Check for updates

OPEN ACCESS

EDITED BY Alberto Antonelli, University of Florence, Italy

REVIEWED BY

Dolla Karam Sarkis, Saint Joseph University of Beirut, Lebanon Giulia Menchinelli, Catholic University of the Sacred Heart, Rome, Italy

*CORRESPONDENCE

Tsegaye Sewunet tsegaye.sewunet@ki.se; tsegishs2010@gmail.com

SPECIALTY SECTION

This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

RECEIVED 24 May 2022 ACCEPTED 17 August 2022 PUBLISHED 20 September 2022

CITATION

Sewunet T, Asrat D, Woldeamanuel Y, Aseffa A and Giske CG (2022) Molecular epidemiology and antimicrobial susceptibility of *Pseudomonas* spp. and *Acinetobacter* spp. from clinical samples at Jimma medical center, Ethiopia. *Front. Microbiol.* 13:951857. doi: 10.3389/fmicb.2022.951857

COPYRIGHT

© 2022 Sewunet, Asrat, Woldeamanuel, Aseffa and Giske. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Molecular epidemiology and antimicrobial susceptibility of *Pseudomonas* spp. and *Acinetobacter* spp. from clinical samples at Jimma medical center, Ethiopia

Tsegaye Sewunet^{1*}, Daniel Asrat², Yimtubezinash Woldeamanuel², Abraham Aseffa³ and Christian G. Giske^{1,4}

¹Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, ²Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia, ³Armauer Hansen Research Institute, Addis Ababa, Ethiopia, ⁴Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden

Introduction: Pseudomonas aeruginosa (*P. aeruginosa*) and *Acinetobacter baumannii* (*A. baumannii*) can cause difficult-to-treat infections. We characterized molecular epidemiology of ceftazidime-resistant *P. aeruginosa* and carbapenem-resistant *A. baumannii* at a tertiary hospital in Ethiopia.

Materials and methods: Non-fermenting gram-negative bacilli (n = 80) isolated from admitted patients were subjected for species identification by MALDI-TOF. *Pseudomonas* species resistant to ceftazidime or meropenem, and *Acinetobacter* species resistant to meropenem, or imipenem were selected for whole genome sequencing. DNA extracted with EZ1 Advanced XL instrument (Qiagen, Hilden, Germany) was sequenced on Illumina (HiSeq2500) using libraries prepared by NEXTRA-kits (Illumina). Raw reads were assembled using SPAdes 3.13.0, and assembled genomes were used to query databases for resistome profile and sequence types.

Result: Among *Pseudomonas* species isolated, 31.7% (13/41), and 7.3% (3/41) were non-susceptible to ceftazidime, and meropenem, respectively. Carbapenem-resistance was 56.4% (22/39) among *Acinetobacter* species. Moreover, 92% (12/13) of *Pseudomonas* species non-susceptible to ceftazidime and/or meropenem, and 89.4% (17/19) of *Acinetobacter* species encoded multiple resistance genes for at least three classes of antimicrobials. The prevalent β - lactamase genes were $bla_{OXA-486}$ (53.8%, 7/13), $bla_{CTX-M-15}$ (23.0%, 3/13) among *Pseudomonas*, and bla_{GES-11} (57.8%, 11/19) among *Acinetobacter*. The bla_{OXA-51} -like β - lactamase, bla_{OXA-69} (63.1%, 12/19) was the most prevalent carbapenemase gene among *Acinetobacter* isolates. Single isolates from both *P. aeruginosa*, and *A. baumannii* were detected with the bla_{NDM-1} . Sequence type (ST)1*A. baumannii* and ST274 *P. aeruginosa* were the prevalent sequence types. A cgMLST analysis of the ST1 *A. baumannii*

isolates showed that they were closely related and belonged to the international clonal complex one (ICC1). Similarly, ST274 *P. aeruginosa* isolates were clonally related.

Conclusion: The prevalence of MDR isolates of *Pseudomonas* and *Acinetobacter* spp. was high. *A. baumannii* isolates were clonally spreading in the admission wards at the hospital. Emergence of $bla_{\text{NDM}-1}$ in the intensive care, and surgical wards of the hospital is a severe threat that requires urgent intervention.

KEYWORDS

ESBLs, carbapenemase, bla_{CTX-M-15}, bla_{GES-11}, bla_{NDM-1}, P. aeruginosa, A. baumannii, Ethiopia

Introduction

Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are among the main causes of nosocomial infections (De Oliveira et al., 2020). They belong to the group of bacteria known as "ESKAPE" (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter species). Moreover, these group of bacteria are difficult to treat in most cases (Bergogne-Bérézin and Towner, 1996; De Oliveira et al., 2020; Ma et al., 2020).

The prevalence of antimicrobial resistant sub-populations of these strains has rapidly increased over the last few decades (Wong et al., 2017; Horcajada et al., 2019). Carbapenemaseproducing A. baumannii (CRAB) and P. aeruginosa were listed top two of the three critical priority pathogens for which new antimicrobials are urgently needed (WHO, 2017). Several Acinetobacter and Pseudomonas species were previously reported from different clinical samples from both animal, and human infections (Chusri et al., 2014; Wong et al., 2017; Agnese et al., 2018). Many of them were resistant to multiple classes of antibiotics primarily by several intrinsic resistance mechanism they encode, and secondly by acquired resistance mechanisms (Bello-López et al., 2020; Meng et al., 2020). Studies have also shown that multidrug-resistant strains of P. aeruginosa and A. baumannii were the main drivers of hospital-acquired infections (Djahmi et al., 2014; Eichenberger and Thaden, 2019; Kazmierczak et al., 2020). A recent review of global epidemiology of carbapenemase-producing Gram-negative bacteria reported that carbapenemase-producing P. aeruginosa (CRPA) were associated with high mortality and morbidity among hospitalized patients with pneumonia and bloodstream infections in the United States (Brink, 2019). Though regional variations are common, colonization by carbapenemresistant A. baumannii increased the risk of acquisition of bloodstream infection four-fold (Munoz-Price et al., 2016; Bassetti et al., 2017). In low-income countries like Ethiopia, comprehensive microbiological data is lacking.

The classical phenotyping methods commonly used in low-income countries cannot reliably define mechanism of resistance in both *Pseudomonas* and *Acinetobacter* species. Lack of sufficient standardized genotypic methods for detection and tracking of multidrug-resistant or extensively drug-resistant isolates was one of the challenges to understand epidemiology of antimicrobial resistance in sub-Saharan African countries (Eichenberger and Thaden, 2019). In most cases, global reports on antimicrobial resistance lack data from African countries. Despite discrepancies in availability of data, there is sufficient overall evidence that carbapenemase-producing Gram-negative bacilli have become a threat to global health. Rapid detection and tracking of any ongoing spread of resistant strains is necessary.

We aimed to analyze the phenotypic and molecular characteristics of *Pseudomonas* species and *Acinetobacter* species isolated from clinical samples at Jimma Medical Center (JMC), a tertiary hospital in Ethiopia.

Materials and methods

Isolation, identification, and selection of strains

As part of a large epidemiological study, a total of 1,087 clinical samples (urine, stools, wound secretions, and sputum) were collected from patients with suspected infections seeking medical care from June to October 2016 at JMC, Ethiopia. *Pseudomonas* species and *Acinetobacter* species were isolated on MacConkey agar and sheep blood agar. Species identification was performed by MALDI-TOF (Bruker Daltonik GmbH, Bremen, Germany) at Karolinska University Hospital (KUH), Clinical Microbiology laboratory, and a full panel of

TABLE 1A Socio-demographic and clinical characteristics patients and isolation Pseudomonas species.

Patient ID	Age	Sex	Inpatient/ outpatient	Current diagnosis	*Current antibiotic	Specimen	Underlying disease	Pseudomona species
1020	28	М	Inpatient	Surgical site infection	CRO, MET	Wound swab	Surgical incision	P. aeruginosa
032	28	М	Inpatient	Urinary tract infection	CRO, MET	Urine	Trauma	P. aeruginosa
038	30	М	Inpatient	Urinary tract infection	CRO	Urine	Severe head injury	P. putida
1043	17	М	Inpatient	Urinary tract infection	CRO	Urine	Aspiration pneumonia	P. aeruginosa
M019	70	М	Inpatient	COPD	CRO, VAN	Sputum	Cor pulmonale	P. aeruginosa
v1030	60	М	Inpatient	Community- acquired pneumonia	CRO	Sputum	**COPD	P. aeruginosa
M074	50	М	Inpatient	COPD	VAN, CIP	Sputum	Asthma	P. aeruginosa
M119	40	М	Inpatient	Pneumonia	CRO	Sputum	Post TB fibrosis	P. aeruginosa
M304	40	М	Inpatient	Community- acquired pneumonia	No	Sputum	Post TB fibrosis	P. aeruginosa
M334	35	F	Inpatient	Severe community-acquired pneumonia	CRO	Sputum	No	P. aeruginosa
4521	60	F	Outpatient	Community- acquired pneumonia	CRO	Sputum	**T2DM	P. aeruginosa
2014	14	М	Inpatient	Wound infection	AUG	Wound swab	No	P. aeruginosa
9109	4	F	Inpatient	Diarrhea	AMOX, GENT	Stool	SAM, pneumonia	P. aeruginosa
5007	32	М	Inpatient	Necrotizing fasciitis	No	Wound swab	No	P. aeruginosa
010	5	М	Inpatient	Wound infection	CAF, CLO	Wound swab	Trauma	P. aeruginosa
011	7	М	Inpatient	Wound infection	AMP, CAF	Wound swab	Trauma	P. aeruginosa
017	18	М	Inpatient	Necrotizing fasciitis	CRO, MET	Wound swab	No	P. aeruginosa
019	60	М	Inpatient	Foot ulcer	CRO, MET	Wound swab	Diabetes mellitus	P. aeruginosa
020	30	М	Inpatient	Wound infection	CRO, MET	Wound swab	Trauma	P. aeruginosa
036	17	F	Inpatient	Wound infection	No	Wound swab	Unstable pelvis fracture	P. aeruginosa
6047	10	М	Inpatient	Wound infection	AMP	Wound swab	Chronic osteomyelitis	P. aeruginosa
6048	15	М	Inpatient	Wound infection	AMP, CAF	Wound swab	Fracture of femoral shaft	P. aeruginosa
6077	3	М	Inpatient	Wound infection	AMP, GENT	Wound swab	Colostomy, imperforation	P. aeruginosa
5116	50	F	Inpatient	Wound infection	AMOX, MET	Wound swab	Uterine cancer	P. aeruginosa
5129	77	М	Inpatient	Wound infection	CRO, VAN	Wound swab	Amputation of leg	P. aeruginosa
133	45	М	Inpatient	Wound infection	CRO, MET	Wound swab	Neck injury trauma	P. aeruginosa
5114	25	F	Inpatient	Acute kidney infection	CRO, MET	Urine	Rib fracture	P. aeruginosa
5155	21	F	Inpatient	Wound infection	AMP, CAF	Wound swab	Infected skin graft	P. aeruginosa
174	60	М	Inpatient	Wound infection	CAF, AMP	Wound swab	Infected fracture site	P. aeruginosa
5192	75	М	Inpatient	Urinary tract infection	CRO	Urine	**BOO	P. putida
5195	21	F	Inpatient	Wound infection	CRO, MET	Wound swab	Skin graft infection	P. aeruginosa
5198	57	М	Outpatient	Wound infection	CLO, CAF	Wound swab	Left femoral fracture	P. aeruginosa

(Continued)

Patient ID	Age	Sex	Inpatient/ outpatient	Current diagnosis	*Current antibiotic	Specimen	Underlying disease	Pseudomonas species
S209	18	F	Inpatient	Wound infection	CRO	Wound swab	Burn wound	P. aeruginosa
S248	20	F	Inpatient	Contaminated wound		Wound swab	No	P. aeruginosa
S288	50	М	Inpatient	Pneumonia	No	Sputum	Abdominal mass	P. aeruginosa
S319	40	М	Inpatient	Urinary tract infection	No	Urine	BPH	P. aeruginosa
S325	37	М	Inpatient	Wound infection	CAF, AMP	Wound swab	Compound distal fracture	P. aeruginosa
S328	60	М	Inpatient	Pneumonia	CRO, MET	Sputum	3rd degree burn	P. aeruginosa
S332	30	М	Inpatient	Wound infection	CRO, MET	Wound swab	2nd degree burn	P. fulva
\$356	30	М	Inpatient	Wound infection	CRO, MET	Wound swab	Infected palate of right knee	P. aeruginosa
S371	64	М	Inpatient	Surgical site infection	CLO, CAF	Wound swab	Laparotomy	P. aeruginosa

TABLE 1A (Continued)

*Current antibiotics: CRO, ceftriaxone; Met, metronidazole; VAN, vancomycin; CLO, cloxacillin; CAF, chloramphenicol; CIP, ciprofloxacin; AMP, ampicillin; GENT, gentamicin. **Underlying diseases: COPD, congestive obstructive pulmonary disease; T2DM, type-2 diabetes mellitus; BOO, Bladder outlet obstruction; BPH, Benign prostatic hyperplasia.

antimicrobial susceptibility testing was performed by using the EUCAST 2021 v11 guideline.¹

Antimicrobial susceptibility testing

All Pseudomonas species and Acinetobacter species isolated were subjected to disk-diffusion susceptibility testing. Antibiotic discs of ceftazidime, meropenem, piperacillintazobactam, gentamicin, amikacin, ciprofloxacin was used for Pseudomonas species. Similarly, all Acinetobacter isolates were tested by using meropenem, imipenem, gentamicin, amikacin, ciprofloxacin, trimethoprim-sulfamethoxazole. Then, isolates with reduced susceptibility to ceftazidime and/or meropenem for Pseudomonas spp., and meropenem or imipenem for Acinetobacter spp. were selected for antimicrobial susceptibility testing using the newer antimicrobials (cefiderocol, ceftazidimeavibactam, ceftolozane-tazobactam, and imipenem-relebactam for Pseudomonas spp., and cefiderocol, meropenem, imipenem, and imipenem-relebactam for Acinetobacter spp. using microbroth dilution technique), and whole genome sequencing (WGS). Patients' clinical data like admission, presence of underlying chronic illnesses, current use of antibiotics, and other factors was collected using a structured questionnaire.

DNA extraction, whole genome sequencing and analysis of genomic data

Genomic DNA was extracted using Qiagen kits on EZ1 automated DNA extractions system. The extracted

DNA was quantified using QubitTM 3.0 (Massachusetts, United States) and library preps were performed using NEXTRA-kit (Illumina) and sequenced using HiSeq2500 (Illumina). Raw reads were assembled using SPAdes ver. 3.13.0, and the assembled draft genomes were used for querying different databases, MLST-typing 2.0, hosted at center for genomic epidemiology, and detection resistome profile by using ResFinder 4.1.^{2,3} Epidemiologic analysis of relatedness between the isolates, and to other international isolates was performed by the minimum spanning tree using the isolate genomes deposited at the public domain for *A. baumannii* at⁴, and *P. aeruginosa* at.⁵ The Genome sequences were deposited at the NCBI, SRA database (Bioproject number: PRJNA593604, Biosample accession: SUB11593554).

Results

Clinical and demographic characteristics of the patient

From a total of 1,087 non-repeat clinical samples collected during the study period, non-duplicate, non-fermenting Gramnegative bacilli that belong to either *Pseudomonas* spp. or *Acinetobacter* spp. were isolated from 80 patents. Most of these patients, 73.7% (59/80) were male, and 26.3% (21/80) were female. Ninety percent (72/80) of these patients were

¹ www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint _tables/v_11.0_Breakpoint_Tables.pdf

² https://cge.food.dtu.dk/services/MLST/

³ https://cge.food.dtu.dk/services/ResFinder/

⁵ https://pubmlst.org/organisms/pseudomonas-aeruginosa

TABLE 1B Socio-demographic and clinical characteristics patients and isolation Acinetobacter species.

•		Inpatient/ outpatient	Current diagnosis *Curren antibiot		Specimen	Underlying disease	Bacterial species	
1027	45	F	Inpatient	Aspiration pneumonia	CRO, MET	Sputum	Stroke/hemiparalysis	A. baylyi
030	28	F	Inpatient	Skin infection	No	Wound swab	No	A. baumannii
4029	22	М	Inpatient	Urinary tract infection	CRO	Urine	Retroviral infection	A. baumannii
M057	60	F	Inpatient	COPD	No	Sputum	No	A. baumannii
M135	70	F	Outpatient	Community-acquired pneumonia	CRO	Sputum	No	A. junii
M212	25	М	Inpatient	Pneumonia	CRO, VAN	Sputum	Disseminated tuberculosis	A. calcoaceticu
M217	35	М	Inpatient	Community-acquired pneumonia	No	Sputum	**COPD	A. schindleri
vI328	50	F	Outpatient	Severe community-acquired pneumonia	No	Sputum	**T2DM	A. baumannii
M344	17	М	Outpatient	Pneumonia	No	Sputum	Electrical burn	A. junii
M431	50	F	Inpatient	Pneumonia	CRO	Sputum	Rt≪ femoral fracture	A. baumannii
P015	30	М	Inpatient	Wound infection	CLO, CAF	Wound swab	Compound fracture of right tibia	A. baumannii
P038	35	М	Outpatient	Wound infection	AMP, CAF	Wound swab	Infected fracture site	A. baumannii
6073	15	М	Inpatient	Wound infection	CRO	Wound swab	Chronic osteomyelitis	A. baumannii
6082	45	М	Inpatient	Wound infection	CIP	Wound swab	Femoral fracture	A. baumannii
126	40	М	Inpatient	Wound infection	CRO, MET	Wound swab	Surgical site infection	A. baumannii
\$130	30	М	Inpatient	Wound infection	CRO, MET	Wound swab	3rd deg. burn	A. baumannii
5147	30	F	Inpatient	Wound infection	CRO	Wound swab	Colostomy	A. baumannii
161	50	М	Inpatient	Wound infection	AMP, CAF	Wound swab	No	A. parvus
5165	8	М	Inpatient	Wound infection	CAF, CLO	Wound swab	No	A. baumannii
5167	40	М	Inpatient	Wound infection	CRO, MET	Wound swab	Scalp abscess	A. baumannii
5170	27	М	Inpatient	Wound infection	CRO, MET	Wound swab	No	A. baumannii
5171	32	М	Inpatient	Wound infection	CRO, MET	Wound swab	Retroviral infection	A. baumannii
5176	25	F	Inpatient	Necrotic wound infection	CRO, MET	Wound swab	No	A. baumannii
\$209	50	М	Outpatient	Pneumonia	CRO, MET	Sputum	No	A. baumannii
\$210	25	М	Inpatient	Wound infection	CRO	Wound swab	No	A. baumannii
5212	40	М	Inpatient	Wound infection	CRO, MET	Wound swab	Compound fracture left leg	A. baumannii
\$217	48	М	Inpatient	Pneumonia	CRO, MET	Sputum	colostomy/post- operation	A. baumannii
5219	39	М	Inpatient	Wound infection	No	Wound swab	Tibia-fibular fracture	A. baumannii
226	24	М	Inpatient	Urinary tract infection	No	Urine	Urethral stricture	A. haemolytics
3247	40	М	Outpatient	Wound infection	AMP, CAF	Wound swab	Infected incision site	A. baumannii
5260	18	F	Inpatient	Wound infection	CRO	Wound swab	Burn wound	A. baumannii
267	30	F	Inpatient	Wound infection	CRO, MET	Wound swab	Surgical site infection	A. baumannii
\$270	26	М	Inpatient	Wound infection	CRO, MET	Wound swab	Chronic osteomyelitis	A. baumannii
\$275	48	М	Inpatient	Wound infection	No	Wound swab	Compound fracture of femur	A. baumannii
8294	70	М	Inpatient	Urinary tract infection	CRO	Urine	Bladder outlet obstruction	A. baumannii

(Continued)

Patient ID	Age	Sex	Inpatient/ outpatient	Current diagnosis	*Current antibiotic	Specimen	Underlying disease	Bacterial species
S296	10	М	Inpatient	Wound infection	AMP, CAF	Wound swab	Left femoral fracture	A. baumannii
\$315	2	М	Inpatient	Diarrhea	AMP, GENT, CLO	Stool	No	A. lwoffii
S327	29	М	Inpatient	Severe community-acquired pneumonia	CRO, MET	Sputum	No	A. baumannii
S347	18	F	Inpatient	Urinary tract infection	AMP, CAF	Urine	Cervical Spine fracture	A. baumannii

TABLE 1B (Continued)

*Current antibiotics: CRO, ceftriaxone; Met, metronidazole; VAN, vancomycin; CLO, cloxacillin; CAF, chloramphenicol; CIP, ciprofloxacin; AMP, ampicillin; GENT, gentamicin. **Underlying diseases: COPD, congestive obstructive pulmonary disease; T2DM, type-2 diabetes mellitus.

admitted to different wards in the hospital [surgical ward (n = 52), intensive care unit (n = 6), pediatric ward (n = 3), and medical ward (n = 11)]. Clinical samples collected include urine for urinary tract infections, sputum for lower respiratory tract infections, wound swab for wound infections/abscess, and stools for diarrhea. Most of these patients were admitted to the hospital for other underlying diseases and developed infection after admission, and most of them were treated with locally available antimicrobial therapy. Among *Pseudomonas* isolates 68.2% (28/41) were from surgical ward, followed by 17.0% (7/41) from medical ward, and 9.7% (4/41) from the intensive care unit (Table 1A). Similarly, 69.2% (27/39) of the *Acinetobacter* species were isolated from the surgical ward and 20.5% (8/39) from the medical ward (Table 1B).

Species diversity and antimicrobial susceptibility

Species diversity

From a total of 41 isolates of *Pseudomonas* spp., 92.6% (38/41) were *P. aeruginosa*, and 7.3% (3/41) were another *Pseudomonas* spp. Among 39 isolates of *Acinetobacter* spp. (n = 39), 79.5% (31/39) were *A. baumannii*, and 20.5% (8/39) were other *Acinetobacter* spp. [*A. junii* which account for 5.1% (2/39), and *A. baylyi*, *A. lwoffii*, *A. calcoaceticus*, *A. haemolyticus*, *A. parvus*, and *A. schindleri* each account for 2.5% (1/39)].

Antimicrobial susceptibility pattern

Among isolates of *Pseudomonas* spp., 31.7%, (13/41) were non-susceptible to ceftazidime, and 7.3% (3/41) to meropenem. Among isolates of *Acinetobacter* spp., 56.4% (22/39) were carbapenem-resistant. Most of the ceftazidime-resistant *Pseudomonas* spp. were also resistant to piperacillin-tazobactam 84.6% (11/13), ciprofloxacin 30.7% (4/13), ceftazidimeavibactam 46.1% (6/13) and ceftolozane-tazobactam 53.8% (7/13). However, most of these isolates were susceptible to cefiderocol 84.7% (11/13), imipenem-relebactam 92.3% (12/13), and all *Pseudomonas* isolates were susceptible to amikacin (**Table 2A**). Most of the *Acinetobacter* isolates were resistant to meropenem, imipenem, and imipenem-relebactam 54.5\%, (12/22). However, a lower rate of resistance was detected to ciprofloxacin 18.1% (4/22), gentamicin 27.2% (6/22), amikacin 18.1% (4/22), and cefiderocol 9.1% (2/22) (**Table 2B**).

Resistome profile of *Pseudomonas* and *Acinetobacter* species

Resistome profiling showed that both *Pseudomonas* and *Acinetobacter* spp. encoded multiple β - lactamase genes. The $bla_{OXA-486}$, bla_{OXA-50} and $bla_{CTX-M-15}$ genes were most common among *Pseudomonas* isolates, and the bla_{OXA-51} -like bla_{OXA-69} , bla_{OXA-66} , bla_{OXA-91} , $bla_{OXA-180}$ and bla_{GES-11} were the most common among *Acinetobacter* isolates (Table 3A).

Moreover, two isolates, *P. aeruginosa* (n = 1) and *A. baumannii* (n = 1) carrying the $bla_{\text{NDM}-1}$ carbapenemase gene were detected. Furthermore, the resistome profile shows that resistance genes to the antimicrobial classes of aminoglycosides, fluoroquinolones, and trimethoprim were prevalent among these two isolates (Tables 3A,B).

Molecular epidemiology using cgMLST

Epidemiologic typing using the seven gene multi-locus sequence typing demonstrated that ST274 (23.0%, 3/13) among *P. aeruginosa* and ST1 (MLST-Pasteur) *A. baumannii* (63.1%, 12/19) were the most prevalent sequence types (Tables 3A,B). A cgMLST analysis showed that the ST1 *A. baumannii* isolates were highly similar with no allelic differences between them. Most of the *Acinetobacter* isolates belonged to the international

TABLE 2A Antimicrobial susceptibility pattern of ceftazidime resistant Pseudomonas spp. isolated at JMC, Ethiopia.

Bacterial species

Type of antimicrobials used for antimicrobial susceptibility testing

		Ceftazidime	Meropenem	Imipenem	Piperacillin- tazobactam	Ciprofloxacin	Amikacin	Cefiderocol	Ceftazidime- avibactam	Ceftolozane- tazobactam	Imipenem -relebactam
Pseudomonas aeruginosa (n = 10)	S (%)	0 (0.0%)	7 (70)	8 (80)	0 (0)	7 (70)	10 (100)	9 (90)	5 (50)	6 (60)	9 (90)
	R (%)	10 (100)	3 (30)	2 (20)	10 (100)	3 (30)	0 (0)	1 (10)	5 (50)	4 (40)	1 (10)
Other <i>Pseudomonas</i> species $(n = 3)$	S (%)	1 (32.4)	1 (32.4)	3 (100)	1 (32.4)	2 (66.6)	3 (100)	2 (66.6)	2 (66.6)	0 (0)	3 (100)
	R (%)	2 (66.6)	2 (66.6)	0 (0)	2 (66.6)	1 (32.4)	0 (0)	1 (32.4)	1 (32.4)	3 (100)	0 (0)

S, susceptible; R, resistant, other Pseudomonas species [Pseudomonas putida (n = 2), Pseudomonas fulva (n = 1)].

TABLE 2B Antimicrobial susceptibility pattern of carbapenem resistant Acinetobacter species isolated at JMC, Ethiopia.

Bacterial species

Type of antimicrobials used for antimicrobial susceptibility testing

		Meropenem	Imipenem	Imipenem- relebactam	Cefiderocol	Ciprofloxacin	Trimethoprim/sulfamethoxazole	Gentamicin	Amikacin
		1	1	1		1			
Acinetobacter baumannii (n = 22)	S (%)	5 (27.8)	9 (50)	9 (50)	17 (94.4)	14 (77.8)	12 (66.7)	12 (66.7)	15 (83.3)
	R (%)	13 (72.2)	9 (50)	9 (50)	1 (5.6)	4 (22.2)	6 (33.3)	6 (33.3)	3 (16.7)
Other <i>Acinetobacter</i> spp.	S (%)	1 (25)	1 (25)	1 (25)	4 (100)	1 (25)	0 (0)	4 (100)	4 (100)
	R (%)	3 (75)	3 (75)	3 (75)	0 (0)	3 (75)	4 (100)	0 (0)	(100)

S, susceptible; R, resistant; Other Acinetobacter spp. (n = 4). (A. calcoaceticus, A. baylyi, A. junii, and A. lwoffii).

clonal complexes, ICC1 (includes ST1) (n = 12) and ICC2 (n = 2) (Table 3A).

Discussion

In this study, nearly all isolates of both *Pseudomonas* and *Acinetobacter* spp. were from patients admitted to the hospital for more than 72 h. Nosocomial acquisition of MDR isolates of *Pseudomonas* spp. and *Acinetobacter* spp. is worrisome. The situation is complicated by limited availability of antimicrobial agents, lack of prescription guidelines, and insufficient standard routine microbiology laboratory services to support antibiotic selection. In such cases, the safety of patients admitted to the hospital can be severely compromised.

The prevalence of ESBL-producing strains among P. aeruginosa, and carbapenem non-susceptible isolates among A. baumannii strains was high in the present study. Previous phenotypic studies from Ethiopia also show that MDR strains of Pseudomonas and Acinetobacter were prevalent (Motbainor et al., 2020; Birhane Fiseha et al., 2021). However, most of these studies did not describe the genotypes and resistome profile of the isolates, and mechanism of resistance is difficult to compare between studies. So far, to our knowledge, there is no report of a genotypic study on the prevalence of ESBL-producing P. aeruginosa in Ethiopia. Generally, there are limited studies conducted on carbapenemase-producing P. aeruginosa in Africa. The few reports available are from northern Africa and mainly from Egypt (Osei Sekyere and Reta, 2020; Rizk et al., 2021). In northern Africa, the prevalence ranges from 0 to 96% (Gaballah et al., 2018). A finding from Uganda (7.4%) was comparable to the present study (Aruhomukama et al., 2019). But, one study from South Africa (51.0%) reported a higher prevalence of ceftazidime resistant P. aeruginosa compared to the present study (Hosu et al., 2021). The phenotypic studies from Ethiopia, and other African countries showed higher prevalence as compared to the present study.

In Ethiopia, a high prevalence of carbapenem-resistant *Acinetobacter* spp. was reported from one previous phenotypic study (Ayenew et al., 2021), which is comparable to the prevalence of carbapenem resistance herein. On the other hand, a systematic review and meta analysis on carbapenemase producing *P. aeruginosa* and *A. baumannii* in Africa showed that the lowest prevalence of carbapenemase-producing *A. baumannii* was 4.7% (n = 21), and the highest prevalence was 100% (n = 7) (Kindu et al., 2020). Studies conducted on *P. aeruginosa* and *A. baumannii* strains from Africa were limited to small sample sizes and were mainly phenotypic studies, which makes the comparison with genotypic studies difficult (Kindu et al., 2020; Osei Sekyere and Reta, 2020; Ayenew et al., 2021;

Mekonnen et al., 2021). However, most available studies including a study for hospital environment (Solomon et al., 2017) reported higher prevalence of the MDR *P. aeruginosa* and *A. baumannii* in Ethiopia, calling for the application of genotypic methods to studies on mechanisms of resistance and spread.

The multiple genetic variants of antibiotic resistance observed among both Pseudomonas and Acinetobacter spp. pose a huge challenge on the limited therapeutic options available to low-income countries. Among Acinetobacter spp., the presence of the blaGES-11 (ESBL-genotype and weak carbapenemase) and the OXA-51-like (blaOXA-66 and bla_{OXA-69}) carbapenemases encoding genes is a serious threat. The OXA-51-like intrinsic carbapenemase encoding ST1 A. baumannii Isolates were reported from India (Rose et al., 2021), but isolates from the present study encoded additionally the weakly carbapenem hydrolyzing blaGES-11 gene. The bla_{GES-11} ESBL-genotypes, and the bla_{OXA-51}-like carbapenemases have not been previously reported from Ethiopia, and the present study is to our knowledge the first report of *bla*OXA-51 like and *bla*GES-11 from Ethiopia. Generally from Africa, only one study from Tunisia has documented clinical isolates of A. baumannii encoding the bla_{GES-11} (Chihi et al., 2016). The emergence of bla_{NDM-1} encoding isolates of A. baumannii at surgical ward, and P. aeruginosa at intensive care unit can severely compromise the safety of vulnerable patients admitted to the hospital. Moreover, detection of two isolates encoding the bla_{NDM-1} which showed resistance to the newer antimicrobials, A. baumannii for (cefiderocol and imipenem-relebactam), and P. aeruginosa for (cefiderocol, ceftazidime-avibactam, ceftolozane-tazobactam) compromises the already limited treatment alternatives for vulnerable groups of patients at this hospital.

Sequence typing showed that both *P. aeruginosa* and *A. baumannii* strains were polyclonal. But, since a large proportion of *A. baumannii* isolates were ST1, the spread of *A. baumannii* isolates at this hospital might also be to some extent clonal. A previous study conducted at the same hospital had identified three strains of *A. baumannii* encoding $bla_{\rm NDM-1}$, and all of them belonged to the ST597. Furthermore, cgMLST analysis of *A. baumannii* with other international isolates in pubmlst showed that isolates in the current study were distinct from isolates from other African countries (Figure 1).⁶ However, these isolates were clustered with isolates from other countries like United States, and Brazil. Though isolates from this study were polyclonal, the most prevalent isolates were those that belong to the international cluster, CC1 and CC2.

Although A. baumannii is a well-known major cause of nosocomial infections, knowledge of its genomic epidemiology

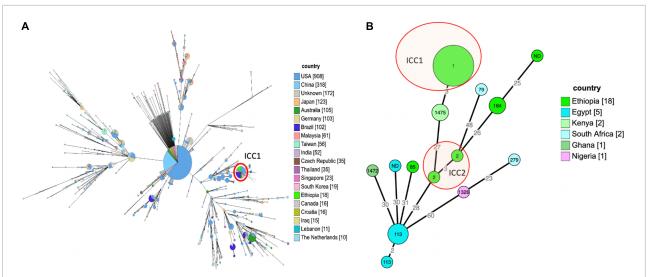
⁶ https://pubmlst.org/organisms/acinetobacter-baumannii

TABLE 3A Sequence types and resistance genes observed among carbapenem-resistant Acinetobacter species isolated at Jimma Medical Center, Ethiopia (n = 19).

Isolate ID	STs	Ts Number and type of antimicrobial resistance genes								
		Carbapenemase	ESBL and other β -lactamases	Aminoglycosides	Trimethoprim	Sulfonamides	Tetracycline	Macrolides		
I027AB*	ST2	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
I030AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
M217AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA1,	sul1				
M328AB	164	bla _{OXA-91}	bla _{CARB–5} , bla _{CARB–49}				tet(39)			
P015AL	NA		bla _{CTX-M-15} , bla _{OXA-1} ,	aac(6')-Ib-cr			tet(A)	mdf(A), mph(A), mph(D)		
S126AB	ST2090	bla _{OXA-259/180}								
S130AB	ST85	bla _{NDM-1} , bla _{OXA-94}		ant(2'')-Ia, aph(3')-VI		sul2		mph(E) msr(E)		
S161AB	ST2	bla _{OXA-66}	$bla_{\text{TEM}-1D}$,	aac(3)-Ia, aph(6)-Id		sul1				
S167AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib-cr, aac(6')-Ib3	dfrA7	sul1				
\$170AB	ST164	bla _{OXA-91}	bla _{CARB–49} , bla _{CARB–16}				tet(39)			
S171AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
\$176AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
S209AB	ST2	bla _{OXA-66}		aac(3)-Ia, aadA1, aph(6)-Id		sul1sul2	tet(B)			
S212AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr,	dfrA7	sul1				
\$270AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
S275AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
S296AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
\$315AB	ST1	bla _{OXA-69}	bla _{GES-11}	aac(6')-Ib3, aac(6')-Ib-cr	dfrA7	sul1				
S327AB	ST1	bla _{OXA-69}								

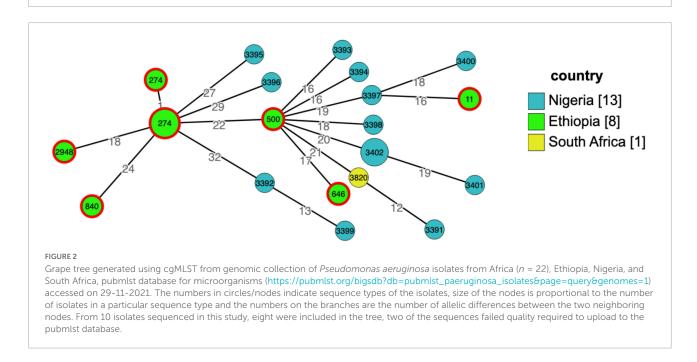
60

Frontiers in Microbiology


TABLE 3B Sequence types and resistance genes observed among ceftazidime-resistant Pseudomonas spp. isolated at Jimma Medical Center, Ethiopia (n = 13).

Strain ID STs

Number and type of antimicrobial resistance genes


_		Carbapenemase	β -lactamase genes	Aminoglycosides	Fluoroquinolones	Sulfonamides	Phenicols	Fosfomycin
I020PA*	11		bla _{OXA-486} , bla _{PAO}	aph (3')-IIb			catB7	fosA
I032PA	2948	$bla_{\rm NDM-1}$	bla _{OXA-10} , bla _{OXA-50}	aadA1, ant(2'')-Ia, aph(3')-IIb	crpP	sul1	catB7, cmlA1	fosA
I038PP*	NA		$bla_{\mathrm{CTX}-\mathrm{M}-15},$ $bla_{\mathrm{OXA}-1}$	aac(6')-Ib-cr,				
M019PA	1228		bla _{vEB-1} , _{bla} OXA-486 bla _{OXA-10}	aadA1, aadA2 ant(2″)-Ia, aph(3′)-IIb	crpP qnrD1	sul1	catB7 cmlA1	fosA
M119PA	274		bla _{OXA-486} , bla _{PAO} ,				catB7	fosA
M304PA	274		bla _{OXA-486} , bla _{PAO}				catB7	fosA
S116PA	500		bla _{OXA-486} , bla _{PAO}		crpP		catB7	fosA
S114PP*	NA		bla _{CTX-M-15} , bla _{OXA-10} bla _{OXA-1}	aac(3)-Iia, aac(3)-Ib aac(6')-Ib, aac(6')-Ib-cr, ant(3'')-Ia, aph(3'')-Ib	oqxB qnrVC1	sul1		
S155PA	274		bla _{OXA-486} , bla _{PAO}	aph(3')-IIb			catB7	fosA
S248PA	840		bla _{OXA-486} , bla _{PAO}	aph(3')-IIb	crpP		catB7	fosA
S332PF**	NA		$bla_{\text{PER}-1}$,	aph(6)-Id	qnrVC6	sul1		
\$356PA	646		bla _{CTX-M-15} , bla _{OXA-494} bla _{OXA-50} , bla _{TEM-1B}	ant(2'')-Ia, aph(3')-IIb aph(3')-Ia, ph(6)-Id		sul1	catB7, floR	fosA
S047PA	244		$bla_{\rm OXA-50}$	aph(3')-IIb			catB7	fosA

*A. baumannii; PA, Pseudomonas aeruginosa; PP**, Pseudomonas putida; PF**, Pseudomonas fulva.

FIGURE 1

(A) Epidemiologic relatedness of *A. baumannii* isolates to the isolates collected from different geographical regions and deposited in the public database (pubmlst https://pubmlst.org/organisms/acinetobacter-baumannii~-- accessed on 26-09-2021), the isolates from this study (bright green) were clustered with the global ICC1 clone marked with red circle. The numbers in the circle show the sequence type of the isolates, the size of the circle is proportional to the number of isolates that belongs to that sequence type, and the color shows the country of origin for the isolates. The minimum spanning tree was constructed for isolates from different country of origin having \geq 10 isolates recorded in the database. (B) Minimum spanning tree of 29 *A. baumannii* isolates from Africa, the tree was constructed based on core genome multi-locus sequence typing. There were no previous isolates from Ethiopia in PubMLST, all isolates labeled Ethiopia in the tree are from this study.

and availability of reliable data regarding the genetic basis of antibiotic resistance is limited in low-income countries. Similarly, *P. aeruginosa* isolates were found to be polyclonal, and different from a collection of isolates other African counties found in pubmlst (see text footnote 5) (Figure 2).

The current study may serve as a baseline regarding local spread of international clones and alert clinicians and other health workers, researchers, and public health policy makers to the problem. Implementation of strict infection prevention and control strategies, and antimicrobial stewardship programs are highly desirable in the admission wards where the international clones are spreading. Furthermore, despite limitation of resources, the added value of next generation sequencing is in understanding the dynamics and mechanisms of spread of MDR bacterial clones.

Conclusion

The prevalence of MDR isolates is high among both in clinical isolates of *Pseudomonas* species and *Acinetobacter* species at Jimma medical center. Emergence of the bla_{NDM-1} in clinical isolates of *P. aeruginosa* and *A. baumannii* strains is worrisome. However, the susceptibility of *P. aeruginosa* strains to amikacin, cefiderocol, imipenem-relebactam and ceftolozane-tazobactam, and *A. baumannii* strains to amikacin and cefiderocol is important to consider as alternative options to carbapenems. The use of next generation sequencing is important to understand the mechanism of resistance and spread of resistant clones such as ICC1, and ICC2 *A. baumannii* strains detected at this hospital.

Data availability statement

The genome sequences were deposited at the NCBI, SRA database (PRJNA593604, Biosample accession: SUB11593554).

Ethics statement

The study obtained ethical approval from Addis Ababa University Institutional Review Board (AAU-IRB), Armauer Hansen Research Institute – ALERT Hospital Institutional Review Board (AHRI-ALERT-IRB), and Ethiopian National Ethics Review Committee (NERC). Patients were informed about the study and given written consent to participate in the study.

Author contributions

TS contributed to design, data acquisition, data analysis, and drafting of the manuscript. DA and YW contributed

References

Agnese, L., Marisa, H. J., and Ean-Yves, M. (2018). Antimicrobial resistance in *Acinetobacter* spp. and *Pseudomonas* spp. *Microbiol. Spectr.* 6. doi: 10.1128/ microbiolspec.ARBA-0007-2017

Aruhomukama, D., Najjuka, C. F., Kajumbula, H., Okee, M., Mboowa, G., Sserwadda, I., et al. (2019). BlaVIM- and blaOXA-mediated carbapenem resistance among *Acinetobacter baumannii* and *Pseudomonas aeruginosa* isolates from the Mulago hospital intensive care unit in Kampala, Uganda. *BMC Infect. Dis.* 19:853. doi: 10.1186/s12879-019-4510-5

Ayenew, Z., Tigabu, E., Syoum, E., Ebrahim, S., Assefa, D., and Tsige, E. (2021). Multidrug resistance pattern of *Acinetobacter* species isolated from clinical specimens referred to the Ethiopian Public Health Institute: 2014 to 2018 trend anaylsis. *PLoS One* 16:e0250896. doi: 10.1371/journal.pone.0250896

Bassetti, M., Carnelutti, A., and Peghin, M. (2017). Patient specific risk stratification for antimicrobial resistance and possible treatment strategies in

to data acquisition and write-up. AA contributed to the design, data acquisition, and revision of the manuscript. CG contributed to the overall design, data acquisition, supervision, drafting, and writing of the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the Swedish International Development Agency (SIDA).

Acknowledgments

We acknowledge Isak Sylvin for technical support for genome assembly for both *P. aeruginosa* and *A. baumannii* isolates.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

gram-negative bacterial infections. Expert Rev. Anti Infect. Ther. 15, 55-65. doi: 10.1080/14787210.2017.1251840

Bello-López, E., Rocha-Gracia, R. D. C., Castro-Jaimes, S., Cevallos, M. Á, Vargas-Cruz, M., Verdugo-Yocupicio, R., et al. (2020). Antibiotic resistance mechanisms in *Acinetobacter* spp. Strains isolated from patients in a paediatric hospital in Mexico. *J. Glob. Antimicrob. Resist.* 23, 120–129. doi: 10.1016/j.jgar. 2020.08.014

Bergogne-Bérézin, E., and Towner, K. J. (1996). Acinetobacter spp. As nosocomial pathogens: Microbiological, clinical, and epidemiological features. *Clin. Microbiol. Rev.* 9, 148–165. doi: 10.1128/cmr.9.2.148-165.1996

Birhane Fiseha, S., Mulatu Jara, G., Azerefegn Woldetsadik, E., Belayneh Bekele, F., and Mohammed Ali, M. (2021). Colonization rate of potential neonatal disease-causing bacteria, associated factors, and antimicrobial susceptibility profile among pregnant women attending government hospitals

in Hawassa, Ethiopia. Infect. Drug Resist. 14, 3159-3168. doi: 10.2147/idr.s3 26200

Brink, A. J. (2019). Epidemiology of carbapenem-resistant Gram-negative infections globally. *Curr. Opin. Infect. Dis.* 32, 609–616.

Chihi, H., Bonnin, R. A., Bourouis, A., Mahrouki, S., Besbes, S., Moussa, M. B., et al. (2016). GES-11-producing *Acinetobacter baumannii* clinical isolates from Tunisian hospitals: Long-term dissemination of GES-type carbapenemases in North Africa. *J. Glob. Antimicrob. Resist.* 5, 47–50. doi: 10.1016/j.jgar.2016. 03.005

Chusri, S., Chongsuvivatwong, V., Rivera, J. I., Silpapojakul, K., Singkhamanan, K., McNeil, E., et al. (2014). Clinical outcomes of hospital-acquired infection with *Acinetobacter nosocomialis* and *Acinetobacter pittii. Antimicrob. Agents Chemother.* 58, 4172–4179. doi: 10.1128/AAC.02992-14

De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., et al. (2020). Antimicrobial resistance in ESKAPE pathogens. *Clin. Microbiol. Rev.* 33:e00181-19. doi: 10.1128/CMR.00181-19

Djahmi, N., Dunyach-Remy, C., Pantel, A., Dekhil, M., Sotto, A., and Lavigne, J. P. (2014). Epidemiology of Carbapenemase-producing *Enterobacteriaceae* and *Acinetobacter baumannii* in Mediterranean Countries. *Biomed. Res. Int.* 2014:305784. doi: 10.1155/2014/305784

Eichenberger, E. M., and Thaden, J. T. (2019). Epidemiology and Mechanisms of resistance of extensively drug resistant gram-negative bacteria. *Antibiotics* 8:37. doi: 10.3390/antibiotics8020037

Gaballah, A., Elbaradei, A., and Elbaradei, A. (2018). Emergence of blaVEB and blaGES among VIM-producing *Pseudomonas aeruginosa* clinical isolates in Alexandria, Egypt. *Acta Microbiol. Immunol. Hung.* 66, 131–142. doi: 10.1556/030. 65.2018.044

Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., et al. (2019). Epidemiology and treatment of multidrug-resistant and extensively drug-resistant *Pseudomonas aeruginosa* infections. *Clin. Microbiol. Rev.* 32:e00031-19. doi: 10.1128/CMR.00031-19

Hosu, M. C., Vasaikar, S. D., Okuthe, G. E., and Apalata, T. (2021). Detection of extended spectrum b-lactamase genes in *Pseudomonas aeruginosa* isolated from patients in rural Eastern Cape Province, South Africa. *Sci. Rep.* 11, 1–8. doi: 10.1038/s41598-021-86570-y

Kazmierczak, K. M., de Jonge, B. L. M., Stone, G. G., and Sahm, D. F. (2020). Longitudinal analysis of ESBL and carbapenemase carriage among Enterobacterales and *Pseudomonas aeruginosa* isolates collected in Europe as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme, 2013–17. *J. Antimicrob. Chemother.* 75, 1165–1173. doi: 10.1093/jac/dkz571

Kindu, M., Derseh, L., Gelaw, B., and Moges, F. (2020). Carbapenemase-Producing non-glucose-fermenting gram-negative Bacilli in Africa, *Pseudomonas aeruginosa* and *Acinetobacter baumannii*: A systematic review and meta-analysis. *Int. J. Microbiol.* 2020:9461901. doi: 10.1155/2020/9461901 Ma, Y. X., Wang, C. Y., Li, Y. Y., Li, J., Wan, Q. Q., Chen, J. H., et al. (2020). Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. *Adv. Sci.* 7:1901872. doi: 10.1002/advs.201901872

Mekonnen, H., Seid, A., Molla Fenta, G., and Gebrecherkos, T. (2021). Antimicrobial resistance profiles and associated factors of *Acinetobacter* and *Pseudomonas aeruginosa* nosocomial infection among patients admitted at Dessie comprehensive specialized Hospital, NorthEast Ethiopia: A cross-sectional study. *PLoS One* 16:e0257272. doi: 10.1371/journal.pone.0257272

Meng, L., Liu, H., Lan, T., Dong, L., Hu, H., Zhao, S., et al. (2020). Antibiotic resistance patterns of *Pseudomonas* spp. isolated from raw milk revealed by whole genome sequencing. *Front. Microbiol.* 11:1005. doi: 10.3389/fmicb.2020.01005

Motbainor, H., Bereded, F., and Mulu, W. (2020). Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of *Acinetobacter baumannii* and *Pseudomonas aeruginosa* among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: A cross-sectional study. *BMC Infect. Dis.* 20:92. doi: 10.1186/s12879-020-4811-8

Munoz-Price, L. S., Rosa, R., Castro, J. G., Laowansiri, P., Latibeaudiere, R., Namias, N., et al. (2016). Evaluating the impact of antibiotic exposures as timedependent variables on the acquisition of carbapenem-resistant *Acinetobacter baumannii*. *Crit. Care Med.* 44, e949–e956. doi: 10.1097/CCM.000000000001848

Osei Sekyere, J., and Reta, M. A. (2020). Genomic and resistance epidemiology of gram-negative bacteria in Africa: A systematic review and phylogenomic analyses from a one health perspective. *mSystems* 5:e00897-20. doi: 10.1128/msystems.00897-20

Rizk, S. S., Elwakil, W. H., and Attia, A. S. (2021). Antibiotic-resistant *Acinetobacter baumannii* in low-income countries (2000–2020): Twenty-one years and still below the radar, is it not there or can they not afford to look for it? *Antibiotics* 10:764. doi: 10.3390/antibiotics10070764

Rose, S., Shamanna, V., Underwood, A., Nagaraj, G., Prasanna, A., Govindan, V., et al. (2021). Molecular dissection of carbapenem-resistant *Acinetobacter baumannii* circulating in Indian hospitals using whole genome sequencing. *bioRxiv* [Preprint]. 451. doi: 10.1101/2021.07.30.454432

Solomon, F. B., Wadilo, F., Tufa, E. G., and Mitiku, M. (2017). Extended spectrum and metalo b-lactamase producing airborne *Pseudomonas aeruginosa* and *Acinetobacter* baumanii in restricted settings of a referral hospital: A neglected condition'. *Antimicrob. Resist. Infect. Control* 6:106. doi: 10.1186/s13756-017-0266-0

WHO (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. Available online at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed September 3, 2021).

Wong, D., Nielsen, T. B., Bonomo, R. A., Pantapalangkoor, P., Luna, B., Spellberg, B., et al. (2017). Clinical and pathophysiological overview of *Acinetobacter* infections: A century of challenges. *Clin. Microbiol. Rev.* 30, 409– 447. doi: 10.1128/CMR.00058-16