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Tissue-resident CD8+ T cells (CD8+ TRM) populate lymphoid and non-lymphoid tissues

after infections as first line of defense against re-emerging pathogens. To achieve host

protection, CD8+ TRM have developed surveillance strategies that combine dynamic

interrogation of pMHC complexes on local stromal and hematopoietic cells with

long-term residency. Factors mediating CD8+ TRM residency include CD69, a surface

receptor opposing the egress-promoting S1P1, CD49a, a collagen-binding integrin, and

CD103, which binds E-cadherin on epithelial cells. Moreover, the topography of the

tissues of residency may influence TRM retention and surveillance strategies. Here, we

provide a brief summary of these factors to examine how CD8+ TRM reconcile constant

migratory behavior with their long-term commitment to local microenvironments, with a

focus on epithelial barrier organs and exocrine glands with mixed connective—epithelial

tissue composition.
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INTRODUCTION

During viral infections, Ag-specific naïve CD8+ T cells (TN) become activated in reactive secondary
lymphoid organs (SLOs), and change their gene expression pattern and metabolism to differentiate
into proliferating cytotoxic effector T cells (TEFF) (1, 2). During the effector phase, TEFF are
subdivided into KLRG1+ CD127− short-lived effector T cells and KLRG1− CD127+ memory
precursor effector cells, with a larger potential to generate long-lived memory cells in the latter
compartment (3). TEFF killing of infected cells in inflamed tissue requires direct cell-to-cell contact
to identify cognate peptidemajor histocompatibility complexes (pMHC) on target cells, which leads
to release of granzymes and perforin for induction of apoptosis (4, 5). Once intracellular infections
have been cleared, memory CD8+ T cells patrol the body for rapid protective recall responses
upon secondary pathogen encounter. Depending on their surfacemarker expression and trafficking
patterns, distinct subsets of memory CD8+ T cells are classified (6). Central memory T cells (TCM)
maintain the ability to recirculate through SLOs through expression of the homing receptors L-
selectin (CD62L) and the chemokine receptor CCR7, a characteristic shared with TN. Recent work
has shown that TCM can also be rapidly recruited to sites of inflammation outside lymphoid
tissue (7). Effector memory T cells (TEM) lack CD62L and CCR7 expression and are thought
to patrol non-lymphoid tissues (NLTs), although their precise functions are still not well-defined
(8). Peripheral memory CD8+ T cells (TPM) have been recently described based on intermediate
expression of the chemokine receptor CX3CR1 as predominant subset surveying NLTs (9).
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Finally, self-renewing, non-recirculating tissue-resident memory
T cells (TRM) populate barrier organs after clearing of an
infection as first line of defense, both in mice and humans
(10–17). In contrast to circulating memory T cell subsets, TRM

are in a disequilibrium with blood as they are retained for
months or years within their tissue of residency. Recent data
suggest that tissue-residency vs. circulating memory potential is
already imprinted during priming in lymphoid tissue. Migratory
dendritic cells (DCs) from skin and gut epithelium present
active transforming growth factor (TGF)-β to recirculating CD8+

TN, which preconditions these cells to form TRM in a skin
vaccination model (18). Such conditioning is another example of
lymphoid tissue-directed steering of ensuing immune responses,
such as reported for differential homing receptor induction in
skin-vs. gut-draining lymphoid tissue (19). In line with this
observation, a tissue-resident gene expression signature is readily
detectable in early circulating TEFF cells prior to entry into
NLTs (20). Notably, presence of cognate antigen at infiltrated
target sites is not a prerequisite for TRM formation, although
it increases their local abundance (21). Finally, in addition to
sites of microbial infection, CD8+ T cells with a TRM signature
are also detectable in tumors and in autoimmune inflammatory
conditions, where these cells exert protective and detrimental
effects, respectively (17).

Studies following the development of epidermal CD8+ TRM

have shown that KLRG1− precursor cells enter the dermis during
the early effector response and that their entry into the epidermis
involves the action of keratinocyte-secreted chemokines that
bind to CXCR3 and CCR10 expressed on skin-homing T cells
(22, 23). The cytokines IL-15 and TGF-β are involved in the
formation and survival of epidermal TRM. In particular, TGF-
β transactivation by keratinocytes increases expression of the
integrin chain CD103, which plays a role in tissue retention of
epidermal TRM (see below) (22, 24, 25). TRM are characterized
by a core transcriptional program mediated by the transcription
factors Hobit and Blimp1, as well as Runx3 and Notch (26–
28). As a local adaptation to the lipid-rich skin environment,
fatty acid metabolism, and mitochondrial functions regulate
epidermal TRM development and survival (29). In addition to
epithelial barriers, TRM have been identified in virtually all
organs including central nervous system (CNS), exocrine glands,
lungs, liver, kidney, bone marrow, reproductive tract, as well as
tumors (10, 17, 30–36). Notably, far from being a homogeneous
population, TRM display considerable heterogeneity (37–39) and
interact with diverse, undefined non-hematopoietic cells during
local reactivation (40). Furthermore, a recent report using a
Hobit expression/fate reporter mouse line has uncovered that
TRM have the capacity to de-differentiate to TEFF, which occurs
in parallel to Hobit downregulation after TCR activation (41).

The localization of TRM to sites of previous pathogen
infection poise them to rapidly respond to secondary infections.
Accordingly, TRM release cytokines after activation and express
high levels of effector molecules such as granzyme B for target
cell killing. The protective role for TRM is exemplified by studies
in barrier sites of the skin andmucosal surfaces such as the female
reproductive tract, where these cells lodge within the epithelium.
Antigen re-challenge experiments have shown that TRM act as

first-line defense by inducing a tissue-wide alert state, in part via
IFN-γ secretion (42–48). These signals relay to innate immune
cells for additional cytokine release that results in recruitment of
immune cells to the site of pathogen re-emergence, essentially
reversing the paradigm that activation of the innate immune
system always precedes the adaptive immunity activation.
Thus, while TRM also undergo bystander activation through
inflammatory cytokines (49, 50), local immune surveillance for
cognate pMHC presented on host cells is a key feature of
CD8+ TRM cells to provide pathogen-specific, long-lasting host
protection. To achieve this extraordinary feat, CD8+ TRM acquire
the ability to infiltrate and physically scan their environment
for infected cells within virtually any host organ, while avoiding
inadvertent tissue exit via blood or lymphatic vessels or out
of an epithelial barrier. Accordingly, CD8+ TRM have been
found to be patrolling vascular compartments, such as liver
sinusoids (51), as well as neuronal and muscle tissue (32, 52).
Other anatomical locations surveilled by TRM vary in their
content of epithelial and connective tissue: (i) predominantly
epithelial (e.g., epidermis and mucosal epithelium), (ii) mixed
epithelial—connective (e.g., exocrine and endocrine glands), and
(iii) predominantly connective tissue (e.g., lymph nodes and
spleen) (Figure 1). Here, we will provide a brief overview on
tissue retention and surveillance strategies focusing on data
gained in mouse models of skin vs. salivary glands as prototypical
epithelial barrier site vs. exocrine gland.

MULTIPLE LAYERS OF TISSUE
RETENTION COOPERATE FOR
LONG-TERM TRM SURVEILLANCE OF
EPITHELIAL BARRIER TISSUE

Expression of CD69 is the most commonly employed marker to
define TRM in all locations, although it is not an exclusive TRM

marker and its expression does not necessarily correlate with
establishment of long-term resident TRM populations (53, 54).
CD69 is a cis-antagonist of the sphingosine-1-phosphate receptor
1 (S1P1) required for egress via lymphatic vessels, which drain
interstitial fluid from organs and which contain higher amounts
of S1P than tissue (55, 56). TRM also reduce S1P1 production
on a transcriptional level, which is prerequisite for establishing
long-term residency (57). In epithelial tissues, most TRM express
CD103, which is the αE chain of the E-cadherin receptor αEβ7 (6,
58). E-cadherin is expressed by epithelial cells, where it promotes
their homotypic adhesion. In line with this, CD103 promotes the
long-term persistence of TRM in skin, presumably by retaining
these cells within the keratinocyte layer (22). Epidermal CD8+

TRM further upregulate the collagen receptor α1β1, which also
contributes to their long-term permanence (59, 60). Finally, TRM

increase expression of the negative regulator of chemoattractant
receptor signaling, regulator of G-protein-coupled signaling 1
(RGS1) (61, 62). RGS1 and related members of the RGS family
activate the GTPase activity of GTP-bound Gαi, which leads to a
cessation of Gαi-coupled receptors signaling (63). RGS-mediated
blunted responsiveness to chemoattractants, such as S1P, likely
contributes to long-term residency, although experimental
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FIGURE 1 | Model of TRM surveillance strategies according to organ topography. In epithelial barrier tissues such as epidermis, TRM mainly locate on top of the

basement membrane (BM) separating connective tissue from the epithelium, which themselves are connected by adherens and tight junctions. Both BM and tight

junctions serve as physical boundaries to TRM foraging, essentially restricting their motility to a 2D-like surface. Chemoattractants, either constitutively expressed or

induced by microbial presence, together with α1 and αE integrins further re-enforce this restricted migration pattern to ensure long-term retention by preventing

inadvertent loss of scanning TRM outside the epithelial barrier. In exocrine glands such as the SMG (mixed arborized epithelial—connective tissue), tight junctions

between secretory epithelial cells may constitute a similar barrier to prevent loss of TRM into the acini or duct lumen. Yet, the BM separating secretory epithelium from

supporting interstitium remains permissive for two-way traffic into and out of epithelial cell layers, which is facilitated in SMG by tissue macrophages. Accordingly,

non-inflamed secretory epithelial cells presumably secrete only low levels of chemoattractants that would otherwise retain TRM in this site. This mode of tissue

scanning permits rapid accumulation of TRM to sites of secondary pathogen encounters, which would be hampered if TRM were confined exclusively to the epithelial

cell layer. While CD69+ memory CD8+ cells also locate to lymphoid tissue following a viral infection (arrowheads), their function and dynamic interactions with local

cells enabling their long-term retention and host protective capacity remain unknown. Similarly, it remains unclear whether SLO TRM retain responsiveness to

inflammatory chemokines as their counterparts in epithelial layers and exocrine glands. All confocal images show GFP+ OT-I CD8+ TCR transgenic T cells at >30

days following systemic or local (skin) virus infections. LSM, laser scanning microscope; SHG, second harmonic generation; LC, Langerhans cells; DC, Dendritic cells;

BM, basement membrane, memT, CD8+ memory T cells. Scale bar LSM images, 30µm. Middle panels created with https://biorender.com/.

evidence is still lacking. Taken together, CD8+ TRM havemultiple
molecular modules at their disposal that in combination reduce
the probability to accidentally exit their tissue of residency
during homeostatic surveillance. Moreover, the structure of

the epithelial microenvironment likely contributes to long-term
retention of TRM. Epidermal TRM lodge on top of a dense
basement membrane (BM) separating underlying connective
tissue from the overlying epithelium, and such BM form physical
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barriers that limit leukocyte dissemination (64). At their apical
border, epithelial cells are attached via tight junctions that form a
barrier for T cell exit out of the epidermis or into the gut lumen,
respectively (65, 66). These factors likely help epithelial TRM to
establish long-term tissue-residency as a prerequisite for life-long
protection at previously infected sites (Figure 1).

Within their tissue of residency, epidermal TRM physically
scan the local cell neighborhood for cognate pMHC. During
this process, they display characteristic elongated shapes with
numerous dendrites that constantly extend and contract and
move in a Gαi-dependent manner with speeds of 1–2 µm/min
along the bottom keratinocyte layer, resembling motility on a
2D layer (23, 67, 68). Reconstruction of TRM motility in human
skin biopsies revealed that these cells occasionally traversed the
papillary dermis, and are therefore less strictly confined to the
epidermis as observed in mouse skin (69). Both TRM dendricity
and motility contribute to efficient scanning of the epidermis
(67). Lack of neither the skin-selective chemokine receptors
CCR8 or CCR10 (70), nor CXCR3 or CXCR6 affect baseline
motility of epidermal TRM, although lack of CXCR6 reduces
TRM dendricity (23). During secondary viral spread, epidermal
CD8+ T cells use CXCR3 to follow local chemokine signals
and accumulate around infected cells (4, 48). In sum, epidermal
TRM maintain responsiveness to inflammatory chemokines
despite their Gαi-dependent basal motility, suggesting that these
chemoattractants override their homeostatic, as yet undefined
GPCR input.

Lack of the α1β1 integrin but not CD103 leads to a loss of the
dendrite-shaped TRM morphology (23, 60), suggesting that these
cells form transient anchors with their protrusions interacting
with extracellular matrix. The precise molecular composition
of these transient α1β1-mediated adhesions remains to be
characterized but they likely differ from the more long-lasting
anchoring of tissue macrophage protrusions (71). Furthermore,
ex vivo migration analysis of lung TRM uncovered a role for
CD49a in facilitating TRM translocation, whereas CD103 did not
promote motility (72). Instead, lack of CD103 leads to an increase
in epidermal TRM speeds in vivo, suggesting a primary role for
this integrin in tissue retention (23). The impact of CD49a on in
vivo TRM motility parameters has not been determined yet.

Similar to CD49a deficiency, microtubule network
depolymerization following nocodazole treatment leads to a loss
of the characteristic TRM dendricity (23). This phenomenon is
likely due to global release of Rho-activating factor ArhGEF2
otherwise trapped in microtubules (73). Controlled release of
ArhGEF2 from depolymerizing microtubules has been recently
shown to play an important role in retracting protrusions
that are not following the nuclear translocation path during
amoeboid cell displacement (74). This pathway serves therefore
as a proprioceptive mechanism to control amoeboid cell shape
in complex environments such as formed by the tightly packed
keratinocyte layer, and is essential to avoid accidental cell
rupture. A role for ArhGEF2 in facilitating epidermal TRM

motility has thus far not been experimentally addressed. Taken
together, continuous retention of epithelial TRM is mediated by
multiple integrin receptor interactions and homeostatic GPCR
signaling. Long-term TRM colonization may be further facilitated

by “layered” architecture of epidermis with a BM separating the
underlying connective tissue and the tight junction seal on the
apical part of the epithelial layer (Figure 1).

TRM LODGING AND SURVEILLANCE OF
“NON-BARRIER” NLTs

In addition to the well-studied epidermis and small intestinal
epithelium that are constitutively exposed to microbes, TRM

lodge to organs that are less subjected to constant microbial
challenge and contain few or no E-cadherin-expressing epithelial
layers. These organs include CNS, kidney, submandibular
salivary glands (SMG), liver, and bone marrow (10, 16, 75, 76). In
contrast to epidermis where CD8+ TRM are embedded between
non-vascularized epithelial cells, these complex organs contain
extensive blood and lymphatic vascular systems, innervation,
fibroblasts, tissue-resident macrophages, and innate immune
cells, as well as in some cases arborized secretory epithelium.
In addition to distinct tissue-specific cellular composition (e.g.,
kidney tubular cells, hepatocytes, CXCL12-abundant reticular
cells of the bone marrow) and receptor-ligand expression
patterns, these organs differ in their metabolic activity (e.g.,
liver) or immunosuppressive environment (e.g., reproductive
tract) (77, 78). Furthermore, beyond the biochemical and cellular
properties of individual tissues, physical parameters such as
topography, substrate stiffness, and confinement influence cell-
based immune responses and cross-talk with their environment
(79, 80). To date, little is known about how the local
microenvironment in these organs affects the phenotype and
mechanism of surveillance of TRM during homeostasis and recall
responses. While the high expression of CD69, CD49a, and RGS1
on a majority of non-barrier NLT TRM suggests similar roles as
in epithelial barrier tissues, CD103 expression is not required
for long-term retention of TRM in SMG, in contrast to skin
(81, 82). Another key issue is whether memory T cells from
distinct anatomical locations employ tissue-specific mechanisms
of host surveillance.

In a recent study, we have found that TRM lodging in
SMG acquire a motility program distinct from TCM and
epidermal TRM (83). In contrast to memory T cells isolated from
lymphoid tissue or epidermis, in vivo observations suggested
SMG CD8+ TRM were largely refractory to pharmacological
inhibition of Gαi-protein-coupled receptors or integrin adhesion
molecules during homeostatic tissue surveillance, although they
retained the ability to respond to inflammatory chemokines
and expressed high levels of the CD103, CD49a, CD49d, and
CD11a integrins (83). While integrin-independent migration
in 3D matrices has become a widely accepted concept in cell
biology based on studies with cell lines and DCs (84), several
studies demonstrated integrin involvement during immune
surveillance of skin T cells (23, 85). As direct evidence for specific
adhesion-independent motility, TRM isolated from salivary
glands displayed spontaneous motility under 2D confinement in
the absence of integrin ligands or chemoattractants. Adhesion-
free motility in 2D conditions was reported for large, blebbing
carcinoma cells, based on non-specific friction mediated by
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FIGURE 2 | Intrinsic motility of SMG TRM triggered by environmental topography. (A) Model for autonomous exocrine gland TRM motility generated by baseline

retrograde F-actin flow coupled via non-specific substrate friction or low adhesiveness under physical confinement. In addition, under completely non-adhesive

conditions, cell propulsion can be generated through bending of the retrograde cortical actin flow by the environmental topography. Adapted from Reversat et al. (88).

(B) Exemplary track of isolated SMG TRM in “under agarose” confinement on human serum albumin with and without pluronic acid (PA) passivation to abolish residual

friction or lodged between 7 µm-polystyrene bead clusters. Scale bar, 20µm. (C) TRM speeds within or outside of polystyrene bead clusters in presence of PA. (D)

TRM meandering index within or outside of polystyrene bead clusters in presence of PA. Data were analyzed by unpaired t-test (C) or Mann–Whitney test (D). *p <

0.05; **p < 0.01.

a large interface between migrating cells and substrates
(Figure 2A) (86, 87). Similarly, we observed that non-specific
substrate friction is sufficient to trigger intrinsic SMG TRM

motility in 2D confinement (83). In turn, TRM isolated from
salivary glands did not show displacement on “slippery surfaces,”
i.e., in presence of EDTA or when surfaces were passivated
with pluronic acid, which reduces friction below a threshold for
cell translocation (Figures 2B–D). Notably, these cells regained
the capability to translocate in absence of substantial friction
when a 3D geometry was created by immotile neighboring
objects (Figures 2B–D). This motility mode correlated with
continuous changes in cell shapes during migration through
microchannels formed by the microenvironment. In this
setting, SMG TRM continuously form multiple simultaneous
protrusions that probe the environmental geometry, leading
to their insertion into permissive gaps and subsequent cell
body translocation (83). In the complex 3D exocrine organ
architecture, tissue macrophages embedded within the epithelial
and connective tissue compartments contributed to generate
available extracellular space for protrusion-forming TRM (83).

How do TRM shape changes generate tractive force for
cell translocation under these conditions? A recent study
has identified adhesion-free cellular locomotion driven by

microenvironmental architecture (Figure 2A) (88). Thus, a
permissive local topography facilitates cell motility by adapting
the cell shape to features of the environment such as
crevices and serrated surfaces. At these non-smooth surfaces,
rearward cortical F-actin flow generates non-normal forces that
results in forward cell motility, rendering cellular translocation
autonomous from external influences (Figure 2A). These data
provide a model for adhesion-free TRM motility in the absence of
friction, and highlight the multiple ways TRM are able to integrate
chemical signals (e.g., chemoattractants) and tissue architecture
to patrol complex 3D structures such as secretory glands.

What may be the advantages of such a non-canonical
migration mode for immune surveillance of mixed connective—
epithelial tissues? In contrast to the epidermally restricted
migratory behavior of CD8+ skin TRM (89), exocrine gland
TRM display a bidirectional trafficking pattern into and out
of epithelial layers, a process facilitated by tissue macrophages
(Figure 1) (83). Such bidirectional trafficking would be perturbed
by epithelial chemokine secretion, which could furthermore lead
to continuous leukocyte influx and exacerbated inflammation
after clearance of infection. Instead, this modus allows TRM to
remain responsive to inflammatory chemokines that are locally
secreted at sites of pathogen re-emergence. In this context, not
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being confined to arborized secretory epithelium shortens the
pathlength that TRM need to travel in order to accumulate at
local sites of inflammation. Furthermore, as ECM proteins and
other integrin ligands differ in distinct NLTs (90, 91), integrin-
independent motility may endow TRM subsets with flexible
topography-driven organ surveillance in non-epithelial barrier
sites. A non-proteolytic pathway is beneficial to preserve the
integrity of the target tissue, as it does not require constant
repair of newly generated discontinuities in the ECM matrix
(92). The scanning strategy adopted by homeostatic SMG TRM

resembles the migration pattern of T cell blasts in 3D collagen
networks, where these cells routinely bypass dense collagen areas,
while probing the environment for permissive gaps for cell body
translocation (93). In sum, these observations are consistent with
a model where certain NLT TRM switch during homeostatic
immune surveillance to a self-motile “autopilot” mode supported
by tissue macrophage topography, while remaining susceptible
to locally produced inflammatory signals for concerted cytotoxic
activity. Whether CD8+ TRM have adapted a comparable mode
for other non-barrier NLTs and whether autonomous motility is
shared by other tissue-resident leukocytes, such as CD4+ TRM,
NK or innate lymphoid cells, remains unknown.

DISCUSSION

Here, we put the general tissue architecture of epidermis and
salivary glands as prototype epithelial vs. mixed epithelial—
connective tissues into context with published observations on
the dynamic surveillance strategies adapted by TRM. Reflecting
the acknowledged heterogeneity, TRM develop distinct tissue-
specific scanning modalities, i.e., chemokine- and integrin-
dependent and -independent in epidermis and exocrine glands,
respectively, to balance retention and local pMHC interrogation.
Independent of their baseline homeostatic migration mode,
TRM remain susceptible to inflammatory chemokines produced
during pathogen re-encounter, which facilitates their clustering
at target sites, perhaps reflecting the low killing rate of cytotoxic
CD8+ T cells against stromal cell targets (94). Furthermore,
certain organs such as epithelial barrier sites might have a higher
abundance of promigratory factors in steady state owing to
their continuous exposure to microbes. In contrast, non-barrier
NLTs may generally express low amounts of chemoattractants
in absence of inflammation that demand an adaptation of
local immune cells. Recent data suggest that nuclear sensing of
confinement may contribute to generate cellular translocation
in the absence of external factors (95, 96). Yet, it remains
unclear whether or in which NLTs this contributes to TRM

surveillance patterns.

A recent observation made by Masopust and colleagues was
the presence of bona fide CD69+ TRM in the red pulp (RP) of
spleen and medullary area of LNs (97) (Figure 1), which are at
least in part derived from NLT TRM precursors (53). In contrast
to CD62L+ CCR7+ TCM (98), the physiological role of TRM in
SLO remains essentially unknown to date. Notably, recent data
suggest that in humans a large proportion of memory CD4+ and
CD8+ T cells are CD69+ bona fide TRM, including in LNs and
spleen (99). While some of these cells may retain the capacity
to recirculate (53), these observations suggest the presence of
specific TRM niches with a potential role during re-infection,
e.g., via cytokine secretion and/or de-differentiation into TEFF

(41). At the same time, the close spatial proximity of spleen
TRM to vascular sinuses in the RP (97) raises the question how
these cells reconcile dynamic tissue surveillance with long-term
retention in a connective tissue with few major tissue barriers
such as extensive tight junctions and basement membranes
as compared to epithelial barrier sites (Figure 1) (100). Taken
together, many incognita remain on the organ-specific TRM

cross-talk with the local microenvironment. Combining in vivo
analysis with high resolution single cell technologies to take into
account cell heterogeneity will shed light on these open points.
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