy, Russo
et al. found that early chronic treatment, sub-chronic treatment,
or acute treatment with rapamycin all had anti-absence
properties. In this model, bacterial lipopolysaccharide (LPS)

endotoxin administration causes an increased inflammatory
response which results in an increase in absence seizures.
However, with co-administration of rapamycin and LPS, this
seizure increase was blocked, suggesting an anti-inflammatory
pathway (30).

As expected, in models of TSC where Tsc1 is conditionally
deleted from most cortical neurons, both rapamycin and
RAD-001 (another mTOR inhibitor) increase survival, improve
the histological phenotype (cortical organization, soma size
and polarity, and myelination), and reduce seizures (31).
Additional work has shown that rapamycin completely reverses
the elevated endoplasmic reticulum and oxidative stress
that can lead to cell death in Tsc2-deficient hippocampal
neurons and Tsc1 deficient brain lysates (32). In another
model of cortical dysgenesis in which PTEN is conditionally
deleted from cortical neurons, rapamycin administration
also improved the histological abnormalities (enlarged,
disorganized neurons), reduced abnormal EEG activity,
and suppressed the frequency and duration of spontaneous
seizures (33).

In an animal model of tuberous sclerosis in which Tsc1 is
conditionally deleted primarily in glia, rapamycin had significant
beneficial effects (34). When rapamycin was given systemically
starting at P14 (before the onset of seizures), astrogliosis was
prevented, epilepsy did not develop, and animals did not die
prematurely. When rapamycin was begun after the onset of
epilepsy (at 6 weeks), seizure frequency was decreased, interictal
EEG was improved, and survival was prolonged.

mTOR INHIBITORS IN TSC EPILEPSY

To date, clinical studies looking at the effects of mTOR inhibitors
on the reduction of seizures have mainly focused on patients with
a known diagnosis of TSC. In an open-label prospective study,
52 pediatric participants with TSC complicated with epilepsy
received rapamycin treatment (1 mg/m2/d) for at least 24 weeks
(35). In participants who received rapamycin treatment for 24,
48, 72, and 96 weeks, reported seizure free rates were 25%
(13/52), 19% (6/31), 29% (5/17), and 25% (3/12), respectively.
Importantly, though rapamycin therapy did not always result
in complete seizure freedom, prior to rapamycin therapy, the
average frequency of seizures was 70.27 times/day and the average
number of antiepileptic drugs was 1.30. After 24, 48, 72, and
96 weeks’ treatment, the average seizure frequency was reduced
to 1.94–2.80 times/day and the mean number of concomitant
antiepileptic drugs were reduced to 0.83–0.97 (35).

Everolimus (Novartis Pharmaceuticals) is a chemically
modified rapamycin derivative that is currently approved for the
treatment of pediatric and adult patients with TSC who have
surgically inaccessible SEGAs. In 2010, Krueger et al. reported the
first large study evaluating everolimus in TSC (36). Expanding
upon their findings with the phase 3 EXIST-1 trial, followed
by further analyses, Franz et al. reported sustained efficacy in
reducing the size of the SEGAs, seizure reduction, and reasonable
safety and tolerability, though the study was not sufficiently
powered to prove a positive effect on epilepsy (37–41).
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The most relevant iteration of the everolimus trials for TSC
was EXIST-3, a double-blind placebo-controlled study evaluating
everolimus as an adjunctive therapy for treatment-resistant focal-
onset seizures in TSC (42). Participants were assigned to placebo,
low-dose everolimus (3–7 ng/mL), or high-dose everolimus
(9–15 ng/mL). In the study, the median percentage reduction
in seizure frequency was 29% in the low dose group and 40%
in the high-dose group, with reasonable safety and tolerability
results (42).

Similarly, in a single-center, open prospective study of
15 pediatric participants with TSC and epilepsy, Samueli
et al. (43) reported that 80% of participants treated with
everolimus responded with seizure reduction. In another study
by researchers at Cincinnati Children’s Hospital, 78% of children
treated with everolimus reported ≥50% reduction in seizure
frequency at 2 years (44). Additional smaller reports have
described reduction in seizure frequency in children with SEGA
treated with everolimus (45–47).

mTOR INHIBITORS IN NON-TSC EPILEPSY

A number of structural developmental brain malformations
and tumors have been grouped together and named
“TORopathies” due to their shared underlying disruptions
in the mTOR pathway (48, 49). These include
hemimegalencephaly (HME), polyhydramnios, megalencephaly,
and symptomatic epilepsy (PMSE) syndrome, gangliogliomas,
dysembryonplastic neuroepithelial tumors (DNETs), and
focal cortical dysplasias (FCDs). While each of these is
a histopathologic diagnosis, a common clinical feature is
intractable epilepsy, suggesting that mTOR plays a role
in epileptogenesis.

Hemimegalencephaly and focal cortical dysplasias are both
structural abnormalities that are the result of malformations
during cortical development. Both are highly correlated with
medically refractory epilepsy, and have been associated with
mutations in mTOR or the PI3K/AKT/mTOR pathway (50–65).
PMSE is known to be caused by mutations in the STRADα

gene, an upstream inhibitor of mTORC1, resulting in a decrease
in the LKB1/AMPK pathway, and ultimately dysregulated
mTOR signaling (66, 67). Gangliogliomas and DNETs have
also been shown to exhibit irregular mTOR signaling (48,
50, 68–70). Additionally, variants in genes in the mTOR
pathway have been seen in patients with sporadic focal
epilepsies (71).

Much of the current evidence for the utility of mTOR
inhibitors in the treatment of non-TSC epilepsy is still
in the pre-clinical phase. Unlike conventional antiepileptic
medications, which tend to modulate neurotransmitter receptors
or ion channels, mTOR inhibitors seem to indirectly regulate
protein synthesis, which in turn affects ion channels, neuronal
signaling, synaptic structure and plasticity (49, 72–76). Animal
models of limbic epilepsy (27) and absence seizures (30), both
discussed previously, have shown that treatment with rapamycin
results in decreased seizure activity.

There are some small clinical trials looking at mTOR
inhibitors in non-TSC epilepsy. One open-label prospective study
enrolled 5 children with PMSE. These children were treated
with daily rapamycin (dose adjusted for a target trough blood
concentration between 5 and 15 ng/ml). This study reported 4
out of 5 children were seizure free in the preceding 12-month
period, with the fifth child having a single seizure during this
time (67). Xu et al. (77) reported >50% reduction in seizures in a
single patient with hemimegalencephaly after 1 week of treatment
with rapamycin. Two ongoing trials are looking at the role of
everolimus in the treatment of patients with FCD and medically
refractory epilepsy (78, 79).

DISCUSSION

There is a strong suggestion in the preclinical literature of an
association between mTOR activity and epilepsy/epileptogenesis,
particularly in malformations of cortical development. This,
coupled with the clinical success of mTOR inhibitors in
seizure control in TSC epilepsy and the growing body of
evidence supporting the dysregulation of PI3K/Akt/mTOR in
a variety of pathologies encountered in pediatric epilepsy,
such as focal cortical dysplasia (FCD), suggests that the
next step is to investigate the role of mTOR inhibitors in
the treatment of children with medically refractory epilepsy,
particularly those children who have also failed resective
surgery. To this end, our research group is currently studying
ABI-009 (nab-rapamycin) in a prospective, phase 1 safety
trial to investigate the safety, tolerability, seizure control,
and quality of life in participants with medically refractory
epilepsy who failed epilepsy surgery (80). Additionally, there
are ongoing trials looking at the role of everolimus in the
treatment of patients with FCD and medically refractory epilepsy
(78, 79).

While there remains more to learn and understand about
the role of the mTOR pathway in epilepsy, as well as the
underlying cause of seizures in many children with sporadic
epilepsy, current data suggest that intervention along this
pathway may lead to a reduction in seizure frequency, if
not complete seizure freedom. This is of great value for
children with medically and surgically refractory epilepsy,
for whom even a 50% reduction in seizures can result
in considerable improvements in quality of life and overall
cognitive development.
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