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High-quality 3D image recognition is an important component of many vision and

robotics systems. However, the accurate processing of these images requires the

use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this

challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated

from iso-architecture CNNs and trained with quantization-aware gradient descent to

optimize their weights, membrane leak, and firing thresholds. During both training and

inference, the analog pixel values of a 3D image are directly applied to the input layer

of the SNN without the need to convert to a spike-train. This significantly reduces the

training and inference latency and results in high degree of activation sparsity, which

yields significant improvements in computational efficiency. However, this introduces

energy-hungry digital multiplications in the first layer of our models, which we propose

to mitigate using a processing-in-memory (PIM) architecture. To evaluate our proposal,

we propose a 3D and a 3D/2D hybrid SNN-compatible convolutional architecture and

choose hyperspectral imaging (HSI) as an application for 3D image recognition. We

achieve overall test accuracy of 98.68, 99.50, and 97.95% with 5 time steps (inference

latency) and 6-bit weight quantization on the Indian Pines, Pavia University, and Salinas

Scene datasets, respectively. In particular, our models implemented using standard

digital hardware achieved accuracies similar to state-of-the-art (SOTA) with∼560.6× and

∼44.8× less average energy than an iso-architecture full-precision and 6-bit quantized

CNN, respectively. Adopting the PIM architecture in the first layer, further improves the

average energy, delay, and energy-delay-product (EDP) by 30, 7, and 38%, respectively.

Keywords: hyperspectral images, spiking neural networks, quantization-aware, gradient descent, processing-in-

memory

1. INTRODUCTION

3D image classification is an important problem, with applications ranging from autonomous
drones to augmented reality. 3D content creation has been gaining momentum in the recent
past and the amount of information in the form of 3D input data becoming publicly available
is steadily increasing. In particular, hyperspectral imaging (HSI), which extracts rich spatial-
spectral information about the ground surface, has shown immense promise in remote sensing
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(Chen et al., 2014), and thus, has become an important
application for 3D image recognition. HSI is currently used in
several workloads ranging from geological surveys (Wan et al.,
2021), to the detection of camouflaged vehicles (Papp et al.,
2020). In hyperspectral images (HSIs), each pixel can be modeled
as a high-dimensional vector where each entry corresponds to
the spectral reflectivity of a particular wavelength (Chen et al.,
2014), and constitutes the 3rd dimension of the image. The goal
of the classification task is to assign a unique semantic label to
each pixel (Zheng et al., 2020). For HSI classification, several
spectral feature-based methods have been proposed, including
support vector machine (Melgani and Bruzzone, 2004), random
forest (Pal, 2003), canonical correlation forest (Xia et al., 2017),
and multinomial logistic regression (Krishnapuram et al., 2005).
However, these spectral-spatial feature extraction methods rely
on hand-designed descriptions, prior information, and empirical
hyperparameters (Chen et al., 2014).

Lately, convolutional neural networks (CNNs), consisting of
a series of hierarchical filtering layers for global optimization
have yielded higher accuracy than the hand-designed features
(Krizhevsky, 2012), and have shown promise in multiple
applications including image classification (He et al., 2016),
object detection (Ren et al., 2017), semantic segmentation (He
et al., 2018), and depth estimation (Repala and Dubey, 2019). The
2D CNN stacked autoencoder (Chen et al., 2014) was the first
attempt to extract deep features from its compressed latent space
to classify HSIs. To extract the spatial-spectral features jointly
from the raw HSI, researchers proposed a 3D CNN architecture
(Ben Hamida et al., 2018), which achieved SOTA classification
results. In Lee and Kwon (2017), Roy et al. (2020), and Luo et al.
(2018) successfully createdmultiscale spatiospectral relationships
using 3D CNNs and fused the features using a 2D CNN to extract
more robust representation of spectral–spatial information.
However, compared to 2D CNNs used to classify traditional RGB
images, multi-layer 3D CNNs require significantly higher power
and energy costs (Li et al., 2016). A typical hyperspectral image
cube consists of several hundred spectral frequency bands that,
for target tracking and identification, require real time on-device
processing (Hien Van Nguyen et al., 2010). This desire for HSI
sensors operating on energy-limited devices motivates exploring
alternative lightweight classification models.

In particular, low-latency spiking neural networks (SNNs)
(Pfeiffer and Pfeil, 2018), illustrated in Figure 1, have gained
attention because they are more computational efficient than
CNNs for a variety of applications, including image analysis. To
achieve this goal, analog inputs are first encoded into a sequence
of spikes using one of a variety of proposed encoding methods,
including rate coding (Diehl et al., 2016; Sengupta et al., 2019),
direct coding (Rathi and Roy, 2020), temporal coding (Comsa
et al., 2020), rank-order coding (Kheradpisheh and Masquelier,
2020), phase coding (Kim et al., 2018), and other exotic coding
schemes (Almomani et al., 2019; Datta et al., 2021). Among these,
direct coding have shown competitive performance on complex
tasks (Diehl et al., 2016; Sengupta et al., 2019) while others are
either limited to simpler tasks such as learning the XOR function
and classifyingMNIST images or require a large number of spikes
for inference.

In addition to accommodating various forms of encoding
inputs, supervised learning algorithms for SNNs have overcome
various roadblocks associated with the discontinuous derivative
of the spike activation function (Lee et al., 2016; Wu et al.,
2019). In particular, recent works have shown that SNNs can
be efficiently converted from artifical neural networks (ANNs)
by approximating the activation value of ReLU neurons with
the firing rate of spiking neurons (Sengupta et al., 2019). Low-
latency SNNs trained using ANN-SNN conversion, coupled
with supervised training, have been able to perform at par
with ANNs in terms of classification accuracy in traditional
image classification tasks (Rathi and Roy, 2020; Datta and
Beerel, 2021; Kundu et al., 2021c). Consequently, SNNs have
lower compute cost than their non-spiking CNN counterparts.
This is particularly useful in 3D CNNs which have higher
arithmetic intensity (the ratio of floating point operations to
accessed bytes) than 2D CNNs. This motivates this work which
explores the effectiveness of SNNs converted from 3D CNNs for
HSI classification.

To improve energy efficiency, model compression techniques,
such as pruning (Han et al., 2015a), can be adapted to CNN/SNN
models for HSI classification. Unstructured pruning can lead to
significant parameter reduction (>10× for both 2D CNN and
SNN models for traditional vision tasks (Kundu et al., 2021a,b).
However, unstructured pruning typically requires specialized
ASIC/FPGA hardware to reap energy-savings benefits and does
not lead to savings when implemented on standard GPUs. On
the other hand, structured pruning is compatible with general-
purpose CPU/GPU hardware, but is unable to remove a large
number of weights while maintaining accuracy, particularly for
our proposed compact CNN architectures.

The energy efficiency of SNN inference can also be
improved by using integer or fixed-point computational units
implemented either as CMOS-based digital accumulators or
memory array based processing-in-memory (PIM) accelerators.
Previous research (Rathi et al., 2017; Sulaiman et al., 2020)
have proposed post-training SNN quantization tailored toward
unsupervised learning, which has not been shown to scale to
complex vision tasks without requiring high precision (≥ 8 bits).
This work addresses this gap by proposing a quantization-aware
SNN training algorithm that requires only 5 time steps with 6-
bit weights, yielding a 2× reduction in bit width compared to a
post-training quantization baseline that yields similar accuracy.

The first layer in direct coded SNNs still requires multiply-
and-accumulates (MAC), which are significantly more expensive
than the accumulates required in a spiking layer. To mitigate
this issue, we propose an SRAM-based processing-in-memory
(PIM) architecture to process the first layer, which cannot only
reduce the CMOS-based digital MAC cost, but also address
the Von-Neumann bottleneck by eliminating data movement
between the memory and the convolutional processing elements.
Moreover, the relatively lower parameter count of the first
3D CNN layer ensures that we can perform the whole
convolution in a single memory array, thereby improving
area efficiency. The remaining layers, which involves cheap
accumulates and threshold comparisons, are implemented
with highly parallel programmable digital architectures, as
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FIGURE 1 | Feedforward fully-connected SNN architecture with integrate and fire (IF) spiking dynamics.

used in Chen et al. (2022) and Park et al. (2019). Our
proposed hardware-software co-design results in 700.7× and
1.79× improvements in energy-delay product (EDP) for HSI
classification compared to digital implementatons with standard
ANNs and SNNs.

In summary, this paper provides the
following contributions:

• We analyse the arithmetic intensities of 3D and 2D CNNs,
and motivate the use SNNs to address the compute energy
bottleneck faced by 3D CNN layers used for HSI classification.

• We propose a hybrid training algorithm that first converts
an ANN for HSI classification to an iso-architecture SNN,
and then trains the latter using a novel quantization-
aware spike timing dependent backpropagation (Q-STDB)
algorithm that yields low latency (5 time steps) and low bit
width (6-bits).

• We propose two compact convolutional architectures for HSI
classification that can yield classification accuracies similar to
state-of-the-art (SOTA) and are compatible with our ANN-
SNN conversion framework.

• We propose a novel circuit framework and its
associated energy models for energy-efficient hardware
implementation of the SNNs obtained by our training
framework, and benchmark the EDP gains compared
to standard ANNs. Our experimental results reveal
that the SNNs trained for HSI classification offer four
and two orders of magnitude improvement in energy
consumption compared to full-precision and iso-precision
ANNs.

The remainder of this paper is structured as follows. In
Section 2 we present necessary background and related work.
Section 3 describes our analysis of arithmetic intensities
of 3D and 2D CNNs, and highlights the motivation of
using SNNs for 3D imaging. Sections 4, 5 discusses our
proposed quantization-aware SNN training method and a
PIM architecture to improve the energy efficiency of our
proposed SNN models during inference. Section 6 focuses on
our proposed network architectures, benchmark datasets, and
our training details. We present detailed experimental results
and analysis in Section 7. Finally, the paper concludes in
Section 8.

2. BACKGROUND

2.1. SNN Modeling
The spiking dynamics of a neuron are generally modeled
using either the Integrate-and-Fire (IF) (Burkitt, 2006) or
Leaky-Integrate-and-Fire (LIF) model (Lee et al., 2020), where
the activity of pre-synaptic neurons modulates the membrane
potential of postsynaptic neurons. The membrane potential of
a IF neuron does not change during the time period between
successive input spikes while in the LIF model, the membrane
potential leaks at a constant rate. In this work, we adopt the
LIF model in our proposed training technique, as the leak term
improves the bio-plausibility and robustness to noisy spike-
inputs (Chowdhury et al., 2020).

The LIF is probably one of the earliest and simplest spiking
neuron models, but it is still very popular due to the ease with
which it can be analyzed and simulated. In its simplest form, a
neuron is modeled as a “leaky integrator” of its input I(t):

τm
∂v

∂t
= −v(t)+ R · I(t) (1)

where v(t) represents the membrane potential of the neuron at
time t, τm is the membrane time constant and R is the membrane
resistance. When v(t) reaches a certain firing threshold, it is
instantaneously reset to a lower value vr (reset potential), the
neuron generates a spike, and the leaky integration process
described by Equation 1 starts afresh with the initial value vr .
However, due to its continuous representation, Equation (1) is
not suitable for implementations in popular Machine Learning
(ML) frameworks (e.g., Pytorch). Hence, we convert Equation
(1) into an iterative discrete-time version, as shown in Eqs. 2
and 3, within which spikes in a particular layer l, denoted as ot

l
,

are characterized as binary values (1 represents the presence of a
spike) (Rathi et al., 2020). The pre-spikes in the (l − 1)th layer,
ot
l−1

are modulated by the synaptic weights ŵl to be integrated as

the current influx in the membrane potential ut
l
that decays with

a leak factor λl.

utl = λlu
t−1
l

+ ŵlo
t
l−1 − vlo

t
l (2)

ztl =
ut
l

vl
− 1, otl =

{

1, if zt
l
> 0

0, otherwise
(3)
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The third term in Equation (2) exhibits soft reset by setting the
reset potential to the threshold vl (instead of 0) i.e., reducing the
membrane potential ul by vl at time step t, if an output spike is
generated at the tth time step. As shown in Rathi et al. (2020), soft
reset enables each spiking neuron to carry forward the surplus
potential above the firing threshold to the subsequent time step
(Rathi et al., 2020), thereby minimizing the information loss.

2.2. SNN Training Techniques
Recent research on training supervised deep SNNs can
be primarily divided into three categories: 1) ANN-SNN
conversion-based training, 2) Spike timing dependent
backpropagation (STDB), and 3) Hybrid training.

2.2.1. ANN-SNN Conversion
ANN-SNN conversion involves copying the SNN weights from
a pretrained ANN model and estimating the threshold values
in each layer by approximating the activation value of ReLU
neurons with the firing rate of spiking neurons (Cao et al.,
2015; Diehl et al., 2015; Rueckauer et al., 2017; Hu et al., 2018;
Sengupta et al., 2019). The ANN model is trained using standard
gradient descent based methods and helps an iso-architecture
SNN achieve impressive accuracy in image classification tasks
(Rueckauer et al., 2017; Sengupta et al., 2019). However, the
SNNs resulting from these conversion algorithms require an
order of magnitude more time steps compared to other training
techniques (Sengupta et al., 2019). In this work, we use ANN-
SNN conversion as an initial step in Q-STDB because it is of
relatively low complexity and yields high classification accuracy
on deep networks as shown in Section 7.5.3.

2.2.2. STDB
The thresholding-based activation function in the IF/LIF model
is discontinuous and non-differentiable, which poses difficulty
in training SNNs with gradient-descent based learning methods.
Consequently, several approximate training methodologies have
been proposed (Lee et al., 2016; Panda and Roy, 2016; Bellec
et al., 2018; Neftci et al., 2019), where the spiking neuron
functionality is either replaced with a differentiable model or
the real gradients are approximated as surrogate gradients.
However, the backpropagation step requires these gradients to be
integrated over all the time steps required to train the SNN, which
significantly increases the memory requirements.

2.2.3. Hybrid Training
A recent paper (Rathi et al., 2020) proposed a hybrid training
technique where the ANN-SNN conversion is performed as an
initialization step and is followed by an approximate gradient
descent algorithm. The authors observed that combining the
two training techniques helps SNNs converge within a few
epochs while requiring fewer time steps. In Rathi and Roy
(2020) extended the above hybrid learning approach by training
the membrane leak and the firing threshold along with other
network parameters (weights) via gradient descent. Moreover,
Rathi and Roy (2020) applied direct-input encoding where the
pixel intensities of an image are applied into the SNN input
layer as fixed multi-bit values each time step to reduce the

FIGURE 2 | Illustration of the 3D convolution operation.

number of time steps needed to achieve SOTA accuracy by an
order of magnitude. Though the first layer now requires MACs,
as opposed to cheaper accumulates in the remaining layers,
the overhead is negligible for deep convolutional architectures
(Rathi and Roy, 2020). This work extends these hybrid learning
techniques by using a novel representation of weights for energy
efficiency and performing quantization-aware training in the
SNN domain.

3. 3D VS 2D CNNS: ARITHMETIC
INTENSITY

In this section, we motivate using SNNs to classify 3D images. As
discussed earlier, 3D images require 3D convolutions to extract
both coarse and fine-grained features from all three dimensions.
Essentially, it’s the same as 2D convolutions, but the kernel sliding
is now 3-dimensional, enabling a better capture of dependencies
within the 3 dimensions and creating a difference in output
dimensions post convolution. The kernel of the 3D convolution
will move in 3-dimensions if the kernel’s depth is less than the
feature map’s depth. Please see the illustration in Figure 2, where
width, height, and depth of a convolutional kernel are given by
kx
l
, k

y

l
, and kz

l
, respectively. Hi

l
, Wi

l
, and Di

l
represents the height,

weight, and depth for the input feature map.Ci
l
andCo

l
denote the

channel numbers of input and output feature map, respectively.
Note that 3D convolutions are compute dominated, because the
filters are strided in three directions for all the input channels to
obtain a single output activation.

Let us evaluate the compute and memory access cost of

a 3D CNN layer l with Xl ∈ R
Hi
l
×Wi

l
×Ci

l
×Di

l as the input

activation tensor, and Wl ∈ R
kx
l
×k

y

l
×kz

l
×Ci

l
×Co

l as the weight
tensor. Assuming no spatial reduction, the total number of
floating point operations (FLOP) and memory accesses (Mem),
which involves fetching the input activation (IA) tensor, weight
(W) tensor, and writing to the output activation (OA) tensor, in
layer l are given as

FLOPl3D = kxl ×k
y

l
×kzl×Ci

l×Co
l ×Hi

l×Wi
l×Di

l (4)
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Meml
3D = Hi

l×Wi
l×Ci

l×Di
l + kxl ×k

y

l
×kzl×Ci

l×Co
l

+Hi
l×Wi

l×Co
l ×Di

l (5)

where the first, second and third term in Meml
3D correspond to

IA, W, and OA, respectively. Note that we assume the whole
operation can be performed in a single compute substrate (e.g.,
systolic array), without having to incur any additional data
movement, and that the number of operations is independent of
activation and weight bit-widths. Similarly, for a 2D CNN layer l,
the total number of MACs and memory accesses is

FLOPl2D = kxl ×k
y

l
×Ci

l×Co
l ×Hi

l×Wi
l (6)

Meml
2D = Hi

l×Wi
l×Ci

l + kxl ×k
y

l
×Ci

l×Co
l +Hi

l×Wi
l×Co

l (7)

where we do not have the third dimension D. From Equations
(3–6),

FLOPl3D

FLOPl2D

= kzl×Di
l (8)

Meml
3D

Meml
2D

=
(Hi

l
×Wi

l
×Ci

l
×Di

l
)+ (kx

l
×k

y
l
×kz

l
×Ci

l
×Co

l
)+ (Hi

l
×Wi

l
×Co

l
×Di

l
)

(Hi
l
×Wi

l
×Ci

l
)+ (kx

l
×k

y
l
×Ci

l
×Co

l
)+ (Hi

l
×Wi

l
×Co

l
)

(9)

≤
Hi
l
×Wi

l
×Ci

l
×Di

l

Hi
l
×Wi

l
×Ci

l

+
(kx
l
×k

y
l
×kz

l
×Ci

l
×Co

l
)

(kx
l
×k

y
l
×Ci

l
×Co

l
)

+
(Hi

l
×Wi

l
×Co

l
×Di

l
)

(Hi
l
×Wi

l
×Co

l
)

(10)

≤ 2Di
l + kzl (11)

Assuming kz
l
= 3 (all SOTA CNN architectures have filter size 3

in each dimension),

FLOPl3D

FLOPl2D
≥

Meml
3D

Meml
2D

if Di
l ≥ 3 (12)

Hence, 3D CNNs have higher arithmetic intensity, compared to
2D CNNs, when the spatial dimension D is higher than 3. This
holds true in all but the last layer of a deep CNN network. For
a 100×100 input activation tensor with 64 and 128 input and
output channels, respectively, adding a third dimension of size
100 (typical hyperspectral images has 100s of spectral bands),
and necessitating the use of 3D CNNs, increases the FLOP count
by 300×, whereas the memory access cost increases by 96.5×.
Note that these improvement factors are obtained by setting the
input and output activation dimensions above in Eqs. 8 and 9 and
assuming kx

l
= k

y

l
= kz

l
= 3.

Moreover, as shown in Section 7, the energy consumption
of a 3D CNN is compute bound on both general-purpose and
neuromorphic hardware, and the large increment in FLOPs
translates to significant SNN savings in total energy, as an AC
operation is significantly cheaper than a MAC operation. Note
that SNNs cannot reduce the memory access cost involving
the weights.

4. PROPOSED QUANTIZED SNN TRAINING
METHOD

In this section, we evaluate and compare the different choices
for SNN quantization in terms of compute efficiency and
model accuracy. We then incorporate the chosen quantization
technique into STDB, which we refer to as Q-STDB.

4.1. Study of Quantization Choice
Uniform quantization transforms a weight element w ∈

[wmin,wmax] to a range [−2b−1, 2b−1−1] where b is the bit-width
of the quantized integer representation. There are primarily two
choices for the above transformation, known as affine and scale
quantization. In affine quantization, the quantized value can be
written as wa = sa · w + za, where sa and za denote the scale
and zero point (the quantized value to which the real value zero
is mapped), respectively. However, scale quantization performs
range mapping with only a scale transformation, does not have a
zero correction term, and has a symmetric representable range
[−α,+α]. Hence, affine quantization leads to more accurate
representations compared to the scale counterpart. Detailed
descriptions of these two types of quantization can be found in
Jain et al. (2020) and Wu et al. (2020).

To evaluate the compute cost of our quantization framework,
let us consider a 3D convolutional layer l, the dominant layer
in HSI classification models, that performs a tensor operation

Ol = Xl ⊛ Wl where Xl ∈ R
Hi
l
×Wi

l
×Ci

l
×Di

l is the IA tensor,

Wl ∈ R
kx
l
×k

y

l
×kz

l
×Ci

l
×Co

l is the W tensor and Ol ∈ R
Ho
l
×Wo

l
×Co

l
×Do

l

is the OA tensor, with the same notations as used in Section
3. The result of the real-valued operation Ol = Xl ⊛ Wl

can be approximated with quantized tensors X
Q
l

and W
Q
l
, by

first dequantizing them producing X̂l and Ŵl, respectively,
and then performing the convolution. Note that the same
quantization parameters are shared by all elements in the weight
tensor, because this reduces the computational cost compared
to other granularity choices with no impact on model accuracy.
Activations are similarly quantized, but only in the input layer,
since they are binary spikes in the remaining layers. Also, note

that both X
Q
l

and W
Q
l

have similar dimensions as Xl and Wl,
respectively. Assuming the tensors are scale-quantized per layer,

Ol = Xl ⊛Wl ≈ X̂l ⊛ Ŵl = X
Q
l
⊛W

Q
l
· (

1

sXs · sWs
) (13)

where sXs and sWs are scalar values for scale quantization
representing the levels of the input and weight tensor,
respectively. Hence, scale quantization results in an integer
convolution, followed by a point-wise floating-point
multiplication for each output element. Given that a typical
3D convolution operation involves a few thousands of MAC
operations (accumulate for binary spike inputs) to compute
an output element, a single floating-point operation for the
scaling shown in Equation (13) is a negligible computational
cost. This is because computing Xl

⊛ W l involves element-
wise multiplications of the weight kernels across multiple
channels (for example, for a 3D convolution with 3 × 3 × 3
kernel and 100 channels, we need to perform 2700 MACs)
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and the corresponding overlapping input activation maps. The
accumulated output then needs to be divided by sXs · sWs , which
adds negligible compute cost.

Although both affine and scale quantization enable the use
of low-precision arithmetic, affine quantization results in more
computationally expensive inference as shown below.

Ol ≈
XQ
l
− zXa

sXa
⊛

WQ
l
− zWa

sWa

=
(XQ

l
⊛W

Q
l
− zXa ⊛ (WQ

l
− zWa )− X

Q
l
⊛ zWa )

sXa · sWa
(14)

Note that zXa and zWa are tensors of sizes equal to that of XQ
l

and W
Q
l
, respectively, that consist of repeated elements of the

scalar zero-values of the input activation and weight tensor,
respectively. On the other hand, sXa and sWa are the corresponding
scale values. The first term in the numerator of Equation (14) is
the integer convolution operation similar to the one performed
in scale quantization shown in Equation (13). The second term
contains integer weights and zero-points, which can be computed
offline, and adds an element-wise addition during inference. The
third term, however, involves point-wise multiplication with the
quantized activation X

Q
l
, which cannot be computed before-

hand. As we show in Section 7.5.1, this extra computation can
increase the energy consumption of our SNN models by over an
order of magnitude.

However, our experiments detailed in Section 7 show
that ignoring the affine shift during SNN training degrades
the test accuracy significantly. Hence, the forward path
computations during SNN training follows affine quantization as
per (Equation 14), while the other steps involved in SNN training
(detailed in Section 4.2), namely gradient computation, and
parameter update, use the full-precision weights and membrane
potentials, similar to binary ANN training to aid convergence
(Courbariaux et al., 2016).

After training, the full-precision weights are rescaled for
inference using scale quantization, as per Equation (13), which
our results show yields negligible accuracy drop compared to
using affine-scaled weights. The membrane potentials obtained
as results of the accumulate operations only need to be compared
with the threshold voltage once for each time step, which
consumes negligible energy, and can be performed using fixed-
point comparators (in the periphery of the memory array for
PIM accelerators).

Notice that the affine quantization acts as an intermediate
representation that lies between full-precision and scale
quantization during training; using full-precision causes a
large mismatch between weight representations during training
and inference, while scale quantization during training results
in a similar mismatch during its forward and backward
computations. Thus, in principle, this approach is similar to
incremental quantization approaches (Zhou et al., 2017) in which
we incrementally adjust the type of quantization from the more
accurate affine form to more energy-efficient scale form. Lastly,
we note that our approach to quantization is also applicable to
standard 3D CNNs but the relative savings is significantly higher

in SNNs due to the fact that inference is implemented without
multiply accumulates.

4.2. Q-STDB Based Training
Our proposed training algorithm, illustrated in Figure 3,
incorporates the above quantization methodology into the STDB
technique (Rathi and Roy, 2020), where the spatial and temporal
credit assignment is performed by unrolling the SNN network in
time and employing BPTT.

Output Layer: The neuron model in the output layer L only
accumulates the incoming inputs without any leakage, does not
generate an output spike, and is described by

utL = ut−1
L + ŵLo

t
L−1 (15)

where N is the number of output labels, uL is a vector containing
the membrane potential of N output neurons, ŵL is the affine
quantized weight matrix connecting the last two layers (L and
L−1), and oL−1 is a vector containing the spike signals from
layer (L−1). The loss function is defined on uL at the last time
step T (uTL ). Since u

T
L is a vector consisting of continuous values,

we compute the SNN’s predicted distribution (p) as the softmax
of uTL , similar to the output fully-connected layer of a CNN.
Since our SNN is used only for classification tasks, we employ the
popular cross-entropy loss. The loss function L is thus defined as
the cross-entropy between the true one-hot encoded output (y)
and the distribution p.

L = −

N
∑

i=1

yilog(pi), pi =
eu

T
i

∑N
j=1 e

uTj
, (16)

The derivative of the loss function with respect to the membrane
potential of the neurons in the final layer is described by ∂L

∂uT
L

=

(p−y), where p and y are vectors containing the softmax and one-
hot encoded values of the true label, respectively. To compute
the gradient at the current time step, the membrane potential
at the previous step is considered as an input quantity (Rathi
and Roy, 2020). With the affine-quantized weights in the forward
path, gradient descent updates the network parameters wL of the
output layer as

wL = wL − η1wL (17)

1wL =
∑

t

∂L

∂wL
=
∑

t

∂L

∂utL

∂utL
∂ŵL

∂ŵL

∂wL

=
∂L

∂uTL

∑

t

∂utL
∂ŵL

∂ŵL

∂wL
≈ (p− y)

∑

t

otL−1 (18)

∂L

∂otL−1

=
∂L

∂utL

∂utL
∂otL−1

= (p− y)ŵL (19)

where η is the learning rate (LR). Note that the derivative of the

affine quantization function of the weights ( ∂ŵL
∂wL

) is undefined at
the step boundaries and zero everywhere, as shown in Figure 3A.
Our training framework addresses this challenge by using the
Straight-through Estimator (STE) (Courbariaux et al., 2016),
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FIGURE 3 | (A) Proposed SNN training framework details with 3D convolutions, and (B) Fake quantization forward and backward pass with straight through estimator

(STE) approximation.

which approximates the derivative to be equal to 1 for inputs in
the range [wmin,wmax] as shown in Figure 3B, where wmin and
wmax are the minimum and maximum values of the weights in a
particular layer. Note that wmin and wmax are updated at the end
of every mini-batch to ensure all the weights lie between wmin

andwmax during the forward and backward computations in each

training iteration. Hence, we use ∂ŵL
∂wL

≈ 1 to compute the loss
gradients in Equation (18).

Hidden layers: The neurons in all the hidden layers follow the
quantized LIF model shown in Equation (2). All neurons in a
layer possess the identical leak and threshold value. This reduces
the number of trainable parameters and we did not observe any
noticeable accuracy change by assigning different threshold/leak
value to each neuron, similar to Datta et al. (2021). With a single
threshold for each layer, it may seem redundant to train both the
weights and threshold together. However, we observe, similar to
Rathi and Roy (2020) and Datta et al. (2021) that the latency
required to obtain the SOTA classification accuracy decreases
with the joint optimization, which further drops by training the
leak term. This may be because the loss optimizer can reach an
improved local minimum when all the parameters are tunable.
The weight update in Q-STDB is calculated as

1wl =
∑

t

∂L

∂wl
=
∑

t

∂L

∂zt
l

∂zt
l

∂ot
l

∂ot
l

∂ut
l

∂ut
l

∂ŵl

∂ŵl

∂wl

≈
∑

t

∂L

∂zt
l

∂zt
l

∂ot
l

1

vl
otl−1 · 1 (20)

where
∂ŵl
∂wl

and
∂zt

l

∂ot
l

are the two discontinuous gradients. We

calculate the former using STE described above, while the latter
is approximated using surrogate gradient (Bellec et al., 2018)
shown below.

∂zt
l

∂ot
l

= γ ·max(0, 1− |ztl |) (21)

Note that γ is a hyperparameter denoting the maximum value of
the gradient. The threshold and leak update is computed similarly
using BPTT (Rathi and Roy, 2020).

5. SRAM-BASED PIM ACCELERATION

Efficient hardware implementations of neural network
algorithms are being widely explored by the research community
in an effort to enable intelligent computations on resource
constrained edge devices (Chen et al., 2020). Existing computing
systems based on the well-known von-Neumann architecture
(characterized by physically separated memory and computing
units) suffer from energy and throughput bottleneck, referred
as the memory wall bottleneck (Agrawal et al., 2018; Dong et al.,
2018). Novel memory-centric paradigms like PIM are being
extensively investigated by the research community to mitigate
the energy-throughput constraints arising from the memory wall
bottleneck. As discussed in Section 1, the first layer of a direct
coded SNN is not as computationally efficient as the other layers,
as it processes continuous valued inputs as opposed to spiking
inputs, and dominates the total energy consumption. Further, for
3D images such as HSI, the number of real valued computations
in the first layer of an SNN is orders of magnitude more than
2D images.

In order to enable energy-efficient hardware for SNNs catering
to 3D images, we propose to exploit the high-parallelism, high-
throughput and low-energy benefits of analog PIM in SRAM,
for the first layer of the SNN. As mentioned earlier, the first
layer of SNN requires real valued MAC operations which are
well-suited to be accelerated using analog PIM approaches (Kang
et al., 2018; Ali et al., 2020). Moreover, the number of weights in
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FIGURE 4 | PIM architecture in the first layer to process MAC operations for the first layer of direct coded SNNs. Other layers of the SNN are processed with highly

parallel programmable architecture using simpler accumulate operations.

the first layer of a typical 3D CNN architecture is substantially
less compared to the other layers, which ensures that we can
perform PIM using a single memory array, thereby reducing
the complexity of the peripheral circuits, such as adder trees
for partial sum reduction. Several proposals achieving multiple
degrees of compute parallelism within on-chip memory based
on SRAM arrays have been proposed (Agrawal et al., 2018,
2019; Dong et al., 2018; Biswas and Chandrakasan, 2019; Jaiswal
et al., 2019). Interestingly, both digital (Agrawal et al., 2018;
Dong et al., 2018) as well as analog- mixed-signal approaches
(Agrawal et al., 2019; Biswas and Chandrakasan, 2019) have
been explored extensively. Analog approaches are of particular
importance due to higher levels of data parallelism and compute
throughput compared to digital counterparts in performing
MAC computations. Our adopted PIM architecture for the
first layer of our proposed SNNs is illustrated in Figure 4.
The PIM architecture leverages analog computing for parallel
MAC operations by mapping activations as voltages on the
wordlines and weights as data stored in the SRAM bit-cells
(represented as Q and QB). As shown in Ali et al. (2020),
multi-bit MAC operations can be enabled in SRAM arrays by
activating multiple rows, simultaneously, allowing appropriately
weighted voltages to develop on each column of the SRAM
array representing the resulting MAC operations computed in
analog domain. Peripheral ADC circuits are used to convert
the analog MAC operation into corresponding digital data for
further computations.

To summarize, we propose use of analog PIM to accelerate
the MAC intensive compute requirements for the first layer
of the SNN. The remaining layers of the SNN leverage
traditional digital hardware implementing simpler accumulate
operations. Advantageously, our proposed quantized SNN
with small number of weights in the first layer is well-
suited for low-overhead PIM circuits, as reduction in bit-
precision and peripheral complexity drastically improves the
energy and throughput efficiency of analog PIM architectures
(Kang et al., 2018).

6. PROPOSED CNN ARCHITECTURES,
DATASETS, AND TRAINING DETAILS

6.1. Model Architectures
We developed two models, a 3D and a hybrid fusion of 3D and

2D convolutional architectures, that are inspired by the recently

proposed CNN models (Ben Hamida et al., 2018; Luo et al.,

2018; Roy et al., 2020) used for HSI classification and compatible
with our ANN-SNN conversion framework. We refer to the two
models CNN-3D and CNN-32H.

There are several constraints in the training of the baseline
ANN models needed to obtain near lossless ANN-SNN
conversion (Diehl et al., 2016; Sengupta et al., 2019). In particular,
we omit the bias term from the ANN models because the
integration of the bias term over multiple SNN timesteps tends
to shift the activation values away from zero which causes
problems in the ANN-SNN conversion process (Sengupta et al.,
2019). In addition, similar to Sengupta et al. (2019), Rathi and
Roy (2020), Rathi et al. (2020), and Kim and Panda (2021),
we do not use batch normalization (BN) layers because using
identical BN parameters (e.g., global mean µ, global standard
deviation σ , and trainable parameter γ ) for the statistics of all
timesteps do not capture the temporal dynamics of the spike
train in an SNN. Instead, we use dropout (Srivastava et al.,
2014) as the regularizer for both ANN and SNN training.
Recent research (Rathi and Roy, 2020; Rathi et al., 2020)
indicates that there is no problem in yielding state-of-the-art
accuracy in complex image recognition tasks, such as CIFAR-
100, with models without batch normalization and bias. We
observe the same for HSI models in this work as well. Moreover,
our initial ANN models employ ReLU nonlinearity after each
convolutional and linear layer (except the classifier layer), due
to the similarity between ReLU and LIF neurons. Our pooling
operations use average pooling because for binary spike based
activation layers, max pooling incurs significant information
loss. Our SNN-specific architectural modifications are illustrated
in Figure 5.
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FIGURE 5 | Architectural differences between (A) ANN and (B) SNN for near-lossless ANN-SNN conversion.

TABLE 1 | Model architectures employed for CNN-3D and CNN-32H in classifying the IP dataset.

Layer Size of input Number of Size of Stride Padding Dropout Size of output

type feature map filters each filter value value value feature map

Architecture : CNN-3D

3D Convolution (5,5,200,1) 20 (3,3,3) (1,1,1) (0,0,0) - (3,3,198,20)

3D Convolution (3,3,198,20) 40 (1,1,3) (1,1,2) (1,0,0) - (3,3,99,40)

3D Convolution (3,3,99,40) 84 (3,3,3) (1,1,1) (1,0,0) - (1,1,99,84)

3D Convolution (1,1,99,84) 84 (1,1,3) (1,1,2) (1,0,0) - (1,1,50,84)

3D Convolution (1,1,50,84) 84 (1,1,3) (1,1,1) (1,0,0) - (1,1,50,84)

3D Convolution (1,1,50,84) 84 (1,1,2) (1,1,2) (1,0,0) - (1,1,26,84)

Architecture : CNN-32H

3D Convolution (3,3,200,1) 90 (3,3,18) (1,1,7) (0,0,0) - (1,1,27,90)

2D Convolution (27,90,1) 64 (3,3) (1,1) (0,0) - (25,88,64)

2D Convolution (25,88,64) 128 (3,3) (1,1) (0,0) - (23,86,128)

Avg. Pooling (23,86,128) - (4,4) (4,4) (0,0) - (59,21,128)

Dropout (5,21,128) - - - - 0.2 (5,21,128)

Linear 13,440 6,881,280 - - - - 512

Every convolutional and linear layer is followed by a ReLU non-linearity. The last classifier layer is not shown. The size of the activation map of a 3D CNN is written as (H,W,D,C) where

H, W, D, and C represent the height, width, depth of the input feature map and the number of channels. Since the 2D CNN layer does not have the depth dimension, its feature map

size is represented as (H,W,C).

We also modified the number of channels and convolutional
layers to obtain compact yet accurate models. 2D patches of
sizes 5×5 and 3×3 were extracted for CNN-3D and CNN-
32H, respectively, without any reduction in dimensionality from
each dataset. Higher sized patches increase the computational
complexity without any significant improvement in test accuracy.
Note that magnitude based structured weight pruning (Han et al.,
2015b), which has been shown to be an effective technique for
model compression, can only remove < 15% of the weights
averaging across the two architectures, with <1% degradation in
test accuracy for all the three datasets used in our experiments,
which also indicates the compactness of our models. The details
of both models are given in Table 1.

6.2. Datasets
We used four publicly available datasets, namely Indian
Pines, Pavia University, Salinas scene, and HyRANK. A brief
description follows for each one, and few sample images found
in some of these datasets are shown in Figure 6.

Indian Pines: The Indian Pines (IP) dataset consists of
145×145 spatial pixels and 220 spectral bands in a range of 400–
2,500 nm. It was captured using the AVIRIS sensor over North-
Western Indiana, USA, with a ground sample distance (GSD) of
20 m and has 16 vegetation classes.

Pavia University: The Pavia University (PU) dataset consists
of hyperspectral images with 610×340 pixels in the spatial
dimension, and 103 spectral bands, ranging from 430 to 860 nm
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FIGURE 6 | (i) False color-map and (ii) ground truth images of different HSI datasets used in our work, namely (A) Indian Pines, (B) Pavia University, and (C) Salinas

Scene.

in wavelength. It was captured with the ROSIS sensor with GSD
of 1.3m over the University of Pavia, Italy. It has a total of 9 urban
land-cover classes.

Salinas Scene: The Salinas Scene (SA) dataset contains images
with 512×217 spatial dimension and 224 spectral bands in the
wavelength range of 360–2, 500 nm. The 20 water absorbing
spectral bands have been discarded. It was captured with the
AVIRIS sensor over Salinas Valley, California with a GSD of 3.7
m. In total 16 classes are present in this dataset.

HyRANK: The ISPRS HyRANK dataset is a recently released
hyperspectral benchmark dataset. Different from the above HSI
datasets that contain a singlr hyperspectral scene, the HyRANK
dataset consists of two hyperspectral scenes, namely Dioni and
Loukia. Similar to Meng et al. (2021), we use the available labeled
samples in the Dioni scene for training, while those in the Loukia
scene for testing. The Dioni and Loukia scenes comprise 250 ×

1, 376 and 249× 945 spectral samples, respectively, and each has
176 spectral reflectance bands.

For preprocessing, images in all the data sets are normalized
to have a zero mean and unit variance. For our experiments, all
the samples (except that of the HyRANK dataset) are randomly
divided into two disjoint training and test sets. The limited
40% samples are used for training and the remaining 60% for
performance evaluation.

6.3. ANN Training and SNN Conversion
Procedures
We start by performing full-precision 32-bit ANN training for
100 epochs using the standard SGD optimizer with an initial
learning rate (LR) of 0.01 that decayed by a factor of 0.1 after 60,
80, and 90 epochs.

The ANN-SNN conversion entails the estimation of the values
of the weights and per-layer thresholds of the SNN model
architecture. The weights are simply copied from a trained DNN
model to the iso-architecture target SNN model. The threshold
for each layer is computed sequentially as the 99.7 percentile of
the pre-activation distribution (weighted sum of inputs received
by each neuron in a layer) over the total number of timesteps
(Rathi and Roy, 2020) for a small batch of HSI images (of size
50 in our case). Note that we use 100 time steps to evaluate the
thresholds, while the SNN training and inference are performed

with only 5 time steps. In our experiments we scale the initial
layer thresholds by 0.8. We keep the leak of each layer set to unity
while evaluating these thresholds. Note that employing direct
coding as used in our work and others (Rathi and Roy, 2020)
can help avoid any approximation error arising from the input
spike generation (conversion from raw images to spike trains)
process and aid ANN-SNN conversion. Lower bit-precision of
weights will most likely not exacerbate the conversion process,
assuming the ANN models can be trained accurately with the
same bit-precision.

We then perform quantization-aware SNN training as
described in Section 4 for another 100 epochs. We set γ = 0.3
(Bellec et al., 2018) and used the ADAM optimizer with a starting
LR of 10−4 which decays by a factor of 0.5 after 60, 80, and 90
epochs. All experiments are performed on a Nvidia 2080Ti GPU
with 11 GB memory.

7. EXPERIMENTAL RESULTS AND
ANALYSIS

This section first describes our inference accuracy results, then
analyzes the associated spiking and energy consumption. It
then describes several ablation studies and a comparison of the
training time and memory requirements.

7.1. ANN and SNN Inference Results
We report the best Overall Accuracy (OA), Average Accuracy
(AA), and Kappa Coefficient measures to evaluate the HSI
classification performance for our proposed architectures, similar
to Ben Hamida et al. (2018). Here, OA represents the number
of correctly classified samples out of the total test samples. AA
represents the average of class-wise classification accuracies, and
Kappa is a statistical metric used to assess the mutual agreement
between the ground truth and classification maps. Column-2 in
Table 2 shows the ANN accuracies, column-3 shows the accuracy
after ANN-SNN conversion with 50 time steps1. Column-4
shows the accuracy when we perform our proposed training
without quantization, while columns 5 to 7 shows the SNN

1We empirically observe that at least 50 time steps are required for lossless

ANN-SNN conversion.
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TABLE 2 | Model performances with Q-STDB based training on IP, PU, SS, and HyRANK datasets for CNN-3D and CNN-32H after (A) ANN training, (B) ANN-to-SNN

conversion, (C) 32-bit SNN training, (D) 4-bit SNN training, (E) 5-bit SNN training, and (F) 6-bit SNN training, with only 5 time steps.

A. ANN B. Accuracy after C. Accuracy after D. Accuracy after E. Accuracy after F. Accuracy after

Dataset accuracy (%) ANN-to-SNN conv. (%) FP SNN training (%) 4-bit SNN training (%) 5-bit SNN training (%) 6-bit SNN training (%)

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

Architecture : CNN-3D

IP 98.86 98.42 98.55 57.68 50.88 52.88 98.92 98.76 98.80 97.08 95.64 95.56 98.38 97.78 98.03 98.68 98.34 98.20

PU 99.69 99.42 99.58 91.16 88.84 89.03 99.47 99.06 99.30 98.21 97.54 97.75 99.26 98.48 98.77 99.50 99.18 99.33

SS 98.89 98.47 98.70 81.44 76.72 80.07 98.49 97.84 98.06 96.47 93.16 94.58 97.25 95.03 95.58 97.95 97.09 97.43

HyRANK 64.21 63.27 47.34 34.80 58.97 20.64 63.18 61.25 45.25 59.76 56.40 42.28 61.70 60.48 46.06 62.96 61.27 46.82

Architecture : CNN-32H

IP 97.60 97.08 97.44 70.88 66.56 67.89 97.27 96.29 96.35 96.63 95.81 95.89 97.23 96.08 96.56 97.45 96.73 96.89

PU 99.50 99.09 99.30 94.96 90.12 93.82 99.38 98.83 99.13 99.17 98.41 98.68 99.25 98.84 98.86 99.35 98.88 98.95

SS 98.88 98.39 98.67 88.16 84.19 85.28 97.92 97.20 97.34 97.34 96.32 96.77 97.65 96.81 96.97 97.99 97.26 97.38

HyRANK 64.43 70.68 52.82 24.26 26.90 19.37 63.72 67.89 49.59 62.27 62.50 46.58 63.27 65.32 47.98 63.34 66.66 48.21

FIGURE 7 | Confusion Matrix for HSI test performance of ANN and proposed 6-bit SNN over IP dataset for both CNN-3D and CNN-32H. The ANN and SNN

confusion matrices look similar for both the network architectures. CNN-32H incurs a little drop in accuracy compared to CNN-3D due to shallow architecture.

test accuracies obtained with Q-STDB for different weight bit
precisions (4 to 6 bits). SNNs trained with 6-bit weights result
in 5.33× reduction in bit-precision compared to full-precision
(32-bit) models and, for all three tested data sets, perform similar
to the full precision ANNs for both the CNN-3D and CNN-
32H architectures. Although the membrane potentials do not
need to be quantized as described in Section 4, we observed
that the model accuracy does not drop significantly even if we
quantize them, and hence, the SNN results shown in Table 2

correspond to 6-bit membrane potentials. Four-bit weights and
potentials provide even lower complexity, but at the cost of a
small accuracy drop. Figure 7 shows the confusion matrix for the
HSI classification performance of the ANN and proposed SNN
over the IP dataset for both the architectures.

The inference accuracy (OA, AA, and Kappa) of our ANNs
and SNNs trained via Q-STDB are compared with the current
state-of-the-art ANNs used for HSI classification in Table 3.

As we can see, simply porting the ANN architectures used in
Ben Hamida et al. (2018) and Luo et al. (2018) to SNNs, and
performing 6-bit Q-STDB results in significant drops in accuracy,
particularly for the India Pines data set. In contrast, our CNN-
3D-based SNN models suffer negligible OA drop (<1% for all
datasets) compared to the best performing ANN models for
HSI classification.

7.2. Spiking Activity
Each SNN spike involves a constant number of AC operations,
and hence, consumes a fixed amount of energy. Consequently,
the average spike count of an SNN layer l, denoted ζl, can be
treated as a measure of compute-energy of the model (Sengupta
et al., 2019; Rathi et al., 2020). We calculate ζl as the ratio of the
total spike count in T steps over all the neurons of layer l to the
number of neurons in the layer. Hence, the energy efficiency of
an SNN model can be improved by decreasing the spike count.
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TABLE 3 | Inference accuracy (OA, AA, and Kappa) comparison of our proposed SNN models obtained from CNN-3D and CNN-32H with state-of-the-art deep ANNs on

IP, PU, SS, and HyRANK datasets.

References ANN/SNN Architecture OA (%) AA (%) Kappa (%)

Dataset : Indian Pines

Alipour-Fard et al. (2020) ANN MSKNet 81.73 71.4 79.2

Song et al. (2018) ANN DFFN 98.52 97.69 98.32

Zhong et al. (2018) ANN SSRN 99.19 98.93 99.07

Roy et al. (2020) ANN HybridSN 99.75 99.63 99.71

Ben Hamida et al. (2018)
ANN

6-layer 3D CNN
98.29 97.52 97.72

SNN 95.88 94.26 95.34

Luo et al. (2018)
ANN

Hybrid CNN
96.15 94.96 95.73

SNN 94.90 94.08 94.78

This work
ANN

CNN-3D
98.86 98.42 98.55

SNN 98.79 98.34 98.60

This work
ANN

CNN-32H
97.60 97.08 97.44

SNN 97.45 96.73 96.89

Dataset : Pavia University

Alipour-Fard et al. (2020) ANN MSKNet 90.66 88.09 87.64

Song et al. (2018) ANN DFFN 98.73 97.24 98.31

Zhong et al. (2018) ANN SSRN 99.61 99.56 99.33

Meng et al. (2021) ANN DRIN 96.4 95.8 95.2

Ben Hamida et al. (2018)
ANN

6-layer 3D CNN
99.32 99.02 99.09

SNN 98.55 98.02 98.28

Luo et al. (2018)
ANN

Hybrid CNN
99.05 98.35 98.80

SNN 98.40 97.66 98.21

This work
ANN

CNN-3D
99.69 99.42 99.58

SNN 99.50 99.18 99.33

This work
ANN

CNN-32H
99.50 99.09 99.30

SNN 99.35 98.88 98.95

Dataset : Salinas Scene

Song et al. (2018) ANN DFFN 98.87 98.75 98.63

Meng et al. (2021) ANN DRIN 96.7 98.6 96.3

Luo et al. (2018)
ANN

Hybrid CNN
98.85 98.35 98.22

SNN 97.05 97.41 97.18

This work
ANN

CNN-3D
98.89 98.47 98.70

SNN 97.95 97.09 97.43

This work
ANN

CNN-32H
98.88 98.39 98.67

SNN 97.99 97.26 97.38

Dataset : HyRANK

Meng et al. (2021) ANN DRIN 54.4 56.0 43.3

This work
ANN

CNN-3D
64.21 63.27 47.34

SNN 62.96 61.27 46.82

This work
ANN

CNN-32H
64.43 69.68 52.82

SNN 63.34 66.66 48.21

The bold values indicate maximum values.

Figure 8 shows the average spike count for each layer with
Q-STDB when evaluated for 200 samples from each of the three
datasets (IP, PU, SS) for the CNN-3D and CNN-32H architecture.
For example, the average spike count of the 3rd convolutional
layer of the CNN-3D-based SNN for IP dataset is 0.568, which

means each neuron in that layer spikes 0.568 times on average
over all input samples over a 5 time step period. Note that the
average spike count is less than 1.4 for all the datasets across
both the architectures which leads to significant energy savings
as described below.
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FIGURE 8 | Layerwise spiking activity plots for (A) CNN-3D and (B) CNN-32H on Indian Pines, Salinas Scene and Pavia University datasets.

7.3. Energy Consumption and Delay
In this section, we analyze the improvements in energy, delay,
and EDP of our proposed SNN models compared to the baseline
SOTA ANNmodels running on digital hardware for all the three
datasets. We show that further energy savings can be obtained by
using the PIM architecture discussed in Section 5 to process the
first layer of our SNN models.

7.3.1. Digital Hardware
Let us assume a 3D convolutional layer l having weight tensor

Wl ∈ R
k×k×k×Ci

l
×Co

l that operates on an input activation

tensor Il ∈ R
Hi
l
×Wi

l
×Ci

l
×Di

l , where the notations are similar
to the one used in Section 4. We now quantify the energy
consumed to produce the corresponding output activation tensor

Ol ∈ R
Ho
l
×Wo

l
×Co

l
×Do

l for an ANN and SNN, respectively. Our
model can be extended to fully-connected layers with f i

l
and f o

l
as the number of input and output features, respectively, and
to 2D convolutional layers, by shrinking a dimension of the
feature maps.

In particular, for any layer l, we extend the energy model of
Ali et al. (2020) and Kang et al. (2018) to 3D CNNs by adding
the third dimension of weights (k) and output feature maps (Do

l
),

as follows

ECNNl = Ci
lC

o
l k

3Eread + Ci
lC

o
l k

3Ho
l W

o
l D

o
l Emac + PleakT

CNN
l

(22)

where the first term denotes the memory access energy, the
second term denotes the compute energy, while the third term
highlights the static leakage energy. Note that Tl is the latency
incurred to process the layer l, and can be written as

TCNN
l =

(

Ci
l
Co
l
k3

BIO
BW

Nbank

)

Tread +

(

Ci
l
Co
l
k3

Nmac

)

Ho
l W

o
l D

o
l Tmac (23)

The notations for Equations (22) and (23), along with their
values, obtained from Kang et al. (2018) and Ali et al. (2020) are
illustrated in Table 4. The total energy is compute bound since

TABLE 4 | Notations and their values used in energy, delay, and EDP equations

for ANN and 6-bit SNNs.

Notation Description Value

BIO Number of bits fetched from SRAM to

processor per bank

64

BW Bit width of the weight stored in SRAM 6

Ncol Number of columns in SRAM array 256

Nbank Number of SRAM banks 4

Nmac(Nac) Number of MACs (ACs) in processing

element (PE) array

175 (175)

Tread Time required to transfer 1-bit data

between SRAM and PE

4 ns

TBLP Time required for one analog in-memory

accumulation

4 ns

Emac(Eac) Energy consumed in a single MAC (AC) 3.1 pJ (0.1 pJ) for

32-bit

Operation for a particular bit-precision full-precision inputs

(Horowitz, 2014)

Tmac(Tac) Time required to perform a single MAC

(AC) in PE

4 ns (0.4 ns)

Tadc Time required for a single ADC operation 6 ns

Eread Energy to transfer each weight element

between SRAM and PE

5.2 pJ

EBLP Energy required for a single in-memory

analog accumulation

0.08 pJ

Eadc Energy required for an ADC operation 0.268 pJ

the compute energy alone consumes ∼98% of the total energy
averaged across all the layers for the CNN-3D architecture on
all the datasets. The memory cost only dominates the few fully
connected layers, accounting for > 85% of their total energy.

Similarly, we can extend the energy and delay model of Kang
et al. (2018) and Ali et al. (2020) to our proposed SNNs, as follows

ESNNl = Ci
lC

o
l k

3Eread + Ci
lC

o
l k

3Ho
l W

o
l D

o
l ζlEac + PleakT

SNN
l (24)
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FIGURE 9 | Comparison of FLOPs and compute energy of CNN-3D and CNN-32H between ANN and SNN models while classifying on (A) Indian Pines, (B) Salinas

Scene, and (C) Pavia University datasets, respectively.

TSNN
l =

(

Ci
l
Co
l
k3

BIO
BW

Nbank

)

Tread +

(

Ci
l
Co
l
k3

Nac

)

Ho
l W

o
l D

o
l Tac (25)

for any layer l except the input layer that is based on direct
encoding, whose energy and delay can be obtained from
Equations (22, 23), respectively. The notations used in Equations
(23, 24), along with their values are also shown in Table 4. Notice
that the spiking energy in Equation (22) assume the use of zero-
gating logic that activates the compute unit only when an input
spike is received and thus is a function of spiking activity ζl.
However, to extend the benefits of a low ζ l to latency, we require
either custom hardware or compiler support (Liu et al., 2018). For
this reason, unlike energy, this paper assumes no delay benefit
from ζl as is evident in Equation (25).

To compute EMAC for full-precision weights (full-precision
and 6-bits) and EAC (6-bits) at 65 nm technology, we use the
data from Horowitz (2014) obtained by silicon measurements
(see Table 4). For 6-bit inputs, we scale the energy according to
Emac ∝ Q1.25 as shown in Moons et al. (2017), where Q is the
bit-precision. On the other hand, Eac (6-bits) is computed by
scaling the full-precision data from Horowitz (2014), according
to Simon et al. (2019), which shows EAC is directly proportional
to the data bit-width. Our calculations imply that EAC is ∼13×
smaller than EMAC for 6-bit precision. Note that this number may
vary for different technologies, but, in most technologies, an AC
operation is significantly less expensive than a MAC operation.
As required in the direct input encoding layer, we obtain Emac for
8-bit inputs and 6-bit weights from Kang et al. (2018), applying
voltage scaling for iso-Vdd conditions with the other Emac and Eac
estimations from Horowitz (2014). We use Tac = 0.1Tmac for 6-
bit inputs from Ganesan (2015) and the fact that the latency of
a MAC unit varies logarithmically with bit precision (assuming
a carry-save adder) to calculate the delay, and the resulting EDP
of the baseline SOTA ANN and our proposed SNNmodels. Note
that the architectural modifications applied to the existing SOTA
models to create our baseline ANNs (Ben Hamida et al., 2018;
Roy et al., 2020) only enhance ANN-SNN conversion, and do not
lead to significant changes in energy consumption. Since the total
energy is compute bound, we also calculate the total number of
floating point operations (FLOPs), which is a standard metric to
evaluate the energy cost of ML models.

Figure 9 illustrates the total energy consumption and FLOPs
for full precision ANN and 6-bit quantized SNN models of the
two proposed architectures, where the energy is normalized to
that of the baseline ANN. We also consider 6-bit ANN models

to compare the energy efficiency of low-precision ANNs and
SNNs. We observe that 6-bit ANN models are 12.5× energy
efficient compared to 32-bit ANN models due to significant
improvements in MAC energy with quantization, as shown in
Moons et al. (2017). Note that we can achieve similar HSI test
accuracies shown in Table 2 with quantized ANNs as well. We
compare the layer-wise and total energy, delay, and EDP of
our proposed SNNs with those of equivalent-precision ANNs in
Figure 10.

The FLOPs for SNNs obtained by our proposed training
framework is smaller than that for the baseline ANN due
to low spiking activity. Moreover, because the ACs consume
significantly less energy than MACs for all bit precisions, SNNs
are significantly more compute efficient. In particular, for CNN-
3D on IP, our proposed SNN consumes ∼199.3× and ∼33.8×
less energy than an iso-architecture full-precision and 6-bit ANN
with similar parameters, respectively. The improvements become
∼560.6× (∼9976× in EDP) and ∼44.8× (∼412.2× in EDP),
respectively, averaging across the two network architectures and
three datasets.

7.3.2. PIM Hardware
Though SNNs improve the total energy significantly as shown
above, the first layer needs the expensive MACs due to direct
encoding, and accounts for ∼27% and ∼22% of the total energy
on average across the three datasets for CNN-3D and CNN-
32H, respectively. To address this issue, we propose to adopt
an SRAM-based memory array to process the computations
incurred in the first layer, in the memory array itself, as discussed
in Section 5.

We similarly extended the energy and delay models of Ali
et al. (2020) and Kang et al. (2018) to the PIM implementation of
the first layer of our proposed SNN architectures. The resulting
energy and delay can be written as

ESNN1 = Ci
1C

o
1k

3

(

EBLP +
EADC

R

)

+ PleakT
SNN
1 (26)

TSNN
1 =

(

Ci
1C

o
1k

3

Ncol
BW

Nbank

)

Ho
1W

o
1D

o
1

(

Tread +
Tadc

R

)

(27)

where the new notations along with their values are in Table 4.
Following 65 nm CMOS technology limitations, we keep the
array parameters similar to Kang et al. (2018), and Tadc and
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FIGURE 10 | Energy, delay, and EDP of layers of (A) CNN-3D and (B) CNN-32H architectures, comparing 6-bit ANNs and SNN (obtained via Q-STDB) models while

classifying IP.

FIGURE 11 | Energy, delay, and EDP comparison of traditional digital and in-memory computing (only 1st layer) hardware for the SNN models obtained with (A)

CNN-3D, and (B) CNN-32H architectures classifying Indian Pines, Pavia University, and Salinas Scene datasets.

Eadc for our 6-bit SNN are obtained by extending the circuit
simulation results of Ali et al. (2020) with the ADC energy and
delay models proposed in Gonugondla et al. (2020).

Figure 11 compares the energy, delay and the EDP of the first-
layer-PIM implementation of the spiking version of CNN-3D and

CNN-32H against the corresponding digital implementations
for the IP, PU, and SS datasets. The improvements in the
total energy, delay and EDP for CNN-3D on IP dataset, are
seen to be 1.28×, 1.08× and 1.38×, respectively, over an
iso-architecture-and-precision SNN implemented with digital
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FIGURE 12 | Comparison between our baseline SOTA ANNs and proposed SNNs with 5 time steps based on (A) training time per epoch, and (B) memory usage

during training. Variation of (A,B) with the number of time steps for the IP dataset and CNN-32H architecture are shown in (C).

hardware. The improvements become 1.30×, 1.07× and 1.38×,
respectively, averaging across the three datasets. However,
since CNN-32H is shallower than CNN-3D, and has relatively
cheaper 2D CNNs following the input 3D CNN layer, the
PIM implementation in the first layer can decrease the total
energy consumption significantly. The energy, delay, and EDP
improvements compared to the digital implementations are
estimated to be 2.12×, 1.04×, and 2.20× for CNN-32H, and
1.71×, 1.06×, and 1.79× on average across the two architectures
and three datasets. Hence, the total improvements for our
proposed hybrid hardware implementation (PIM in first layer
and digital computing in others), coupled with our energy-
aware quantization and training technique, become 953×,
17.76×, 16921× compared to iso-architecture full-precision
ANNs and 76.16×, 9.2×, 700.7× compared to iso-architecture
iso-precision ANNs.

Note that analog-PIM based SNNs are more cheaper in terms
of energy consumption than their CNN counterparts. This is
because of the reasons summarized below.

• Since CNN requires both multi-bit activations and multi-bit
weights, the precision of ADCs and DACs required in analog-
PIM based CNN accelerator is higher than for analog-SNN
based accelerators. As is well known, ADCs are the most
energy-expensive components in analog PIM accelerators,
thus, this higher precision requirement leads to higher energy
consumption. For example, an 8 bit ADC consumes 2× more
energy compared to a 4 bit ADC (Ali et al., 2021).

• The limited precision of ADCs also necessitates ‘bit-streaming’
(Ankit et al., 2020), wherein multi-bit activations of CNN are
serially streamed to analog-PIM crossbars and accumulated
over time. Such serial streaming increases both delay and
power consumption for computing.

• Finally, the higher algorithmic sparsity associated with SNN
leads to reduction in energy consumption while performing
analog-PIM operations. Note that this sparsity can also be
leveraged by custom digital hardware.

However, the energy-delay benefit associated with analog-PIM
based SNNs with respect to digital SNN implementation is
lower as compared to analog-PIM based CNN in comparison
digital CNN implementation. This is because CNNs require
extensive energy-hungry multiplication operations, while SNNs
rely on cheaper accumulate operations. Moreover, analog

PIM implementation leads to increased non-idealities and can
decrease the resulting test accuracy of our HSI models. As the
number of weights increases after the first layer (4.5× in the 2nd

layer to 352.8× in the 6th layer for CNN-3D), a single layer has
to be mapped over multiple memory sub-arrays. This, in turn,
requires partial sums generated from individual sub-arrays to be
transferred via Network-on-chip (NoC) for accumulation and
generation of output activation. The NoC and associated data
transfer incurs increase in energy-delay and design complexity.
Hence, we choose to avoid PIM in the subsequent layers.

7.4. Training Time and Memory
Requirements
We also compared the simulation time and memory
requirements during the training of the baseline SOTA ANN and
our proposed SNN models. Because SNNs require iterating over
multiple time steps and storing the membrane potentials for each
neuron, their simulation time and memory requirements can
be substantially higher than their ANN counterparts. However,
training with ultra low-latency, as done in this work, can bridge
this gap significantly as shown in Figure 12. We compare the
simulation time and memory usage during training of the
baseline ANNs and our proposed SNNmodels in Figures 12A,B,
respectively. As we can see, the training time per epoch is less
than a minute for all the architectures and datasets. Moreover,
the peak memory usage during training is also lower for our
SNN models compared to their ANN counterparts. Hence,
we conclude that our approach does not incur any significant
training overhead. Note that both the training time and memory
usage are higher for CNN-32H than for CNN-3D because the
output feature map of its last convolutional layer is very large.

7.5. Ablation Studies
We conducted several ablation studies on combinations of affine
and scale quantization during training and inference, quantized
training approaches, and the efficacy of ANN-based pre-training.

7.5.1. Affine vs. Scale Quantization
Figure 13A compares inference accuracies for three different
quantization techniques during the forward path of training and
test on the CNN-3D architecture with the IP dataset using 6-
bit quantization. Performing scale quantization during training
significantly degrades performance, which further justifies our
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FIGURE 13 | (A) Test accuracies for different quantization techniques during the forward path of training and inference with a 6-bit CNN-3D model on the IP dataset

with 5 timesteps, (B) Test accuracies with 6, 9, and 12-bit weight precisions for post-training quantization with a CNN-32H model on the IP dataset with 5 timesteps.

TABLE 5 | Loss in accuracy associated with use of scale quantization during inference.

A. Affine (training) and B. Affine (training) and

Bit-precision Affine (inference) Scale (inference), 1 from Column A.

OA (%) AA (%) Kappa (%) 1 OA (%) 1 AA (%) 1 Kappa (%)

6 98.89 98.39 98.21 0.21 0.05 0.01

5 98.79 98.36 98.24 0.41 0.13 0.21

4 98.50 98.01 98.07 1.42 2.37 2.53

Evaluated using the CNN-3D model on the IP dataset.

FIGURE 14 | Weight shift (1) in each layer of CNN-3D for (A) 4, (B) 5, and (C) 6-bit quantization, while classifying the IP dataset.

use of affine quantization during training. However, using scale
quantization during inference results in similar accuracy as affine
quantization. We further explored the gap in accuracy for 4-bit
and 5-bit quantization, as summarized in Table 5. We observed

that the accuracy gap associated with using scale quantization

instead of affine quantization during inference modestly grows
to 1.42% for 4-bit weights.

This small drop in relative accuracy for low bit-precisions may

be attributed to the benefit of the zero factor in affine quantization

on quantization error. Quantization error is typically measured

by half of the width of the quantization bins, where the number

of bins NB used is independent of the type of quantization

and, due to the 2’s complement representation, centered around

zero. However, the range of values these bins must span is

smaller for affine quantization because the zero factor ensures

the distribution of values is also centered at zero. This difference
in range can be calculated as 1 = rscale − raffine = 2 ·

max(wmax, |wmin|)−(wmax−wmin). Assumingwmin = −x ·wmax,

1 =

{

(1− x)wmax, if wmax > −wmin

(x− 1)wmax, otherwise.
(28)

As empirically shown in Figure 14, the average 1 across all
the layers increases modestly as we decrease the bit-precision
from 6 to 4. In contrast, the increase in quantization error
associated with scale quantization is equal to 1

2NB
and thus grows

exponentially as the number of bits decrease.

7.5.2. Q-STDB vs. Post-training Quantization
PTQ with scale representation cannot always yield ultra low-
precision SNNs with SOTA test accuracy. For example, as
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TABLE 6 | Comparison between model performances for Q-STDB from scratch, proposed hybrid training, and ANN-SNN conversion alone.

A. Q-STDB from B. Diff. between proposed hybrid training C. Diff. between ANN-SNN conversion alone

Architecture Dataset scratch and Q-STDB from scratch and Q-STDB from scratch

OA (%) AA (%) Kappa (%) 1 OA (%) 1 AA (%) 1 Kappa (%) 1 OA (%) 1 AA (%) 1 Kappa (%)

IP 96.83 96.25 96.23 1.85 2.11 1.97 -39.15 -45.37 -43.35

CNN-3D PU 99.38 99.04 99.17 0.14 0.13 0.16 -8.22 -10.2 -10.14

SS 96.05 95.79 95.60 1.90 1.30 1.83 -14.61 -19.07 -15.53

IP 95.93 95.36 95.40 1.53 1.37 1.49 -25.05 -28.8 -27.51

CNN-32H PU 99.12 98.49 98.55 0.23 0.39 0.40 -4.16 -8.37 -4.73

SS 96.04 95.90 95.33 1.95 1.36 1.95 -7.88 -11.71 -10.05

All cases are for 5 time steps and 6-bits.

illustrated in Figure 13B, for the IP dataset and CNN-32H
architecture with 5 time steps, the lowest bit precision of the
weights that the SNNs can be trained with PTQ for no more than
1% reduction in SOTA test accuracy is 12, two times larger bit-
width than required by Q-STDB. Interestingly, the weights can be
further quantized to 8-bits with less than 1% accuracy reduction
if we increase the time steps to 10, but this costs latency.

7.5.3. Comparison Between Q-STDB With and

Without ANN-SNN Conversion
To quantify the extent that the ANN-based pre-training helps,
we performed Q-STDB from scratch (using 5 time steps), where
the weights are initialized from the standard Kaiming normal
distribution. The results are reported inTable 6, where the results
in the columns labeled B and C are obtained by comparing those
from the columns labeled F and B, respectively in Table 2 with
Q-STDB without ANN-SNN conversion. The results show that
while Q-STDB from scratch beats conversion-only approaches,
the inference accuracy can often be further improved using
our proposed hybrid training combining Q-STDB and ANN-
SNN conversion.

8. CONCLUSIONS AND BROADER IMPACT

In this paper, we extensively analyse the arithmetic intensities
of 3D and 2D CNNs, and motivate the use of energy-efficient,
low-latency, LIF-based SNNs for applications involving 3D
image recognition, that requires 3D CNNs for accurate
processing. We then present a quantization-aware training
technique, that yields highly accurate low-precision SNNs.
We propose to represent weights during the forward path of
training using affine quantization and during the inference
forward path using scale quantization. This provides a
good trade-off between the SNN accuracy and inference
complexity. We propose a 3D and hybrid combination of
3D and 2D convolutional architectures that are compatible
with ANN-SNN conversion for HSI classification; the hybrid
architecture incurs a small accuracy drop compared to the 3D
counterpart, which shows the efficacy of 3D CNNs for HSI. Our
quantized SNN models offer significant improvements in energy

consumption compared to both full and low-precision ANNs
for HSI classification. We also propose a PIM architecture to
process the energy-expensive first layer of our direct encoded
SNN to further reduce the energy, delay and EDP of the
SNN models.

Our proposal results in energy-efficient SNN models that can
be more easily deployed in HSI or 3D image sensors and thereby
mitigates the bandwidth and privacy concerns associated with
off-loading inference to the cloud. This improvement in energy-
efficiency is particularly important as the applications of HSI
analysis expand and the depth of the SOTA models increases
(Boldrini et al., 2012).

To the best of our knowledge, this work is the first to
address energy efficiency of HSI models, and can hopefully
inspire more research in algorithm-hardware co-design of neural
networks for size, weight, and power (SWAP) constrained
HSI applications.
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