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ABSTRACT

The detection of functional motifs is an important
step for the determination of protein functions. We
present here a new web server SA-Mot (Structural
Alphabet Motif) for the extraction and location of
structural motifs of interest from protein loops.
Contrary to other methods, SA-Mot does not focus
only on functional motifs, but it extracts recurrent
and conserved structural motifs involved in struc-
tural redundancy of loops. SA-Mot uses the struc-
tural word notion to extract all structural motifs from
uni-dimensional sequences corresponding to loop
structures. Then, SA-Mot provides a description of
these structural motifs using statistics computed
in the loop data set and in SCOP superfamily,
sequence and structural parameters. SA-Mot
results correspond to an interactive table listing all
structural motifs extracted from a target structure
and their associated descriptors. Using this infor-
mation, the users can easily locate loop regions
that are important for the protein folding and
function. The SA-Mot web server is available at
http://sa-mot.mti.univ-paris-diderot.fr.

INTRODUCTION

The identification of functional motifs in proteins is an
effective method to infer protein functions. Different
methods have been developed for extracting structural
motifs (SMs) from proteins. For example
MegaMotifBase (1) is a web server allowing the extraction
from protein cores of SMs important for the
three-dimensional (3D) structure in a given superfamily
using sequence and structural feature conservation.
Other methods focus on functional SMs. For example
Webfeature (2) and SitePredict (3) extract SMs specific

to a functional site and consist in learning the SMs of
known functional sites. Other methods such as GASPS
(4), for which no server is available and FunClust (5)
look for conserved SMs in proteins with the same
function. In contrast to the other methods, these two
methods do not start from a known functional site and
are able to discover new functional sites within
superfamilies. Moreover, for all these methods, the extrac-
tion of SMs is based on structural alignment of proteins or
the pairwise comparison of all fragments composing
proteins by computing a root mean square deviation
(RMSD) or distance between all fragments. Thus, using
these geometrical parameters, many functional motifs are
extracted from secondary structures. In spite of their large
variability, loops are often involved in active or binding
sites (6).
The structural alphanet HMM-SA is a collection of 27

structural prototypes of four residues called structural
letters, permitting the simplification of all 3D protein
structures into 1D sequences of structural letters (7). It
has been shown that HMM-SA is an effective and
relevant tool for the study of protein structures (8), to
study protein contacts (9), or protein deformations
(10,11), to search for 3D similarity across proteins (12),
to predict the conformation of peptides in aqueous solu-
tions (13,14), and to extract structural motifs from protein
loops (15,16).
Here, we present a new web server, named SA-Mot

(Structural Alphabet - Motif), allowing the extraction of
SMs, which are important both for structure and function
of protein loops. The first step, based on HMM-SA and
the structural word notion, extracts SMs without pairwise
comparisons of fragments (16). Then, SA-Mot provides
a description of each SM (16,17) and identifies SMs of
interest: recurrent and non random SMs with
strong structural or amino acid sequence conservation
and SMs likely to be involved in protein folding or
function.
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CONCEPTS AND METHODS

Protein dataset

A list of 4911 nonredundant (<50% sequence identity)
protein structures listed in the SCOP classification (18)
was extracted from the PDB of May 2008.

Extraction of SMs of interest

To extract SMs of interest we used a two step protocol:
(i) extraction of all SMs from protein loops [for more
details, see (16)], and (ii) selection of motifs of interest
among all extracted SMs (16,17).

Step 1: Extraction of SMs from protein loops. This extrac-
tion is based on the notion of structural word (SA-W)
derived from the structural alphabet HMM-SA (7).
HMM-SA is a library of 27 structural prototypes, called
structural letters, established after a geometric classifica-
tion of protein fragments. Using HMM-SA, a 3D protein
structure of n residues is simplified into a 1D sequence of
n� 3 structural letters, in which each structural letter de-
scribes a four-residue geometry (7). Each 3D structure of
our data set was encoded into structural-letter sequences,
from which structural-letter sequences of loops were ex-
tracted using the HMM-SA definition (15). Each
simplified loop was split into overlapping words (four con-
secutive structural letters, named SA-Ws), which corres-
pond to SMs of seven residues (16). From the 90 811
loops, named loop data set, 25 304 different SA-Ws were
extracted, describing the conformation of 238 158
seven-residue fragments.

Step 2: Extraction of SMs of interest. We defined different
types of SA-Ws of interest using several parameters:
(i) SA-W occurrence; (ii) structural and sequence conser-
vation; and (iii) statistical overrepresentation (17)

Rare and recurrent SA-W. These two SA-W types were
defined using SA-W occurrence that is the number of
times a word is seen in the loop data set. SA-Ws with an
occurrence <5 are qualified as rare. It has been shown that
rare SA-Ws are linked to structural flexibility and regions
with uncertain coordinates (16). SA-Ws observed more
than 30 times are qualified as recurrent. They are found
in a lot of proteins, which suggests they can be SMs with a
key role in proteins.

SA-Ws presenting weak structural diversity and/or strong
amino acid conservation. We can suppose that the struc-
tural and sequence conservation of these SA-Ws result
from an evolutionary pressure since they are located in
important protein sites. The structural variability and
the amino acid conservation of a SA-W were quantified
using the RMSD and Zmax parameters (16). The RMSD is
the a-carbon RMSD between seven-residue fragments
encoded by the same SA-W. The Zmax derives from the
Zscore parameter that gives information about the con-
servation of each amino acid for the seven positions of a
SA-W. A Zscore for amino acid a at position l in the
SA-W w is defined by Equation (1) and corresponds to

the comparison of its occurrence na,l,w in this position l to
its expected occurrence Na,l,w

Zscorea;l;w ¼
na;l;w �Na;l;wffiffiffiffiffiffiffiffiffiffiffi

Na;l;w

p ð1Þ

Na;l;w ¼
na;l � nw

nall
ð2Þ

where na,l is the occurrence of a at position l in the loop
data set, nall is the total number of SA-Ws in the loop data
set. A positive (resp. negative) Z-score corresponds to
an overrepresentation (resp. underrepresentation) of a.
Among the 140 (20� 7) Zscores for a SA-W, we retain
the maximal Zscore, named Zmax, which quantifies the
amino acid conservation of the most significant position
among the seven positions. Thus, the higher the Zmax of a
SA-W is, the stronger the amino acid specificity of the
SA-W is.

In order to have enough data for the computation of
these structural and sequence parameters, they were
computed only for recurrent SA-Ws.

Overrepresented SA-Ws. A statistically overrepresented
SA-W has an unusual frequency in the data set
(observed more than expected). As in DNA analyses
methods (19), we suppose that this unusual frequency of
a SA-W reflects a selective pressure on this SA-W, sug-
gesting a functional role.

In this study, the overrepresentation was computed
using the software SPatt (20) because it calculates exact
statistics for sets of short sequences. The SPatt approach
compares the occurrence of a SA-Ww in the data set (nw)
and its expected one (Nw) computed under a background
reference model (an 1-order Markov model) using the
PMC (Pattern Markov Chain) notion (21). The
overrepresentation score of w is named ORscore and is
given by:

ORscore ¼ �log10½PðNw � nwÞ� when Nw 4 nw ð3Þ

ORscore ¼ þlog10½PðNw 5 nwÞ� when Nw < nw ð4Þ

where P denotes the probability of the event. For more
information, see (20). The ORscore threshold for statistical
significance is set to 5.94, using the Bonferroni adjustment
to take into account multiple tests. Thus, a SA-W with
a ORscore above 5.94 is defined as significantly
overrepresented.

In this study, we computed two types of overrepre-
sentation of SA-Ws (i) in the loop data set, and (ii) in
sets of proteins with similar function.

SA-W overrepresentation computed on the loop data set. It
has been shown that overrepresented SA-Ws in the loop
data set present particular properties such as a weak
structural variability and strong amino acid specificities
(16). Thus these SA-Ws seem correspond to nonrandom
SMs that could be crucial for proteins.

SA-W overrepresentation computed on set of proteins with
similar function. Sets of proteins sharing the same
function are provided by superfamilies of the SCOP
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classification (18) that groups proteins according to their
structure and function. The computation of SA-W
overrepresentation, seen more than five times in SCOP
superfamilies allowed us to distinguish two types of
overrepresented SA-Ws (17). Ubiquitous SA-Ws are
overrepresented in several superfamilies with different
folds and functions that suggests they are important for
protein structures. Functional candidate words correspond
to SA-Ws highly overrepresented in one or few
superfamilies with similar functions that suggests they
are likely to be involved in functional sites. It has been
shown that some functional candidate words
correspond to SMs involved in binding or active site (17).

WEB SERVER IMPLEMENTATION

The purpose of SA-Mot web server is to allow researchers
to easily identify SMs of interest in protein loops. The SA-
Mot web server has been designed with a user-centered
approach. Thus we tried to simplify the interface for
new users that are not aware of all SA-W descriptors or
statistics. To improve the user-friendliness of the server,
we emphasized direct help through contextual menus or
relevant links in the documentation. Results are
concentrated on a single page, and are accessible by
javascript hooks displaying layouts on-demand. In order
to guarantee the stability of the appearance and the
functionality of the server, we used standard libraries.
This stability was checked on various operating systems
and web browsers.

The duration of the process depends on the number and
length of the chains of the target protein. For example the
extraction of SA-Ws of interest in protein 105M (PDB
code) containing one chain of 153 residues lasts about
13 s. The same extraction from protein 1BBR (PDB
code) containing 10 chains with 11–250 residues lasts
about 75 s.

SA-Mot inputs

Input data is a protein 3D structure. SA-Mot accepts as
input either the PDB formatted coordinate file (22) or the
PDB code of the protein target. Input PDB files can
contain several chains.

SA-Mot outputs

Each chain of an uploaded protein structure is processed
by SA-Mot separately and the results are presented
accordingly, see Figure 1. First, SA-Mot presents the
protein chain (see Figure 1A) using the different
sequences corresponding to the primary sequence (AA),
secondary structures (SS) and 3D structure through the
structural-letter sequence (SL). These sequences allow
the users to easily identify the loop regions of the
studied chain.

Then, SA-Mot provides a table containing the counts of
extracted SA-Ws of interest, see Figure 1B. This table
gives an overview of isolated SA-Ws of interest.

Finally, SA-Mot provides a second interactive table
allowing the identification of SA-Ws of interest
(Figure 1C). This interactive table contains, for each
SA-W (column SW in Figure 1C) its positions and amino
acid sequence (columns Pos and AA in Figure 1C). Other
columns contain the values of parameters used for the
identification of SMs of interest presented in ‘Concepts
and Methods’ section. Thus the columns Occ and OR
allow users to identify recurrent and nonrandom SA-Ws
corresponding to SMs involved in the structural
redundancy of loops. To illustrate the occurrence of a
SA-W, users can access the list of proteins (and positions)
containing the SA-W (see Figure 1D) by clicking on the
related icon. The columns RMSd and AACons allow users
to identify SA-Ws with a relevant structural or sequence
conservation. These conservations are illustrated by
figures obtained by clicking on the corresponding values.
The first figure corresponds to the superimposition of all
fragments encoded into the SA-W (Figure 1E) and the
second corresponds to the logo of the amino acid
sequences of all fragments encoded into a SA-W
(Figure 1F). Finally, the column ORsf corresponding to
the result of the computation of the SA-W overrepre-
sentation in SCOP superfamilies allows the user to
locate SMs which are likely to be involved in protein
function (functional candidate words) or in protein
structures (ubiquitous words). To help users to identify
the role of these SMs, they have access to the SCOP id
of each superfamily where the SA-W is overrepresented
(Figure 1 H,G).
In the table, SA-Ws are first ranked according to their

positions in the studied chain but can be sorted according
to the different columns in order to facilitate the
identification of SA-Ws of interest (Figure 1B).

USING SA-MOT

In this section, we will try to illustrate a concrete search
case in which SA-Mot could be of interest. Our target is an
uncharacterized protein: its structure is known and
referenced in the PDB (2RHM) but its function has not
been clearly established (putative kinase from Chloroflexus
aurantiacus). Using DALI database (23), the structural
closest protein (first hit) is the chain A of L-seryl-
tRNA(sec) kinase of Methanocaldococcus jannaschii,
(PDB code 3A4L). This hit presents a RMSD of 2.8 Å
and a sequence identity of 25% with chain B of the protein
target (see Supplementary Data), suggesting a kinase
activity of protein target. This kinase activity is also
suggested by CD-search web server (24,25) that identifies
different conserved domains in the region 1–130, see
Supplementary Data.
SA-Mot server is then used to locate motifs of interest

in protein loops of the protein target. A part of the results
for chain B is presented in Figure 1. First, chain B
contains rare SA-Ws at positions 130–141 suggesting it
may be a flexible region. We can observe that this region
is located at the end of the conserved domain
‘Chloramphenicol phosphotransferase-like protein
(CPT)’ detected by CD-search. Then, we located 19
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Figure 1. Output of SA-Mot run with protein 2RHM. (A) Information about studied chains with different sequences: amino acid (AA), structural-
letter (SL) and secondary-structure (SS) sequences. (B) Counts of SA-Ws of interest extracted from the studied chain. (C) SA-W description. For
each SA-W (column SW), the table provides its position and amino acid sequence in the studied chain (columns Pos and AA), its occurrence and
over-representation in the loop dataset (columns Occ and OR), its structural and sequence conservation (columns RMSd and AACons) and its over-
representation in SCOP superfamilies (column ORsf). By clicking on icons, users can access to a contextual window displaying parameter
informations: the list of proteins (PDB ID) containing a given SA-W (D), the superimposition of all SA-W-fragments computed using the ProFit
software (http://www.bioinf.org.uk/software/profit/) and represented using the Pymol software (http://www.pymol.org) (E), the logo (28) of the
amino acid sequences of all SA-W-fragments (F), list of SCOP superfamilies where a SA-W is over-represented (G and H).
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SA-Ws that are recurrent and overrepresented in the loop
data set and presenting a weak structural variability and
some amino acid specificities. This suggests they
correspond to SMs involved in crucial regions in the
protein target. One of these motifs of interest, ZCDS,
located at positions 25–31, corresponds to an ubiquitous
word clearly associated with beta-turns (17). Chain B of
the protein target contains also four functional candidate
words: YUOD, UODO, CDSK, OZGB. For two SA-Ws,
CDSK and OZGB, no available annotation was found to
confirm their functionality that should be tested by
experimental methods.
OZGB is located at positions 165–171 and is

overrepresented in the ‘Trypsin-like serine proteases’
superfamily (SCOP id=50494), suggesting that this SM
is important for these proteases. It is surprising that a
putative kinase shares a structural motif specific to
trypsin-like serine proteases. However, this motif is not
located in conserved kinase domains extracted from CD-
search and it corresponds to a variable region in DALI
alignment (see Supplementary Data). Moreover, using
SA-Mot to analyze the closest (kinase) proteins provided
by DALI, we found that these kinases do not contain
OZGB. These results suggest this SA-W may identify a
SM important for the C-terminal region of the target
protein but not be involved in kinase activity.
CDSK is located at positions 26–32 and is

overrepresented in the superfamily ‘YVTN repeat-like/
Quinoprotein amine dehydrogenase’ (SCOP id=50969).
This suggests this SA-W is important for these
dehydrogenase proteins. It is located in kinase
conserved domains detected by CD-search and in a bit
conserved region in the DALI alignment. Using DALI
output, we observe that SA-W CDSK is found in
uridylmonophosphate/cytidylmonophosphate kinases
and adenylate kinases (for example PDB codes:
1QF9_A, 3UKD_A and 2C95_B), but not in L-Seryl-
tRNA(sec) kinases (PDB code: 3A4L_A the first hit in
DALI), putative gluconate kinases (PDB code: 2BDT_A
the second hit in DALI), 6-Phosphofructo-2 kinases
(PDB code: 1K6M_A). This suggests that this SA-W
is important for a putative function common to some
protein kinases (uridylmonophosphate/cytidylmono-
phosphate kinases and adenylate kinases).

Overlapping SA-Ws YUOD and UODO, located at
positions 11–18, are strongly overrepresented in the
superfamily ‘P-loop containing nucleotide triphosphate
hydrolases’ (SCOPid=52540). These SA-Ws have been
identified as SMs with residues involved in nucleotide-
binding sites (17). Moreover, the functionality of these
two SA-Ws are confirmed by the fact they are located in
the conserved domains with kinase activity detected by
CD-seach and in a highly conserved region on DALI
alignment (see Supplementary Data). Thus, SA-Mot
detects an ATP/GTP-binding site.

The extraction of the four SA-Ws of interest in DALI
hits suggests the protein target is closer to uridylmono-
phosphate/cytidylmonophosphate kinases or adenylate
kinases, proteins containing CDSK word like the target,
rather than a L-Seryl-tRNA(sec) kinases, as suggested by
DALI results, see Supplementary Data. Thus, SA-Mot

could be used in complementarity with DALI to order
of DALI hits.
These four motifs of interest extracted by SA-Mot were

not detected by other methods dedicated to the extraction
of functional sites. For example the extraction of
functional sites from the protein target is impossible
using the following web servers: MegaMotifBase (1),
Webfeature (2), FunClust (5), because the protein target
is not in their current databases. SitePredict (3) predicts a
calcium-binding site in chain B at position 137 and a
copper, iron, manganese, zinc-binding sites at position
132, but with a weak prediction probability (i.e. <60%).
PROSITE (26) leads to the identification of no functional
pattern. The IBIS web server (27) annotates the protein
target as putative kinase and extracts a binding site to a
benzoic acid. In Swiss-Prot, the protein target
(corresponding to the A9WDG5 id) does not contain
any functional sites despite its annotation by the Gene
Ontology term ‘ATP binding’ (molecular function). We
can observe that for this uncharacterized protein, there
is no consensus between methods that extract functional
motifs.
In addition to the knowledge of the putative kinase

activity suggested by IBIS, Swiss-Prot, CD-search
and DALI methods, SA-Mot results allow the location
of ATP-binding site, that is the functional site
needed for this activity. SA-Mot also locates three
other SMs of putative interest for target structure and
function.

CONCLUSION

SA-Mot is a new web server for the identification of SMs
of interest extracted from protein loop structures. It is
based on two steps: first the extraction of all SMs from
loops of protein structures, and secondly the description
of all extracted SMs. This description is based on statistics
of SMs computed either on the loop data set or on SCOP
superfamilies, on geometric and sequence parameters and
is summed up in an interactive table.
SA-Mot allows the users to easily identify SMs of

interest such as those involved in the structural and
sequence redundancy and those with a putative role in
protein structure or function. Thus, in contrast to classical
methods, SA-Mot does not focus only on the detection of
a binding site associated with a ligand, but explores all
crucial SMs for proteins such as motifs of interest for
protein folding or structural motifs involved in active
site or REPEAT regions (17). Another interest of SA-
Mot is that the learning of motifs of interest is
not based on the knowledge of functional sites.
Thus, SA-Mot is able to propose novel SMs putatively
important for the protein function.
In the current SA-Mot release, the overrepresentation

of SA-Ws is computed in each SCOP superfamily. As our
method is effective for any protein classification, it may be
extended to CATH superfamilies.
Moreover, SA-Mot only runs on proteins for which the

3D structure has been resolved but it could be extended to
circumstances where only the sequence is known. For this
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last case, we are currently developing a method to predict
the SA-Ws of interest directly from amino acid sequences.
Then it will be possible to integrate this new method into
the SA-Mot server to detect SMs of interest from protein
loops using either the protein structure or the protein
sequence.
Currently the only piece of information about the

nature of the potential functional role of some SMs
extracted by SA-Mot is provided by the id of the SCOP
superfamily where a SM is overrepresented. Thus, the next
step of this work is the identification of the role of the
functional candidate words.
It is clear that methods dedicated to functional motifs

extraction are complementary between both them and
methods allowing protein global structural comparisons
such as DALI. Thus, the next release of SA-Mot will be
integrated in a meta-server including both local and global
approaches in a high-throughput functional annotation
pipeline.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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method for large-scale de novo peptide and miniprotein structure
prediction. J. Comput. Chem., 31, 726–738.

15. Regad,L., Martin,J. and Camproux,A.C. (2006) Identification of
non random motifs in loops using a structural alphabet. In
Proceedings of IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational. Toronto, pp. 92–100,
September.

16. Regad,L., Martin,J., Nuel,G. and Camproux,A.C. (2010) Mining
protein loops using a structural alphabet and statistical
exceptionality. BMC Bioinformatics, 11, 75.

17. Regad,L., Martin,J. and Camproux,A.C. (2011) Dissecting protein
loops with a statistical scalpel suggests a functional implication of
some structural motifs. BMC Bioinfo., in press.

18. Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995)
SCOP: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol., 247,
536–540.

19. Karlin,S., Burge,C. and Campbell,A.M. (1992) Statistical analyses
of counts and distributions of restriction sites in DNA sequences.
Nucleic Acids Res., 20, 1363–1370.

20. Nuel,G., Regad,L., Martin,J. and Camproux,A.C. (2010) Exact
distribution of pattern in a set of random sequences generated by
a Markov source: application to biological data. Algo. Mol. Biol.,
5, 15.

21. Nuel,G. (2006) Numerical solutions for patterns statistics on
Markov chains. Stat. Appl. Genet. Mol. Biol., 5, 26.

22. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242.

23. Holm,L. and Sander,C. (1995) Dali: a network tool for protein
structure comparison. Trends Biochem. Sci., 20, 478–480.

24. Marchler-Bauer,A. and Bryant,S. (2004) CD-Search: protein
domain annotations on the fly. Nucleic Acids Res., 32,
W327–W331.

25. Marchler-Bauer,A., Lu,S., Anderson,J., Chitsaz,F., Derbyshire,M.,
DeWeese-Scott,C., Fong,J., Geer,L., Geer,R., Gonzales,N. et al.
(2011) CDD: a conserved domain database for the
functional annotation of proteins. Nucleic Acids Res., 39,
D225–D229.

26. Hulo,N., Bairoch,A., Bulliard,V., Cerutti,L., Cuche,B., De
Castro,E., Lachaize,C., Langendijk-Genevaux,P.S. and

W208 Nucleic Acids Research, 2011, Vol. 39, Web Server issue



Sigrist,C.J.A. (2007) The 20 years of PROSITE.
Nucleic Acids Res., 36, 245–249.

27. Shoemaker,B., Zhang,D., Thangudu,R., Tyagi,M., Fong,J.,
Marchler-Bauer,A., Bryant,S., Madej,T. and Panchenko,A. (2010)
Inferred biomolecular interaction server–a web server to analyze

and predict protein interacting partners and binding sites.
Nucleic Acids Res., 38, D518–D524.

28. Crooks,G.E., Hon,G., Chandonia,J.M. and Brenner,S.E. (2004)
WebLogo: a sequence logo generator. Genome Res., 14,
1188–1190.

Nucleic Acids Research, 2011, Vol. 39, Web Server issue W209


