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Abstract

Highly connected recurrent neural networks often produce chaotic dynamics, meaning their

precise activity is sensitive to small perturbations. What are the consequences of chaos for

how such networks encode streams of temporal stimuli? On the one hand, chaos is a strong

source of randomness, suggesting that small changes in stimuli will be obscured by intrinsi-

cally generated variability. On the other hand, recent work shows that the type of chaos that

occurs in spiking networks can have a surprisingly low-dimensional structure, suggesting

that there may be room for fine stimulus features to be precisely resolved. Here we show

that strongly chaotic networks produce patterned spikes that reliably encode time-depen-

dent stimuli: using a decoder sensitive to spike times on timescales of 10’s of ms, one can

easily distinguish responses to very similar inputs. Moreover, recurrence serves to distribute

signals throughout chaotic networks so that small groups of cells can encode substantial

information about signals arriving elsewhere. A conclusion is that the presence of strong

chaos in recurrent networks need not exclude precise encoding of temporal stimuli via spike

patterns.

Author Summary

Recurrently connected populations of excitatory and inhibitory neurons found in cortex

are known to produce rich and irregular spiking activity, with complex trial-to-trial vari-

ability in response to input stimuli. Many theoretical studies found this firing regime to be

associated with chaos, where tiny perturbations explode to impact subsequent neural

activity. As a result, the precise spiking patterns produced by such networks would be

expected to be too fragile to carry any valuable information about stimuli, since inevitable

sources of noise such as synaptic failure or ion channel fluctuations would be amplified by

chaotic dynamics on repeated trials. In this article we revisit the implications of chaos in
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input-driven networks and directly measure its impact on evoked population spike pat-

terns. We find that chaotic network dynamics can, in fact, produce highly patterned spik-

ing activity which can be used by a simple decoder to perform input-classification tasks.

This can be explained by the presence of low-dimensional, input-specific chaotic attrac-

tors, leading to a form of trial-to-trial variability that is intermittent, rather than uniformly

random. We propose that chaos is a manageable by-product of recurrent connectivity,

which serves to efficiently distribute information about stimuli throughout a network.

Introduction

Highly recurrent connectivity occurs throughout the brain. It is believed that recurrent cortical

circuits typically operate in a “balanced state” in which every neuron receives a large number

of excitatory (E) and inhibitory (I) inputs (see, e.g., [1–3]). This means synaptic currents nearly

cancel on average, but feature strong fluctuations, giving rise to sustained irregular spiking [4].

Well-established results show that such strongly recurrent networks operating in a balanced

regime can produce chaotic dynamics in a range of settings, from abstract firing rate models

with random connectivity [5] to networks of spiking units with excitatory and inhibitory cell

classes [2, 6–8]. Chaos implies that the network dynamics depend very sensitively on network

states, so that tiny perturbations to initial conditions may lead to large effects over time. As a

consequence, when the same stimulus is presented to a chaotic network multiple times, it may

fail to generate reproducible responses. How can stimuli be encoded in the variable spike trains

that result (c.f. [9, 10])? A central issue is the relationship between trial-to-trial variability and

input discriminability: since exactly the same sensory input can elicit different neural

responses from one trial to the next (as can distinct inputs), how can one decide which stimu-

lus is driving a network based on its response?

To illustrate the variable stimulus responses due to chaos, Fig 1 shows a model balanced

network (to be described in detail below) driven by a fixed multi-dimensional stimulus, as well

as a raster plot of the spiking output of the network on two trials. In each of these trials, the

exact same stimulus is presented, but on the second trial a small perturbation is artificially

introduced in the form of an extra spike for neuron 1 (as in [11–13]). This small perturbation

quickly reverberates throughout the whole network in a seemingly random fashion [11–13].

Can a network this sensitive to small differences in its internal state produce sufficiently reli-

able outputs for discrimination? If we were to present two different stimuli to such a network,

Fig 1. (A) An input I(t), with N independent components, is presented to a chaotic network of N spiking cells.

(B) Raster plot of the network response to a fixed input I(t), on two trials. Arrow indicates a perturbation to the

network on the second trial, in which an extra spike is “added” to neuron number 1. Different color markers

indicate the widely divergent spike rasters that occur with and without the perturbation.

doi:10.1371/journal.pcbi.1005258.g001
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could a decoder be trained to discriminate the spikes evoked by the first input from the spikes

evoked by the second, despite both sets of output spikes being subject to the type of variability

shown here? This is the central question that we investigate here.

We study this stimulus coding question using a strongly chaotic, recurrent spiking net-

work model driven by temporal stimuli. The strength of stimulus inputs is comparable to

network interactions, so that dynamics are not dominated by external stimuli alone. We find

that, despite chaos, the network’s spike patterns encode temporal features of stimuli with suf-

ficient precision so that the responses to close-by stimuli can be accurately discriminated.

We relate this coding precision to previous work grounded in the mathematical theory of

dynamical systems, which shows that—at the level of multi-neuron spike patterns—chaotic

networks do not produce as much variability as one might guess at first glance [14, 15]. This

is because in such networks, the trial-to-trial variability of spike trains evoked by time-

dependent stimuli leads to the formation of low-dimensional chaotic attractors. Our main

findings are:

1. It is possible for strongly chaotic recurrent networks to produce multi-cell spike responses

that remain discriminable even for highly similar temporal inputs.

2. The same recurrent connections that produce chaos distribute stimulus information

throughout the network, so that stimuli can be discriminated based on only a small subset

of “readout” neurons.

3. Input statistics influence the strength of chaotic fluctuations that can obscure stimuli. We

quantify this via a chaos-induced “noise floor”; stimuli whose strength exceeds this floor

will be easily discriminable.

We show that these findings are consistent with well-understood properties of irregular

activity produced in balanced networks [2, 5, 16]. We also demonstrate that classical mean-

field theories describe the overall firing statistics in our networks, but that additional tools are

needed to describe their response to temporal stimuli.

Our results are based on numerical simulations guided by mathematical theory, but con-

nect to a broad experimental literature: trial-to-trial variability in neural responses to repeated

stimuli is often observed empirically [1, 17–19] (though see also [20–24]). Even though there

are many likely contributors to this variability, ranging from stochasticity in neurotransmitter

release or ion channels ([25], but see [26, 27]) to confounding factors like behavioral state,

activity level, and levels of adaptation [28, 29], chaotic interactions may play an inescapable

role. Indeed, chaos may represent a mechanism by which other sources of variability are

amplified. Importantly, we find that chaos in driven networks produce a type of intermittent

variability, with some spiking “events” predictably repeated across trials [14, 15] (cf. [30–32]).

This is also reported in a number of experiments (see e.g. [33, 34] and [23]).

The remainder of this paper is organized as follows. In the Methods section, we describe

our network model, the input discrimination task we use throughout, and outline our imple-

mentation of the Tempotron classifier [35], which we train on the spikes produced by our

network. We also compare the across-trials statistics of our network to more standard mean-

field ensembles, showing that fluctuating time-dependent stimuli can induce complex statis-

tical structure across trials. In the Results sections, we first present an analysis of single neu-

ron statistics in our network. This is followed by an overview of dynamical systems concepts

useful to describe chaotic dynamics, which we use to interpret the spike outputs our model

produces. Finally, we present our main findings based on the performance of trained classifi-

ers, offering explanations of underlying mechanisms at the level of dynamical network

interactions.

Stimulus Encoding in Chaotic Spiking Networks
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Methods

We study a recurrent network of excitatory and inhibitory neurons with random, sparse cou-

pling, as in [2, 3, 6, 14]. Every neuron i = 1, . . ., N in our network receives an external input sig-

nal Ii(t), which we describe in more detail below. The collection of all these signals is an N-

dimensional input that we denote by I(t) = {Ii(t)}i = 1,. . .,N and simply call the network’s input or

stimulus (see Fig 1 (A)). We emphasize that the inputs have N independently varying compo-

nents; i.e., they are N-dimensional.

Our goal is to explore the ability of a decoder to discriminate between two distinct network

inputs IA(t) and IB(t), based on the activity of the network (or of a subset of cells from the net-

work). We now describe the model in detail, as well as the specific discrimination task and

decoding paradigm we use.

Model

We consider a network of N neurons separated into excitatory (E) and inhibitory (I) popula-

tions of sizes NE and NI obeying “Dale’s Law” [36] (i.e. neuron can either have all inhibitory or

all excitatory outgoing synapses). We set NI = 0.2N, NE = 0.8N and couple the network accord-

ing to the random and sparse, balanced state architecture [2, 3, 6, 14, 37] following a standard

Erdös-Rényi scheme with mean in-degree K� N. This means a synaptic connection from a

neuron j to a neuron i is drawn randomly and independently with probability K/NE,I where E

or I denotes the type of neuron j. Throughout the paper, we report simulations carried out

with N in a range from 500 to 5000 and K from 10 to 500 but note that the majority of the

results we outline are independent of network size, or scale with N in simple ways while K
plays a more subtle role that does not impact the qualitative nature of our results.

Individual neurons are modelled as Quadratic-Integrate-and-Fire (QIF) units [38]. The

state of each neuron i = 1, . . ., N is represented by a voltage variable vi 2 (−1,1). These volt-

ages evolve according to intrinsic voltage-dependent (QIF) dynamics

tm
dvi

dt
¼
ðvi � vRÞðvi � vTÞ

Dv
þ IsynðtÞ ð1Þ

where τm is the membrane time-constant, vR and vT are rest and threshold potentials, Δv =

vT − vR and Isyn(t) represents incoming inputs to the neurons, both from the network and from

our external stimulus. The dynamics of Eq (1) are discontinuous in time: once the membrane

potential v exceeds the threshold, it blows up to infinity in finite time at which point a spike is

said to be emitted and v is manually reset to −1. For convenience, we use vT = −vR = 1 and

apply a smooth change of coordinates v(θ) = tan(2πθ − π)/2 that maps these unbounded values

to phase variables θi 2 [0, 1]. QIF dynamics acting in these coordinates is known as the θ-

neuron model [38]. Here θi = 0 and θi = 1 represent the same state of vi = ±1, and a neuron is

said to “spike” once it reaches this point. Mathematically, this means that the voltage of each

neuron is represented by a point on a circle and the state of the entire network at time t is

given by the vector of phases θ(t) = (θ1(t), . . ., θN(t)). For the sake of clarity, we report spikes

and other temporal observables using milliseconds by fixing the neural time constant τm = 10

ms in the QIF coordinates and rescaling unit-less time by 2πτm (see [38] for more details about

this coordinates change).

Thus, the state of the network as a whole can be thought of as a moving point on an N-torus

(TN). The dynamics of each neuron –representing an axis on the torus– is given by

_y i ¼ FðyiÞ þ ZðyiÞ
XN

j¼1

aijgðyjÞ þ ZðyiÞ ½Zþ εxiðtÞ�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
IiðtÞ

ð2Þ
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where F(θi) = 1 + cos(2πθi), Z(θi) = 1 − cos(2πθi) (the canonical phase response curve of a Type

I neuron [39]), and g(θj) is a sharp “bump” function, nonzero only near the spiking phase

θj = 1 * 0. As in [14, 15], we set

gðyÞ ¼
d b2 � yþ

1

2

� �

mod 1 �
1

2

� �2
 !3

; y 2 ½� b; b�

0 ; else

8
>><

>>:

with b = 1/20 and d = 35/32. This phase coupling function is chosen to model the rapid rise

and fall of post-synaptic currents, while being differentiable everywhere so that the vector field

defined by Eq (2) remains smooth. Note also that
R 1

0
dygðyÞ ¼ 1. The synaptic weight aij from

neuron j to neuron i, if non-zero, is set to a fixed value that depends on both neuron types.

Abusing notation slightly, we set: aEE ¼ aIE ¼ a=
ffiffiffiffi
K
p

, aEI ¼ � a=
ffiffiffiffi
K
p

and aII ¼ � ra=
ffiffiffiffi
K
p

. We

set α = 0.35 and ρ = 0.75 so that I-neurons are slightly less inhibited by other I-neurons than E-

neurons, as in the original balanced state architecture [2]. The term Ii(t) represents an external

input stimulus to neuron i; here modelled by the sum of a DC current η and independent

Gaussian white-noise processes ξi(t) scaled by ε. We note that η can take negative values which

places neurons in an excitable regime [38]. Both η and ε are global parameters that are fixed

across all neurons. Throughout most of the paper, they are set to ε = 0.5, η = −0.5 so that the

network is fluctuation-driven, producing sustained irregular activity characterized by a broad

firing rate distribution with a mean roughly between 10 and 20 Hz. Together, the input signals

to each neuron form the global input to the network I(t) = (I1(t), . . ., IN(t)) as depicted in

Fig 1 (A). We require that the realizations Ii(t) be statistically independent from each other

across neurons i, so that the network’s input I(t) = {Ii(t)}i is free of redundancies and can be

thought of as a N-dimensional signal, but we briefly address the implication of such correla-

tions in the Discussion section.

We stress that I(t) models inputs to the system, and not the various molecular and cellular

sources of noise associated with neuronal dynamics. We give more details about the statistics

of I(t) below, but note that in this regime and all other considered in this paper, we have veri-

fied that our network is chaotic by showing the presence of positive Lyapunov exponents, a

standard measure for sensitivity to initial conditions (see [14, 15] for more details).

Numerical simulation details. A standard Euler-Maruyama scheme [40] was used to

numerically integrate Eq (2), treated as a stochastic differential equation (SDE). Because of the

state-dependent factor multiplying white noise, multiple interpretations of the SDE are possi-

ble (see, e.g., [41] for an explanation). Following [42], we interpret our equation as a Stratono-

vich SDE. Accordingly, a correction term ε2

2
ZðyiÞZ0ðyiÞDt is added to the right hand side of the

discretized equation [40]. A time-step of Δt = 0.05 ms was used for all simulations. We verified

that smaller temporal resolution did not change our results. For estimates involving sampling

of many trajectories within response-ensembles, initial states of the network were uniformly

sampled over state space TN . Numerical estimates of Lyapunov exponents were obtained by

evolving the associated variational equation of Eq (2); further details can be found in [14, 15].

Large batched simulations were carried out on the NSF XSEDE Science Gateway supercomput-

ing platform.

Numerical simulations were implemented in the Python and Cython languages. Computa-

tions of statistical quantities such as pairwise trajectory distances and spike-time reliability, as

well as Tempotron classifier training and testing, were implemented in MATLAB.

Stimulus Encoding in Chaotic Spiking Networks
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Discrimination task and response ensembles

The stimulus I(t) = (I1(t), . . ., IN(t)) mimics a collection of highly featured temporal inputs to

each neuron in the network. In this framework, the response of the network to a specific input

can be modelled by “freezing,” or choosing specific realizations of the stochastic processes

ξi(t), the fluctuating component of Ii(t); this is sometimes known as a “frozen noise” experi-

ment [26, 27]. We emphasize that even though input components Ii(t)’s are modelled as ran-

dom processes, they represent signals impinging on the network, rather than various

biological sources of noise. In fact, we do not model any biological noise; our model should be

viewed as a deterministic, non-autonomous dynamical system. All trial-to-trial variability is

generated by chaos which amplifies discrepancies in initial states. These discrepancies are

abstracted as randomly sampled initial states and may, in reality, be produced by noise. We

revisit this distinction in greater detail in the Discussion.

Response ensembles. Suppose that an input I(t) is presented to the network starting at

time t = 0, and that the initial state of the network at that time is y
0
¼ ðy

0

1
; . . . ; y

0

NÞ (i.e., the

“voltages” of all neurons at t = 0). The subsequent evoked trajectory θ(t) is uniquely defined

and depends on both I(t) and θ0. However, for a chaotic system like our network, even small

changes in θ0, or even worse, a completely unknown initial state, can lead to big differences in

the subsequent trajectories θ(t). If one of two inputs IA(t) and IB(t) is presented to the network

starting at t = 0 and that the initial state is unknown, could a decoder reading out the evoked

network activity be trained to tell which input was shown? How similar can the two inputs be

before the decoder fails? To answer these questions, an essential concept is that of “response

ensembles.”

To begin, consider an ensemble of many network states θ0. To this ensemble corresponds

another one, consisting of network responses, i.e., a version of the network’s activity parame-

trized by t> 0 for each choice of initial state θ0, in response to the same I(t). Each “response”

in this ensemble represents a different “trial,” much like in an experiment where exactly the

same stimulus is repeatedly presented to a system. Trial-to-trial variability thus depends on

how distributed these ensembles of responses are about the network’s state space.

Formally, we define a response ensemble associated with an input I(t) as ΘI: the collection of

network trajectories through state space, in response to I(t), for which initial states were sam-

pled independently from some initial probability distribution. In this paper, we choose this

distribution to be the uniform one, meaning that each point θ0 in state space has equal proba-

bility of being picked. We call individual trajectories within a response ensemble trials. A

response ensemble is thus indexed by 3 components: neuron number i (“space”), time t, and

trial number l as depicted in Fig 2 (A). For example, ΘI(i, t, l) represents the state of neuron i at

time t on trial l, the average across trials hΘ(i, t)il represents the peristimulus time-histogram

(PSTH) [43] of neuron i, etc. Throughout, we also study the spike patterns associated with the

trajectories forming ΘI and often refer to the collections of these spike times as response

ensembles as well (see Fig 2 (A)).

We note that the response ensembles defined here differ fundamentally from the statistical

ensembles that underlie the mean-field (MF) theories often used in mathematical neuroscience

(see e.g. [2, 16]). While response ensembles are defined for a given, specific stimulus history

I(t) (so that for each stimulus realization there is, in principle, a different ensemble), the statis-

tical ensembles used in those other theories typically consist of trajectories generated by both

random initial conditions and independent, random stimuli. As such, those ensembles cannot

be used to model the type of discrimination task we are interested in here. In more probabilis-

tic language, equating “ensembles” with stochastic processes, our response ensembles are pre-

cisely the conditional probability distributions obtained by conditioning a MF-type statistical

Stimulus Encoding in Chaotic Spiking Networks
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ensemble by a particular stimulus history I(t); see, e.g., [44] for a more detailed discussion of

response ensembles.

The choice of statistical ensemble can have significant consequences for statistical measures

like correlations (between cells and in time): for the same system, correlations computed with

MF-type statistical ensembles can differ from those computed with respect to the response

ensemble evoked by a specific I(t). We will return to this distinction in the context of our net-

works in the Results section.

Discrimination task. With the concept of response ensembles, we can now give more

precise formulations of various questions related to discrimination. First, we ask how much

overlap exists between the response ensembles ΘIA and ΘIB. This is controlled by two factors:

how much state space is occupied by each ensemble at a given time, and how close they are to

each other. Second we train a decoder on the spike patterns associated with the network

responses. We describe this decoder in the next section. Importantly, when we compare the

network’s response to two stimuli, we also require ε and η to be the same for IA(t) and IB(t).
This way, the averaged statistics of network responses are identical for any stimulus pair, and

discrimination must rely on the differences in random fluctuations between the two specific

realizations IA(t) and IB(t).
To study our network’s sensitivity to changes in its inputs, we introduce two notions of the

similarity, or “distance”, between the stimuli IA(t) and IB(t). Fig 2 (B) illustrates the effect of

both paradigms. First, we define ρsame 2 [0, 1] as the proportion of the network’s neurons that

receive identical inputs (IAi ðtÞ ¼ IBi ðtÞ) under both A and B paradigms; the remaining fraction

1 − ρsame receive non-identical, independent inputs (IAi ðtÞ 6¼ IBi ðtÞ). Second, we vary the corre-

lation ρcorr 2 [0, 1] between input pairs driving each neuron i, simultaneously for all i. Thus,

IAi ðtÞ and IBi ðtÞ are jointly gaussian processes, each a realization of white noise, with correlation

coefficient equal to ρcorr. Note that the inputs to distinct cells remain independent regardless of

stimulus choice (hIA;Bi ðtÞI
A;B
j ðtÞit ¼ 0 for i 6¼ j) and that ρcorr and ρsame only control the similar-

ity of inputs to the same neuron across different stimuli. In both cases, ρcorr = ρsame = 0 enforces

that all pairs ðIAi ðtÞ; I
B
i ðtÞÞ are independent, whereas if ρcorr = ρsame = 1, they are identical.

The Tempotron and discrimination

Our goal is to discriminate between two statistically identical random stimuli based on the net-

work responses they evoke. In the second part of the paper, we do this by training a classifier

on the collections of spike times t ¼ tis evoked by distinct network inputs IA(t) and IB(t) on

Fig 2. (A) Two ensembles of spike patterns are generated by distinct, N-dimensional inputs IA and IB repeatedly presented to the

network on multiple trials, where initial states are chosen at random. This results in two network-wide response ensemblesΘIA and

ΘIB containing spike patterns across neurons, time and trials. (B) Illustration of the two procedures used to control input similarity.

Left: ρsame controls the number of neurons Nsame = ρsame N that receive identical inputs Ii(t) under both stimuli IA(t) and IB(t). Right:

correlation coefficient ρcorr controls the correlation of all pairs of neural inputs IAi ðtÞ and IBi ðtÞ (note that Ii(t) and Ij(t) remain

uncorrelated if i 6¼ j).

doi:10.1371/journal.pcbi.1005258.g002

Stimulus Encoding in Chaotic Spiking Networks
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finite time intervals [0, T]. There are many machine-learning techniques that can perform this

task, but our main criteria for a preferred approach are: (i) it should be a useful metric to com-

pare the encoding performance of our network under different conditions and (ii) it should

isolate important spike features for coding (interpretability). We therefore opt for a simple, lin-

ear classification approach. The results serve as a lower bound on the classification capacity of

the network.

There are several approaches one can use to find a hyperplane that separates sets of points

in a high-dimensional space, such as the Support Vector Machine [45] (see [46] in the context

of spiking data) or other regression techniques. Here, we use a classification method called the

Tempotron [35], a gradient-descent approach acting on linear weights of temporal kernels

designed to mimic the post-synaptic potentials induced by individual spikes. Importantly, the

resulting classification hyperplane corresponds to the threshold of a spiking Linear Integrate-

and-Fire (IF) neuron model.

The Tempotron receives vector-valued filtered spike trains s(t) = {si(t)}i = 1. . .N where

siðtÞ ¼
P

tis
Kðt � tisÞ and KðtÞ ¼ V0½e� t=t1 � e� t=t2 � where V0 is a normalizing constant. The

double-exponential filtering is meant to mimic the rise and fall of synaptic potentials in an IF

neuron whose voltage obeys the equation

VðtÞ ¼
XN

i¼1

wi

X

tis

Kðt � tisÞ þ Vrest ð3Þ

with voltage threshold set at Vthr = 1. Thus, the Tempotron computes the sum of the filtered

network spike trains, according to the readout weights wi and the timescale set by its kernel.

We tune the filter’s decay and rise time-constants to τ1 = 20 and τ2 = 3.75 ms as in [35], to

impose an intrinsic sensitivity to spike timing at that resolution.

The Tempotron’s goal is to fire at least one spike (i.e. cross its threshold Vthr) when pre-

sented with a network spike output associated to IA(t) while refraining from firing when the

network responds to IB(t). Following [35], we train the Tempotron to classify spike outputs on

finite-length time intervals [t0, t0 + T] using a fixed number of trials from Y
t
IA and Y

t
IB respec-

tively, and test the trained classifier on new trials. Thus, beyond discriminating between two

“training” ensembles of spikes, we test the ability of the Tempotron to generalize and discrimi-

nate new patterns, related to training sets in that they are sampled from the same chaotic

response ensemble. The robustness of the Tempotron to Gaussian, random spike-time jitters

is well established [35]; here we investigate the effect of chaotic variability of the type generated

by our networks.

Fig 3 illustrates the process. Out of 100 trials from each ensemble, we select 50 from ΘIA

and 50 from ΘIB to train the readout weights wi in Eq (3). Fig 3 (A) illustrates the filtered

spike output of a randomly selected neuron on the training trials from IA and IB. The remain-

ing trials will be used for testing. We employ the algorithm described in [35] to find a set of

weights wi imposing that the voltage V of the Tempotron will exceed the threshold Vthr = 1 at

least once in the pattern time-window when presented with spikes from a trial from Y
t
IA

while remaining sub-threshold when receiving spikes from ΘIB. We report results for a time

window of T = 1.25 seconds. We find that training often fails for T< 50 ms, but that the

results we present below remain qualitatively unchanged for bigger T. We use a margin of

Vthr ± 0.1 in the training to ensure a good separation (c.f. [35]). Fig 3 (B) shows the output of

the Tempotron during training and testing while panel (C) compares the training and testing

outcomes by showing the maximal V within the T-window. In this example, even though

inputs are quite similar (ρsame = 0.9), only a few test trials are misclassified.

Stimulus Encoding in Chaotic Spiking Networks
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To quantify the discriminability of spike patterns, we define the performance P as the frac-

tion of successful test classifications. Note that P has a maximal value of 1 and a minimal value

of 0.5 which corresponds to chance. We average P by retraining the Tempotron 20 times using

different training and testing trials from our ensembles. As an example, the performance P of

the classification in Fig 3 (C) is about 0.9.

Asynchronous activity and mean-field approximations

Our network has basic statistical features expected from prior work on sparse balanced net-

works: the activity of neurons is mostly decorrelated in time and between cells, and is statisti-

cally stationary (see e.g. [2, 16], but also our note on “correlations” below). These features are

useful in deriving simplified expressions for neuronal population temporal statistics. In mean-
field (MF) theory, one replaces a complex network of interacting units with a reduced model

of a single unit driven by a relatively simple independent stochastic process, meant to model

the outputs of all other units within the network impinging on the given unit. We now follow

this approach to (1) derive an analytic expression for E and I population firing rates and fluctu-

ation amplitudes, and (2) demonstrate that our network operates in an asynchronous balanced

regime that is consistent with prior work. The results of this section will help us design surro-

gate population dynamics—used throughout the paper—to compare chaotic dynamics to

basic assumptions of independent noise.

A note about our use of the term “correlation:” as mentioned earlier, even for the same sys-

tem, correlations depend on the choice of statistical ensemble. Because the term has many

potentially different meanings, we have strived to be as explicit as we reasonably can in what

follows. In this section, we are concerned with correlations averaged across independent stim-

ulus realizations, as is the custom in MF theory. The nature of correlations across trials in our

network is revisited in Results, and is treated in detail in [14, 15].

We follow a similar approach to [47, 48] where QIF neurons driven by noise and in a MF

setting are studied for exponentially decaying synapses. In contrast to networks of leaky inte-

grate-and-fire (LIF) neurons, QIF dynamics introduce some complications because their firing

rate response to fluctuating drives is not straightforward to compute (c.f. [48–50]). Here we

follow the general approach of [16] using a number of simplifications to arrive at an estimate

for the mean firing rate or neurons in our network.

Fig 3. (A) Schematic of a Tempotron with readout weights wi. For one neuron from the chaotic network, we show spike times

(dots) of a randomly chosen neuron across several trials for inputs IA or IB, together with the filtered traces for these spike

times. (B) Tempotron voltage traces V(t) for a time window of T = 1.25 seconds. Top: traces used for training. Bottom: traces

used for testing. Grey shaded area surrounding threshold Vthr shows training margin. Asterisk shows time of maximal output.

(C) Classification for all training and testing trials. Markers show the Tempotron’s maximal voltage V in time window T. A

correct classification corresponds to blue circles (IA) above threshold and red squares (IB) below. For all panels, the stimuli IA

or IB have ρsame = 0.9.

doi:10.1371/journal.pcbi.1005258.g003
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We begin by re-writing Eq (2) as

dy
O

i

dt
¼ FðyO

i Þ þ ZðyO

i Þ½I
O

netðtÞ þ IiðtÞ� ð4Þ

with O denoting neuron type (E or I) and

IO
netðtÞ ¼

XN

j¼1

aijgðyjðtÞÞ

IiðtÞ ¼ Zþ εxiðtÞ:

Since connectivity is sparse and K, N are large, we assume that (i) Pre-synaptic spike trains to a

neuron are statistically independent and (ii) Each spike train is Poisson distributed with con-

stant rate νE or νI. Assumption (i) is justified by the flat spike-time cross-correlograms

observed across pairs of neurons in the network, shown in the top panel of Fig 4 (A). This

holds for networks as small as N = 500 and in-degree as small as K = 10. Assumption (ii) on

the other hand is not quite met, as shown by the dip in the typical spike-time auto-correlogram

of a neuron in the bottom panel of the same figure. This dip occurs because QIF dynamics pro-

duce a relative refractory period, leading to typical Fano Factors lower than one (between 0.77

and 1 in all of our simulations). This is refractory period can be regarded as a realistic feature;

in any case, the use of assumption (ii) still leads to correct estimates for our dynamical regime,

as was also observed in [47].

Since dy

dt jy¼1 ¼ 2, we make the approximation
R
dtgðyjðtÞÞ ¼ 1

2

R
dyjgðyjÞ ’

1

2

R
dyjdðyj � 1Þ.

Thus, the mean and variance of the compounded network input IO
netðtÞ over a small time inter-

val Δt are approximated by K(aOE νE − aOI νI)Δt/2 and Kða2
OEnE þ a2

OInIÞDt=4 respectively. It

follows that the dynamics of a typical neuron of type O can be represented by the following sto-

chastic differential equation (SDE) [16]

dy
O

i

dt
¼ FðyO

i Þ þ ZðyO

i Þ½mO þ sOzðtÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�IO
netðtÞ

þ Zþ εxðtÞ
|fflfflfflfflffl{zfflfflfflfflffl}

IiðtÞ

� ð5Þ

Fig 4. (A) Top: Typical normalized spike-time cross-correlogram Cij(u): expected proportion of pairs of spikes

separated by u ms, for random pairs of neurons within the network. In blue: for 30 individual pairs; in black: average.

Bottom: Typical normalized spike-time auto-correlogram Cii(u) for a neuron in the network. The QIF dynamics impose

a relative refractory period close to spiking which gives a departure from purely Poisson firing statistics (notice the dip

toward time 0). Typical Fano Factors are between 0.77 and 1. For A and B, N = 500, K = 20; however, the shape of

these functions is not affected by N or K. Statistics sampled over network simulations of 300 seconds. (B) Mean firing

rate of E and I neurons within the network as a function of K. Dotted line shows MF estimate (see Eq 8). Various

markers show estimates sampled from all neurons in simulated networks of different sizes N. Error bars show one

standard deviation. Inset shows zoom for low-K values.

doi:10.1371/journal.pcbi.1005258.g004
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with

mE ¼
a

2

ffiffiffiffi
K
p
ðnE � nIÞ

mI ¼
a

2

ffiffiffiffi
K
p
ðnE � rnIÞ

s2
E ¼

a2

4
ðnE þ nIÞ

s2
I ¼

a2

4
ðnE þ r2nIÞ

ð6Þ

where z(t) and ξ(t) are independent Gaussian white noise processes with zero mean and unit

variance. We can combine both input terms IO
netðtÞ and Ii(t) in Eq (5) to get an SDE with a sin-

gle stochastic term:

dy
O

i

dt
¼ FðyO

i Þ þ ZðyO

i Þ½ðmO þ ZÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

O þ ε2
p

zðtÞ�: ð7Þ

Here, the combination of network interactions and of the external input signal into one

noise term is made possible by the fact that mean E and I firing rates do not depend on any

specific realization of input Ii(t), as long as its mean and fluctuation strength are given by the

fixed parameters η and ε. Thus, just like network interactions, we approximate the effect of

any external input by stochastic noise. We show later that for a fixed input stimulus Ii(t) across

trials, as for “frozen noise” experiments (c.f. [51, 52]), both stochastic approximations about

network and external inputs fail, because important statistical dependencies are introduced

across trials.

Using Equation (3.22) from [48] and the standard change of coordinates from θ to v and

time rescaling described above, we obtain:

�nO ¼
1

tm

Z 1

� 1

dx
ffiffiffi
p
p exp � bO �

ts

tm
pg2

O

� �

x2 �
p2g4

O
x6

12

� �� �� 1

ð8Þ

where βO = μO + η, g2
O
¼ s2

O
þ ε2, τm is a membrane time-constant and τs is a synaptic time

constant for exponential synapses. We choose τm = 10 ms and take τs! 0 as we already

approximated our synaptic interactions with δ-pulse coupling. This gives time units of ms to

the self-consistency Eq (8). We solve for νE and νI numerically using a function-minimization

algorithm (“fminsearch” in MATLAB).

Fig 4 (B) shows that the mean field approximation for the firing rates of neurons in the net-

work matches simulations with great precision for a wide range of N and K, and that the aver-

age firing rates are independent of N and change monotonically with K, as expected from

previous work [16, 47]. Later, we will make use of the quantities μE,I and s2
E;I derived in Eq (6)

to outline the difference between network and MF responses for fixed stimuli.

Results

We now discuss stimulus discrimination based on the output of our network. We begin by

investigating the role of network interactions in shaping the statistics of trial-to-trial popula-

tion responses, comparing these to a simplified model of network dynamics that follows a

mean-field approach. We then offer a state-space view of the mechanisms responsible for the

observed statistics from the perspective of random dynamical systems. From there, we use

spike pattern classification to investigate stimulus encoding in the presence of chaos and for-

mulate our main findings.
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Network interactions are essential for response reliability

We begin by illustrating the statistical structure that emerges across trials when our networks

are driven by fluctuating stimuli. Previous work has shown that basic statistical measures such

as “noise correlations” may not adequately capture across-trial statistics in driven systems [15].

Here, we follow [14, 15] and take a different approach, comparing the spike patterns produced

by our network to those produced by a surrogate spiking model, based on the reduced MF

approximation from the Methods. Our approach is very similar to that in Fig. 4c of [14],

though our comparison here is more extensive and employs quantities derived from MF. Our

overall goal is to separate the entraining effect of a fixed stimulus I(t) from the variability

caused by network interactions, or a MF approximation of them.

To do so, it is convenient to recall the response ensembles introduced in Methods and

depicted in Fig 5 (A): ΘI(i, t, l). In the MF Eq (8), the mean firing rates νE and νI represent aver-

ages over all indices of response ensembles, hΘIii,t,l, and are used as parameters of a Poisson

process. Let us define surrogate response ensembles: ~YIði; t; lÞ, which are generated numeri-

cally in the same way we do for our network (see Methods), except that we replace the interac-

tions from network coupling with Poisson spike trains with homogeneous firing rates νE and

νI given by Eq (8). Note that the same input I(t) is presented to the N neurons in this surrogate

“disconnected” network as is presented to the original chaotic network. We verified that the

firing rates’ mean and variance are conserved, evidence that hYIii;t;l ¼ h
~YIii;t;l, as expected.

For our network, it is clear from Fig 5 (A) that some spikes are repeated across all trials (reli-
able spikes) and others are not (unreliable spikes). We return to the mechanisms leading to this

Fig 5. (A) Spike patterns from a response ensemble,ΘI, containing network responses to input I(t) on many trials.

(B) Single neuron spike response examples across 50 trials. Left: from a randomly chosen neuron in the network.

Right: same neuron as right but replacing network interactions by Poisson spike surrogates following MF

assumptions (see text for details). Bottom row shows spike raster plots and top row shows corresponding Gaussian-

filtered PSTH (σ = 10 ms). Red arrows indicate spike events and numbers indicate spike event reliability. See text for

details about calculation of reliability. (C) Scatter plot showing the mean reliability of each neuron in a network

(N = 500, K = 20) against its counterpart in the Poisson surrogate inputs paradigm. Neuron mean reliability is the

average reliability of all spike events produced by the neuron. (D) Left: Histogram of spike event reliability sampled

over all spike events produced by networks with different values of K (N = 2000). Right: Same as left for Poisson

surrogate inputs paradigm. For (C) and (D), quantities sampled from simulations lasting 100 seconds over 100 trials.

doi:10.1371/journal.pcbi.1005258.g005
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intermittent variability in the next section. For now, we ask: how much of this spike time reli-

ability will be conserved in our surrogate response ensemble? We quantify the reliability of a

spike by estimating the probability of it being repeated on other trials. This is done by convolv-

ing the cross-trial spike trains of a neuron with a gaussian filter (standard deviation 10 ms) and

adding the resulting waveforms from 100 trials to obtain a filtered peri-stimulus time histogram

(PSTH) as illustrated in Fig 5 (B). We call each peak in this histogram a spike event and a spike

is assigned to an event if it falls within a tolerance time-window defined by the width of the

peak at half height [14, 53]. The event’s reliability is then estimated by the number of member

spikes divided by the number of trials considered. If a spike event has a reliability of 1, it means

that one can expect a spike from that neuron at that moment on every trial while a lower reli-

ability indicates more variability. Fig 5 (B) shows examples of spike events with their computed

reliability, for a randomly chosen neuron in the network and in the Poisson surrogate system.

To quantify the reliability of individual neurons over the course of 100 seconds of activity,

we compute their mean reliability, taken to be the average reliability of all spiking events they

produce. Fig 5 (C) compares the mean reliability of neurons during network responses and in

the presence of surrogate inputs. It is clear that most neurons are significantly more reliable

when network interactions are present, as opposed to independent stochastic inputs. To access

the overall reliability of population-wide response ensembles, we estimate the distribution of

spiking event reliability over all neurons. Fig 5 (D) shows histograms obtained by sampling all

spike events in the network, together with surrogate ensembles. Here we take N = 2000 and

multiple values of K, simulated for 10 seconds over 100 trials. A number of features can be

observed from these plots: (i) Despite chaotic dynamics, a majority of spike events in driven

networks are reliable (as in [14]). (ii) There are substantially more reliable spikes in networks

than in surrogate populations (cf. [14, 15]). (iii) Spike reliability does not depend on the con-

nectivity in-degree K.

Important conclusions can be drawn from these observations. First, as shown in [14, 15],

MF-like approximations of network interactions are insufficient to capture the statistical prop-

erties of trial-to-trial variability, and actually over-estimate it. Cross-trial statistics in chaotic

networks show population-wide dependencies despite independent temporal statistics, a fea-

ture that is lost by averaging network interactions.

Second, it shows that reliable spikes observed in chaotic networks are not solely due to

strong driving inputs. Such reliability could indeed be generated if inputs Ii(t) had fluctuations

much stronger than the ones from the network. This would mean that external inputs drown

network interactions, effectively driving neurons into an “uncoupled” regime for which reli-

able responses are expected [51, 52]. For the parameters chosen here (η = −0.5, ε = 0.5) how-

ever, the input and network fluctuations have comparable strengths with ε/σE,I’ 1.1 (see

Methods). Additionally, the greater proportion of reliable spikes from the network compared

to the surrogate population indicates that some reliable spikes in a given neuron are generated

when the network inputs to that neuron are repeated across trials. We verified that spike reli-

ability is unchanged by network size N.

Finally, the fact that spike reliability is robust to moderate changes in connectivity in-degree

K (Fig 5 (D)) is consistent with the scaling of fluctuation strengths σE,I. Indeed, σE,I does not

explicitly depend on K and is independent of N (see Eq (6) in Methods). The ratio ε/σE,I only

changes with overall firing rates νE,I, which vary slowly and monotonically with K (see

Fig 4 (B)). This suggests that N should have little effect on the discrimination properties

described in the rest of this paper, and that K’s only influence manifests through its modula-

tion of νE,I. Thus, we concentrate on networks of fixed size N = 500 and in degree K = 20. We

chose these parameters both for ease of simulation and to demonstrate that even small net-

works can have rich coding properties while remaining in balanced regimes.
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We summarize these findings in the following heuristic description. The response variabil-

ity of our recurrent network is characterized by intermittent reliability, where some spikes are

always reproduced across trials and others are not. Which spikes are reliable depends on the

input and its history in non-trivial ways. In some cases, a spike is reliably elicited when the sig-

nal Ii(t) has a sufficiently strong upswing, thus directly encoding a feature of a local input.

However this is not the only way reliable spikes are produced; others occur when a neuron

receives network input from other cells with coincident reliable spikes. Network interactions

are themselves partially stimulus locked, but still show some cross-trial variability because of

chaos. This has the effect of increasing the “fraction” of all inputs to a neuron that is frozen

from trial to trial, compared to the naive mean field assumption, thus increasing reliability. It

is this interplay between network and external inputs that create complex response statistics, a

signature of which is the intermittent presence of reliable spikes.

Intriguingly, similar types of “intermittent” spiking variability have been reported in in vivo
experiments (cf. [33, 34]). As we see below, this is best described by attributes of stimulus-

dependent chaotic attractors, with low dimensionality, and occupying specific regions of state

space. These network interactions are not easily captured by the kind of statistical ensembles

usually used to derive MF equations, in which one considers system trajectories with random

initial conditions and independent stimuli; the assumptions that are valid for such ensembles

no longer hold for our response ensembles, which are predicated on a specific stimulus.

Thus, we conclude that trial-to-trial variability in chaotic networks is more complex, and less
severe than that of simplified stochastic models, leading to a great number of reliable spikes
repeated across trials. While it is conceivable that a stochastic model of network interactions

can be derived to capture this phenomenon, it is not clear how to implement the various statis-

tical dependencies outlined above. We show below that a state space view based on a dynam-

ical systems approach is better suited to understand the mechanisms underlying this

phenomenon.

Chaotic attractors shape statistical dependencies across trials

To better understand the prevalence of reliable spikes in driven networks, and why this reli-

ability appears to be intermittent (see Fig 5 (A)), we turn to a geometric view of network

dynamics as captured by response ensembles. Below, we first review important concepts of

input-driven chaos that were originally presented in [14, 15, 54]. In turn, we relate features of

chaotic attractors to trial-to-trial variability and then to input-dependence, toward our goal of

studying discriminability.

Chaos: A state space view of variability. Recall that the variability of a network’s response

to I(t) is characterized by the breadth of differences between the trajectories forming its

response ensemble ΘI, i.e., the “size” of ΘI as measured by, e.g., its diameter. Although difficult

to describe by simple mathematical formulae, for specific systems, response ensembles are

well-defined mathematical objects with well-understood geometric properties that can be

numerically characterized. The theory of random dynamical systems (RDS) provides a frame-

work for studying these properties.

Snapshots of all trials in ΘI at any time t> 0 are ensembles of points, corresponding to a

probability distribution that describes all possible network states given that the system has

been subjected to the stimulus I(t) up to time t. Taken together for all t> 0, these “snapshot

distributions” [55] define input- and time-dependent probability distributions describing the

network’s evoked activity for all possible initial states at once and they dictate statistical attri-

butes of our network such as trial-to-trial variability. One of the key results of RDS theory is

that under very general conditions, the ensembles ΘI are concentrated on time-evolving
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geometric objects known as random attractors, so called because almost all initial conditions,

when subjected to the same forcing I(t), will converge to the attractor. Unlike “classical attrac-

tors” in un-driven systems, which have fixed positions in space (e.g. fixed points, periodic

orbits, strange attractors), the position of ΘI changes in time t and with input choice I(t). This

is because our networks are driven by time-dependent stimuli, and are governed by non-

autonomous systems of differential equations (see Methods).

Geometrically, these random attractors can be points, curves, or higher-dimensional sur-

faces, and can wind around state space in complicated ways. The exact position and shape of

an attractor depends on both the system parameters and the specific realization of the stimu-

lus. Incidentally, this is why attractors are poorly modeled by models of stochastic noise that

assume independence across dimensions, as demonstrated in the previous section. However,

RDS theory also states that certain important properties of the attractor—and thus the

response ensembles ΘI—are independent of specific choices of input I(t), are invariant in time,

and depend only on system parameters. An important one is the sensitivity of network

responses to small perturbations, as measured by the Lyapunov exponents of the system. For an

N-dimensional system, these exponents are real numbers λ1� � � � � λN that describe the rate

of separation of nearby trajectories in different state space directions. For a system like our net-

work, the Lyapunov exponents do not depend on the choice of input realization I(t) so long as

it is a realization of white noise with same parameters ε and η. A criterion for chaos is the pres-

ence of positive Lyapunov exponents. Moreover, the number of positive Lyapunov exponents

roughly indicates the number of unstable directions in state space, and their magnitude indi-

cates how strong the amplification of small perturbations is in those directions. In a chaotic

system, almost any nearby trajectories will diverge from each other exponentially fast, but they

do so only along unstable directions of attractors.

Other geometric properties of random attractors can be related to their Lyapunov expo-

nents as well. For example, the attractor dimension is a quantity describing how much of state

space is occupied by the attractor—the source of trial-to-trial variability for our network—and

is (roughly) given by the number of positive Lyapunov exponents. To see that this should be

the case, imagine a cloud of initial conditions evolving according to the same stimulus. The

state-space expansion associated with positive exponents tends to “stretch” this cloud, leading

to the formation of smooth Λ+-dimensional surfaces, where Λ+ is the number of positive expo-

nents (see, e.g., [44] for a general, non-technical introduction and [56, 57] for more details). If

all exponents are negative, for example, then the attractor is just a (time-dependent) point,

whereas the presence of a single positive exponent suggests that the attractor is curve-like, etc.

In previous work, we showed that in a wide variety of dynamical regimes, the number of

positive Lyapunov exponents in driven balanced networks is less than 20% of the network’s

dimension N, and often remains below 10% [14, 15]. In most of the paper below, we choose

network and input parameters, described in Methods, so that about 8% of Lyapunov exponents

are positive. Here, the rate of trajectory separation is strong with λ1’ 3.5, and the network is

by all accounts in a chaotic regime. At the same time, there are plenty of directions in which

the attractor is “thin”, leading to trial-to-trial variability that is far from homogeneously ran-

dom at the population level. We explore different parameter regimes, leading to distinct

attractor dimensions, toward the end of this article.

Geometry of response ensembles and state-space separability. Our goal is to describe

the geometry of chaotic attractors in state space sufficiently well so to explain the presence of

reliable spike events described in the last section. Moreover, we use the same approach to ask

about differences that arise between two attractors, generated by distinct inputs IA(t) and IB(t).
From the discussion above, we know that for two inputs IA(t) and IB(t) with identical statis-

tics, the dimension of their associated response ensembles, and thus their level of trial-to-trial
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variability, will be the same. Revisiting our discrimination task, network responses will be dis-

criminable if and only if the corresponding ensembles ΘIA and ΘIB do not overlap most of the

time. To predict when this is the case, knowing only the dimension of ΘIA and ΘIB is insuffi-

cient; we need to understand how the position of ΘI in state space depends on the choice of

I(t). We will present evidence that for the balanced spiking networks studied here, there exist

broad parameter regimes where the relation: “diameter of a response ensemble� distance
between different ensembles” generally holds.

Consider the following pairwise distance quantities, the statistics of which we sample using

numerically simulated network trajectories (see Methods for details):

XðtÞ ¼ k yðt; y0; IAÞ � yðt; ~y0; IAÞ k

YðtÞ ¼ k yðt; y0; IAÞ � yðt; ~y0; IBÞ k
ð9Þ

where θ(t, θ0, I) denotes the network trajectory in state space, given an initial state θ0 at t = 0

and subject to input stimulus I(t). Initial states θ0 and ~y0 are independently, randomly chosen

and kθ1 − θ2k denotes the (shortest) distance between two states θ1 and θ2. Fig 6 (A) illustrates

these measurements. Both X(t) and Y(t) denote the distance between a pair of trajectories at

time t: “within-ensemble” for X(t) and “between-ensemble” for Y(t). Formally, they are ran-

dom variables because they depend on a pair of random initial conditions.

The quantity X(t) represents the “typical size” of an ensemble at time t; we view it like the

diameter in that it measures the distance between two typical points on the corresponding

attractor. The quantity Y(t) is the typical distance between two ensembles elicited by stimuli

IA(t) and IB(t). In the context of the present model, we say that the two stimuli are separable (in

the state space sense) if the distributions of X(t) and Y(t) do not have a significant overlap (see

Fig 6). The dimension of the underlying attractor is reflected in X(t) in the following way: if

the dimension were 0 (so the attractor is a single point), then X(t)� 0, and if the dimension is

positive, then X(t) would also be positive (but can be large or small). In general, X(t) will fluc-

tuate in a complicated fashion as the time-dependent attractor evolves and changes shape.

Based on previous work [14, 15], we expect these fluctuations to be relatively small, so that X(t)
is nearly constant in time. Furthermore, while the fluctuations in X(t) depend on the specific

choice of stimulus, standard results from probability theory tell us that its mean depends only

on the system parameters and the statistical distribution of the stimuli. Thus, the mean value

of X(t) remains unchanged if we replace IA(t) by IB(t) in Eq (9) (since we require IA(t) and IB(t)
to have identical parameters). Similar reasoning applies to Y(t), which is akin to measuring the

rate of separation between two independent realizations of the same stochastic process. Once

again, we expect Y(t) to fluctuate around some mean, with the exact fluctuations dependent on

the input realizations but with mean and variance depending only on system parameters and

stimulus statistics.

From simulations, we produce pairs of trajectories subject to both IA(t) and IB(t), all with

random initial states. We compute X(t) and Y(t) and plot the result as a function of time in Fig

6 (B) where ρcorr = 0.5 (IA and IB are 50% correlated). As expected, after a short transient X(t)
settles quickly to a positive constant, which is unchanged if the trajectory pair is selected from

Y
t
IA or from Y

t
IB . Likewise, Y(t) settles quickly to a steady-state in which it fluctuates around a

well-defined mean.

For a more complete view of this phenomenon, we consider the distributions of pairwise

distances, sampled over 100 trajectory pairs, starting from uniformly random states. Fig 6 (C)

shows the time evolution of these distributions for the first second of elapsed time. As for the

single-pair measurements (Fig 6 (B)), both distributions settle into near-constant, steady val-

ues after a very fast transient (*10-50 ms). This remains true for any similarity parameter
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value ρsame, ρcorr. We note that this short transient validates our general definition of “trial”

which includes trajectories with distinct initial states as well as any trajectories that received

some sort of perturbation—such as a synaptic failure or the event of an extra spike—in the

recent past. To capture the stationary nature of pairwise distances, we compute time-averaged

distributions hXit and hYit, which we calculate using 1000 time points between t = 100 and

t = 12,000 ms. While hXit remains the same regardless of the similarity between IA(t) and IB(t),
hYit can be used to measure the effect of stimulus similarity on the location of response ensem-

bles in state space. Fig 6 (D) shows the means hXit and hYit as well as one averaged standard

deviation, for a range of input similarity parameters ρcorr and ρsame between 0 and 1. Here, only

one similarity parameter is varied at a time, while the other is kept at zero. As expected, when

both inputs are identical (ρcorr = 1 or ρsame = 1), hYit collapses to hXit since ΘIA and ΘIB describe

the same ensemble.

However, we see that hXit and hYit become more than two standard deviations apart as

soon as the stimuli become less than 90% similar. This is true for both definitions of stimulus

similarity. The conclusion is that the chaotic, balanced networks at hand produce dynamical

responses that stay separated in state space even for stimuli that are very similar.

Finally, the geometric attributes described above can be related to the reliability of spike

times already discussed in the previous sections (see Fig 5). Previous work has shown that the

unstable directions in attractors—i.e., the directions in which chaotic dynamics will spread the

response ensemble produced by a single stimulus—generally align with neural coordinates.

Moreover, the identity of the corresponding “unreliable” neurons change in time [14]. This

leads to intermittent variability in single neurons: at any moment there is a small fraction of

neurons in the network that have variable dynamics across trials, while the rest behave in a

reliable fashion.

We can observe this phenomenon by restricting the definition of pairwise distance Eq (9)

to single-neuron coordinates: Xi(t), and Yi(t) for the (transformed) voltage variable θi. The

Fig 6. (A) Illustration of pairwise distances between trajectories within an ensemble (X) and across

ensembles (Y). Also illustrated are equivalent distances for a single neuron’s state variable θi (Xi, Yi). (B)

Pairwise distances between two trajectories for the entire network (on the N-dimensional torus TN, N = 500)

as a function of time. (C) Time evolution of pairwise distance distributions for entire network (N = 500),

sampled with 100 trials from each ensemble. After a very fast transient (* 10-50 ms), distributions settle into

stable values. For panels (B,C,E), ρcorr = 0.5. (D) Mean of stationary pairwise distances for a range of

similarity parameters ρcorr or ρsame (independently modulated). Shaded areas show one standard deviation.

Both mean and standard deviation were averaged over 1000 time points between t = 100 and t = 12,000 ms.

(E) Pairwise distances between two trajectories in a single neuron’s coordinate θi as a function of time.

doi:10.1371/journal.pcbi.1005258.g006
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value Xi(t) = 0 means that different initial network states nevertheless lead to the same state for

cell i at time t, i.e., the neuron i has the same voltage across all trials. A similar interpretation

applies to Yi(t). Fig 6 (E) shows these quantities for a randomly selected neuron i. In contrast

to pairwise distances in the full state space (Fig 6 (B)), Xi(t) regularly collapses to zero. This is a

reflection of the intermittent spike event reliability discussed earlier. Yi(t) also varies over time

although it remains greater on average. This suggests that at any moment in time, for a given

input I(t), some network coordinates may offer trial-to-trial reliable responses that can be used

to distinguish similar input stimuli. We investigate the use of evoked spike times for discrimi-

nability in the next section.

To summarize, pairwise distances between evoked trajectories inform us about geometric

properties of response ensembles, and how they organize in state space. In parameter regimes

where X� Y, which occur for stimuli that are less than 90% similar, we expect that a decoder

could classify novel trajectories, given information about the distributions hXit and hYit. Con-

versely, in parameter regimes where X� Y, it may be difficult for a downstream decoder to

discriminate response ensembles using simple criteria like linear separability. Moreover, the

separation between trajectories within an ensemble remains constant in time but is supported

by only a small fraction of neurons, the identity of which changes over time. This leads to

intermitting spike-time reliability with statistics that have population-wide dependencies.

Thus, the geometric attributes of chaotic attractors both enable separability of network
responses evoked by distinct stimuli, even when the stimuli have similarities, and explain inter-
mittent spike time reliability within a response ensemble. We show below how a decoder can

exploit these features to classify inputs.

Finding 1: Chaotic spike patterns are linearly discriminable

The state-space separability studied above assumes that one has access to the full state of the

network at all times; any biologically realistic decoder would only have access to a network’s

spiking activity. We next present evidence that the spikes generated by balanced, chaotic net-

works can also be used by a simple linear classifier, the Tempotron (see Methods), to discrimi-

nate between two stimuli with identical statistical properties.

We observed that the Tempotron classification performance P roughly follows the trends

found above for the pairwise distance between response ensembles (see Fig 6): there is perfect

classification (P = 1) until input similarity reaches about 90% (i.e. ρsame, ρcorr = 0.9). This

means there exists a linear combination of evoked spike patterns that reliably sum to cross a

threshold for only one of the two stimuli, regardless of network initial conditions. Thus, when

distinct stimuli are presented to chaotic networks, even ones with very similar features, it is

not only the network states they produce that are highly discriminable, but also the resulting

spike trains. We will return to the question of performance versus input similarity below, but

first turn to its mechanism.

We propose that reliable spiking of a few neurons at precise moments in time (i.e., reliable

spike patterns) drive successful classification of stimuli by the Tempotron. In this section we

demonstrate this by deconstructing the Tempotron’s readout and by observing the impact of

“jittering” underlying spikes.

We first turn to the readout weights wi, which are the result of a global optimizing algo-

rithm [35]. Fig 7 (A) shows the values of all wi’s for a Tempotron trained to distinguish two sti-

muli, IA(t) and IB(t), with perfect performance (P = 1). We find that the neurons with the

strongest weights spike very reliably when the network is presented with input IA(t), right

before the peak of the Tempotron’s output (asterisk, see Fig 7 (A) bottom and Fig 3 (B)). Con-

versely, the same neurons either do not spike or spike unreliably in response to IB(t) around
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the same moment in time. In Fig 7 (B), we quantify this finding by showing a scatter plot of

spiking event reliability for each neuron, plotted against its output weight wi. This shows that

any neuron with a high wi also shows high spiking reliability under input IA(t).
Next, we degrade the temporal precision of network responses by randomly “jittering”

spike times and study the impact on classification performance by the Tempotron. To “jitter”

a spike train, we shift each spike time on all trials by a random amount, uniformly and inde-

pendently drawn from an interval of (−r, r), where r is the jitter radius (see Fig 7 (C)). This

leaves the total number of spikes fired the same, but strongly disrupts their temporal precision,

as illustrated in Fig 7 (C). We use this jittering in two ways. First, we train and test the Tempo-

tron on jittered spikes, to probe the dependence of classification performance on the temporal

precision of spike times produced by chaotic networks. Second, we train the Tempotron on

the original spike data but test using jittered spike times for subsets of neurons, to probe the

learned role of these neurons in classifying stimuli.

Training and testing the Tempotron on jittered spike time data shows that classification

performance P progressively declines as the jitter radius increases. The rate at which perfor-

mance drops depends on the similarity between inputs IA(t) and IB(t), as illustrated in Fig 7

(D) for three values of ρsame (the fraction of neurons receiving identical direct inputs under

both signals). Evidently, the lower ρsame is, the more distinguishing features there will be in the

two response ensembles to be classified, the combination of which enables the Tempotron to

classify stimuli even with substantial spike time jitter. Overall, when spikes are jittered by 10’s

of ms, classification performance drops significantly; for similar stimuli, performance drops

Fig 7. (A) Top: Trained Tempotron weights wi. Bottom: example cross-trial spiking output for neurons associated with large

and small weights wi. Asterisk shows the time at which the maximal value of the Tempotron variable V(t) is obtained (see

also Fig 3 (B)). (B) Spike-time reliability for the closest spike to the maximum (asterisk), plotted for each cell against the

readout weight wi. Solid blue markers indicate responses to IA(t) and hollow red markers to IB(t). (C) Example raster plot for

a single neuron across 100 trials, with and without spike-time jittering. Two jitter strengths shown: ±25 and ±100 ms. (D) The

Tempotron’s performance P when all neurons are jittered, plotted against jitter strength, for three values of ρsame. The

classifier was trained and tested on jittered spike time data. (E) Tempotron’s performance P against the cumulative

inclusion of neurons where the spike times were strongly jittered (±50 milliseconds). Different lines indicate three orderings

of neurons the neurons that were jittered, based on their trained readout weight wi: (i) decreasing, (ii) increasing and (iii)

random. The classifier was trained on original data and tested on jittered data from a network with N = 500, K = 20. For all

panels except (D), ρcorr = ρsame = 0.

doi:10.1371/journal.pcbi.1005258.g007
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halfway to chance when the jitter radius is 25 ms. We conclude that the Tempotron uses quite

precisely timed spikes to distinguish the responses of chaotic networks to nearby stimuli.

To probe the question of what spiking features lead to the reliable classification learned by

the Tempotron, we set the jitter radius to 50 ms and jitter different subsets of neurons in the

testing data. In contrast to the procedure described above, where training and testing spike

times were jittered, only testing spike times are now jittered; the Tempotron is trained on the

original spikes produced by the network. We apply this jittering procedure to an increasing

number of neurons in the network, re-testing the classification performance P as neurons are

cumulatively added to this “jittered” pool. We do this for three different orderings in which

neurons are added to the jittered pool: (i) neurons with largest trained weights wi listed first,

(ii) neurons with smallest wi’s listed first and (iii) neurons randomly listed. The results are

shown in Fig 7 (E). First, note that perturbing the spike times of neurons with large wi’s quickly

reduces performance down to chance, whereas jittering the spike times of random neurons or

those with low readout weights has little to no effect on performance. The details of the obser-

vations above are likely to depend on the choice of time constants for the Tempotron’s filters,

but we expect the overall trends to persist for a range of these constants, based on the spike-

time reliability described earlier. From this we conclude that the Tempotron learns to classify

stimuli based on the reliable spikes of a few neurons, at precise moments in time.

Finally, we shuffled the spike ensembles across trials by building surrogate spike patterns in

which the spike output of each neuron is taken from a randomly chosen trial from the ensem-

ble as was originally done in [14, 15]. If the readout cells that serve as strong inputs to the Tem-

potron (i.e., the cells with relatively large wi) were unreliable, this would have the effect of

shifting their spike times and changing the spike counts within the test window. Numerical

results indicate that shuffling has no appreciable effect on classification performance. This fur-

ther suggests that repeatable spike patterns are responsible for good classification, rather than

statistics like spike counts on longer time scales.

Taken together, these tests show that despite chaos, the network response preserves a fair
degree of spike reliability across trials in key neural coordinates, and a simple decoding scheme is
capable of taking advantage of this reliability to accurately classify spike trains. Note that the

identity of these “key” neurons will change for different input stimuli and thus, at least in prin-

ciple, many readout schemes could be trained in parallel on the same network.

Finding 2: Recurrence enables information distribution within networks

and discrimination using few readouts

We have shown that a neural-like readout, the Tempotron, can use the reliable spikes embed-

ded in a chaotic network’s response in order to classify input stimuli. Up to now, this classifier

had access to spikes from every neuron. A natural question is whether this complete access is

necessary. In other words, how does classification performance depend on the number of

inputs and outputs to the network? For example, if only a few neurons in the network receive

discriminable inputs (IAi ðtÞ 6¼ IBi ðtÞ) and the decoder only reads out from a few (different) neu-

rons, do network interactions distribute enough stimulus information to enable a successful

classification?

In our model, the proportion of the input that is directly discriminable is controlled by the

parameter ρsame—the fraction of cells that receive identical inputs under IA(t) and IB(t). We

adopt an enumeration that lists these cells first for ease of notation: the first Nsame neurons

receive indistinguishable inputs while the remaining Ndiff receive independent ones for each

stimulus; with Nsame = ρsame N and Ndiff = N − Nsame (see Fig 2 (B)). In addition, we introduce a

second parameter, Nr, which controls the number of readout neurons providing inputs to the
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Tempotron. We select these Nr cells in two ways as depicted in Fig 8 (A): ordered readouts
where we follow the same ordering as above (i.e. the Tempotron weights wi are defined for

indices i = 1, . . ., Nr) and random readouts where Nr neurons are selected at random through-

out the network.

We investigate the classification performance P of our network with different configura-

tions of input similarity, readout size and type. For example, if ρsame = 0.5 (equivalently

Nsame = N/2), ρcorr = 0.75 and Nr = N/4 with ordered readouts, this means that neurons

i = 1, . . ., N/2 receive identical local inputs IAi ðtÞ and IBi ðtÞ, the remaining neurons i = N/2

+ 1, . . ., N receive local inputs that are 75% correlated, and the Tempotron only reads out

from neurons i = 1, . . ., N/4. In addition, for all parameter configurations, we also produce

surrogate population spike patterns where we replace network interactions by independent

Poisson-distributed spike trains as was done in Fig 5 (B), following the assumptions from

earlier. The comparison is summarized in Fig 8 (B) where a scatter plot of surrogate perfor-

mances is plotted against network performances for an exhaustive range of parameter

choices. Importantly, the chaotic network always performs better or as well as the surrogate

population. Furthermore, the only cases in which the two perform equally is when the dis-

crimination task is easy enough to allow perfect performance.

The scatter also shows that the network has a significant advantage over the surrogate popu-

lation when ordered readouts are used. To better understand this, Fig 8 (C) shows network P
(black) and surrogate P (green) for ρcorr = 0, ρsame = 0.5 as a function of Nr for ordered read-

outs. Notably, the network shows very high classification performance in many cases where

Nr< Nsame. Here the classifier can only read out from neurons that receive identical inputs

under the two stimuli (i.e. not directly discriminable). This means that discriminable features

Fig 8. (A) Illustration of input similarity ρsame for which the first Nsame neurons receive identical direct inputs IAi ðtÞ and IBI ðtÞ. Also depicted

is partial readout dimension Nr under two types of readout orderings: ordered and random, see text for details. (B) Scatter plot of

classification performance P of surrogate population vs. network for a range of parameters ρcorr, ρsame and Nr, for both ordered and

random readouts (same data as (E)). (C) P for network (black) and surrogate population (green) as a function of Nr with ordered

readouts, for ρcorr = 0, ρsame = 0.5. Red dashed line indicates Nr = Nsame. (D) P for network (black) and surrogate population (green) as a

function of Nr with random readout, for ρcorr = 0.9, ρsame = 0. For (C) and (D), shaded areas show one one standard deviation (see

sampling details below). (E) Color plot of P as a function of ρsame and ρcorr for Nr = N/4. Top row: ordered readouts (dashed line indicates

Nr = Nsame). Bottom row: random readouts. First column: network. Second column: surrogate population. For all P values shown,

quantities were sampled over 20 repeated simulations where networks, inputs and Tempotron training were reprocessed. N = 500,

K = 20.

doi:10.1371/journal.pcbi.1005258.g008
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of these neurons’ spike patterns cannot originate from their direct inputs IAi ðtÞ and IBi ðtÞ, and

must instead result from network interactions that communicate activity from other neurons.

Not surprisingly, the surrogate population fails completely when Nr< Nsame since network

interactions are replaced by independent stochastic spike trains.

For random readouts, it can be assumed that at least one neuron selected for readout

receives a directly discriminable inputs when ρsame< 1. This makes the task easier so that net-

work and surrogate population performances are closer when local inputs Ii(t) are sufficiently

different. Nevertheless, when the correlation between them grows, i.e. for larger ρcorr, the net-

work does produce significantly more discriminable responses. This is shown in Fig 8 (D)

where P is plotted as a function of Nr for ρsame = 0, ρcorr = 0.9 and random readouts.

The general landscapes of discriminability P as a function of similarity parameters ρcorr and

ρsame, for both ordered and random readouts, are shown in Fig 8 (E) for Nr = N/4. Consistent

with the results about the geometric properties of response ensembles shown in Fig 6 (D), we

achieve near-perfect performance (P� 1) up to ρsame * 0.9, despite reading out from only a

quarter of the network’s neurons. Crucially, we see that the phenomenon introduced in panel

(C) of the same figure—that network can accurately discriminate inputs when reading out

from neurons not receiving directly discriminable inputs—is robust to strong input correla-

tions ρcorr.
We conclude from these results that recurrent interactions of the type found in our network

model, despite generating chaotic instabilities, are an effective and robust way to distribute infor-
mation about local inputs throughout a network so that distant readouts can be used for stimulus
discrimination without specifying precise connectivity. We expect these findings to hold gener-

ally in recurrent networks that are well-connected, in the sense that for every pair of vertices in

the associated connectivity graph, there is a relatively short directed path between them. In the

next section, we show how the relationship between the number of readouts Nr needed for

classification and the number of distinct inputs Ndiff depends on stimulus statistics.

Finding 3: Signal strength modulates a “noise floor” from chaos

So far, our investigation of stimulus encoding has been restricted to a single choice of the stim-

ulus amplitude ε and mean η (ε = 0.5, η = −0.5). For these parameters, we showed that even

highly similar stimuli can be distinguished based on the responses of chaotic networks. How

does this depend on the stimulus amplitude (i.e. strength of temporal features)? When this

amplitude drops, one might expect that it will eventually fall below a limit when any differ-

ences in stimuli will be obscured by variability induced by the chaotic dynamics of a network.

We call this limit the chaos-induced noise floor. Below, we study this noise floor, and thereby

establish how the discriminability of stimuli in chaotic networks depends on their statistics.

To systematically compare how stimulus statistics impact discriminability, care is needed to

keep the network activity in a fairly consistent firing regime. We do this by varying parameters

(ε, η) together in a way that will produce a fixed firing rate, averaged across the network. This

way, we can be certain that classifiers will be trained on the same number of spikes on average,

a quantity that could affect the interpretation performance P if left uncontrolled. Specifically,

we vary η and ε together along a path that leaves the network-wide average E firing rate fixed

at 13 Hz, as was the case for parameter values used above (see Fig 4 (B)). As illustrated in

Fig 9 (A), we parameterize this path by a normalized arclength parameter x: for higher values

of x, η is larger and ε is smaller (see Fig 9 (B) for illustration of input as x changes).

We begin by visualizing the relative amplitudes of external inputs Ii(t) and network interac-

tions. If the strength of stimulus fluctuations ε was so great as to simply overwhelm interac-

tions between neurons in the network, then the role of chaos in any conclusion about stimulus
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encoding would be trivial: the stimulus simply overwrites any intrinsic dynamics. Fig 9 (C)

shows the ratio of stimulus input amplitude ε to that of network interactions σE,I computed

from Eq (6). We can see that for the range of our parameter x this ratio goes from 0 to 1.8. Not

surprisingly, the highest value of that ratio corresponds to the maximal value of ε, when x = 0.

Even for ratios greater than 1 we argue that our network is not completely overwhelmed by

inputs since for all parameters considered, our network is still chaotic with positive Lyapunov

exponents (see Fig 9 (D) and text below). This means that on repeated trials, network interac-

tions are strong enough to induce instabilities and create discrepancies between responses.

However, these discrepancies will be smaller than in networks where input amplitude ε is

weaker, impacting discriminability. This is what we investigate below. See also [14] for further

investigation of this mechanism using spike-triggered averages.

Even if the stimulus input does not completely overwhelm the network, its statistics play an

important role in shaping the level of discriminable features carried by network spike patterns.

As we vary input parameters, two key quantities change. One is the “signal strength:” as ε
becomes smaller, the direct impact of stimulus fluctuations on neurons subsides, and, as a

Fig 9. (A) Mean E firing rate of the network as a function of mean input η and signal amplitude ε. Black curve shows level set at 13

Hz, and is parametrized by the normalized arclength x in direction of arrow. Parameter set used throughout the rest of paper

(ε = 0.5, η = −0.5) corresponds to x’ 0.3. (B) Illustration of input Ii(t) presented to a neuron as a function of the parameter x. The

red line shows the mean η(x) while the blue line shows fluctuations of amplitude ε(x). For all parameters, the mean excitatory firing

rate is constant. Red dot shows the benchmark regime (η = −0.5, ε = 0.5). (C) Ratio of stimulus amplitude ε to that of network

interaction amplitude σE,I as derived from the mean field equations (see Eq (6)). Red dot shows the benchmark regime (η = −0.5,

ε = 0.5). (D) The fraction of positive Lyapunov exponents #{λi > 0}/N as a function of the parameter x. Red dot shows the

benchmark regime (η = −0.5, ε = 0.5). (E) Level curves of classification performance P = 1 in the (x, Nr) parameter space for

several values of ρsame. For parameter pairs to the left of these curves, the network achieves perfect classification on average.

Stars indicate the corresponding Nsame = ρsame N. Red dot shows the benchmark regime (η = −0.5, ε = 0.5). (F) Classification

performance P as a function of x and readout dimension Nr for three input similarity fractions ρsame = 0, 0.5, 0.9. Stars indicate the

corresponding Nsame = ρsame N. For all P values shown, quantities were sampled over 20 repeated simulations where networks,

inputs and Tempotron training were re-processed. Ordered readouts, ρcorr = 0, N = 500, K = 20.

doi:10.1371/journal.pcbi.1005258.g009

Stimulus Encoding in Chaotic Spiking Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005258 December 14, 2016 23 / 30



consequence, so does the magnitude of the differences between stimuli IA(t) and IB(t). The sec-

ond is the “noise:” the chaotic variability in the responses to a single input signal. These two

quantities are not independent, and their relationship is not a priori obvious. Together, they

combine to create the chaos-induced noise floor described above. For stimulus parameters

that fall below this noise floor, chaotic variability is too widespread to allow different stimuli to

be accurately classified.

As described earlier, the variability across spike patterns from the same response ensemble

depends on the dimension of the underlying chaotic attractor. There are many ways to quan-

tify this dimensionality, here we use the number of positive Lyapunov exponents divided by

the dimension of the system (see Methods or [14] for details of their computation):

L
þ
� #fli > 0g=N:

Intuitively, Λ+ indicates the fraction of unstable directions in state space at any given time. As

the geometric properties of our network attractors impose that those directions generally align

with neural coordinates θi (see earlier text about spike-time reliability), Λ+ dictates how many

neurons are “unreliable” in the system at any given time [14, 15]. Fig 9 (D) shows Λ+ as a func-

tion of x. Notice that the network becomes more chaotic (more positive Lyapunov exponents)

as the fluctuation amplitude ε of the inputs Ii(t) shrinks. This can be interpreted as weaker

stimulus fluctuations giving less entrainment of neural dynamics by the inputs, and hence

allowing intrinsic dynamics, the mechanism by which chaos emerges, to dominate (c.f. [31]

for an example of stimulus entrainment effects on chaos in networks of rate units). Thus, as x
increases, both signal and noise factors should conspire to make input stimuli less discrimina-

ble. We next quantify this effect, and study how it depends on input similarity (quantified by

ρsame) and readout dimension Nr.

We numerically estimate the Tempotron’s discrimination performance P along the x-

parametrized curve of stimulus parameters, for a range of ρsame and Nr values. We concentrate

on regimes where ρcorr = 0 and consider only ordered readouts, in order to better investigate

the phenomenon of information distribution throughout the network described in the previ-

ous section. This determines regions of the parameter space (x, Nr, ρsame) where perfect classifi-

cation performance, P = 1, is achieved. The boundaries of these regions are shown in Fig 9 (E),

where every parameter point to the left of the boundaries yields perfect classification. These

boundaries have the following interpretation: for a given input parameters specified by x, one

needs to readout from a number of neurons Nr greater than a given ρsame-boundary to be

achieve perfect discrimination of inputs with a similarity level given by ρsame. As expected, the

regions of perfect performance shrink as inputs become more similar. This means that more

readout dimensions Nr are needed to discriminate more-similar inputs. Importantly, the

boundaries are positioned at much lower Nr than the corresponding Nsame = ρsame N for all

cases, indicating that networks across a broad parameter range can classify inputs using neu-

rons that themselves do not receive discriminable inputs (i.e. IAi ðtÞ ¼ IBi ðtÞ) as demonstrated

for our benchmark parameter set in the previous section.

Moreover, there is a critical region of stimulus statistics (x * 0.5) where all classification

boundaries aggregate for high Nr. This represents the chaotic noise floor for x, beyond which

inputs cannot be perfectly discriminated. Fig 9 (F) illustrates this noise floor in more detail, by

showing contour plots of classification performance P in (x, Nr)-space for three values of ρsame.

It shows that while P eventually drops to chance (0.5) as x! 1—an expected behavior since

IA(t) and IB(t) become indistinguishable when ε = 0—this transition becomes sharper for

higher input similarity ρsame. This suggests that when two stimuli have many identical compo-

nents (high ρsame), the network can either classify them very well or not at all, depending on
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the stimulus amplitude. When inputs are significantly dissimilar, this transition is more grad-

ual. Importantly, for large enough readout size Nr, the noise floor is almost identical for all

input similarities, indicating that for this network, perfect classification becomes impossible

for any input similarity once Λ+ reaches about 11% of N. Lastly, we note that the noise floor

boundary is roughly aligned with input parameters yielding a ratio of stimulus-to-network

fluctuation amplitude ε/σE * 0.9. This means that input stimuli need to be comparable or

stronger than other network interactions to achieve discriminability.

In summary, for the chaotic networks at hand, perfect stimulus classification can be achieved
for a wide range of stimulus statistics and similarities, and classification can be achieved using
spikes from relatively few readout neurons. However, once the stimulus amplitude falls below a
chaos-induced noise floor, classification performance degrades rapidly.

Discussion

Summary

Sparse, strongly connected recurrent neural networks used to model cortical activity in the

brain often produce a balanced state, leading to chaotic dynamics [2]. We showed that despite

asynchronous dynamics—where neurons have temporally de-correlated activity—chaos-

induced variability in driven networks is not easily approximated by simple stochastic pro-

cesses (e.g. using a mean-field approach). Instead, we found complex statistical dependencies

across network spike outputs conditioned on a given input, i.e. across trials. We studied how

this chaos—viewed as an intrinsic source of variability—impacts the capacity of recurrent net-

works to accurately encode temporal stimuli. With detailed numerical simulations grounded

in the theoretical literature, we studied how similar stimuli—modelled by multi-dimensional

frozen white noise inputs—can be decoded from chaotic network responses, both at the level

of the network state space and output spike trains.

Two factors influence the ability of a decoder to successfully classify stimuli based on net-

work outputs. The first is the strength of the chaos-induced “noise”: the trial-to-trial variability

of evoked patterns due to chaos. The second is the “signal”: the sensitivity of evoked patterns

to the choice of input. Our analysis of these separate factors leads to three main points: (1)

Chaos in recurrent spiking networks does not, in and of itself, preclude the accurate encoding

of temporal stimuli; simple decoders read out these stimuli based on reliable multi-spike pat-

terns that chaotic networks produce via low-dimensional attractors. (2) Recurrent connectivity

distributes stimulus information throughout chaotic networks, enabling high-dimensional sti-

muli to be classified with low-dimensional readouts. (3) Stimulus statistics (i.e., the amplitude

of stimulus fluctuations relative to their mean) modulate the number of readout neurons nec-

essary to successfully classify them: as their amplitude decreases, more neurons are required to

discriminate stimuli, until a “noise floor” is reached where discrimination is no longer

possible.

Biological implications of encoding and computing in chaotic networks

Chaotic dynamics appear as an emergent property of recurrent connectivity between neurons

[2, 6, 12, 31, 58, 59] that would be otherwise very stable and reliable (see [51, 52] and [42, 60]

for reliability of single neurons). It is conceivable that such chaos is a significant contributor to

experimentally observed variability as well (e.g. [17, 23, 61]). In this way, chaos amplifies and

adds to other stochastic noise sources in biological networks. Moreover, we reiterate that the

type of “intermittent spiking reliability” that is produced by chaotic dynamics is also observed

experimentally in vivo [33, 34]. Although not direct evidence that chaotic dynamics is indeed
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present in recurrent neuronal networks in the brain, these observations are consistent with

this hypothesis.

Beyond contributing variability and noise, there is a substantial literature addressing the

potential advantages of chaotic dynamics for encoding and memory [62–64]. In many cases,

chaotic networks act as “reservoirs” and synaptic connections are trained to use their activity

to perform a given task. Here, we take a more pragmatic perspective, studying how chaotic net-

works work as “channels” that receive inputs and produce spike outputs that carry usable

information. Furthermore, we show that the same recurrent connectivity that produces chaos

also serves to distribute stimulus information throughout the network: discriminability is

maintained even if a decoder only has access to small subpopulations of neurons, and even

when the inputs to be discriminated do not directly drive the subpopulations. As such, recur-

rence may serve to simplify the process of reading out stimuli from large populations, elimi-

nating the need for precise wiring—with the resulting chaotic dynamics being a manageable

by-product. While this type of stimulus “spread” can also occur in multilayer feed-forward net-

works with fan-out between layers, a recurrent architecture does the same operation locally,

without requiring that decoders be located downstream. We speculate that this mechanism

may also be relevant for contextual coding [65, 66], where the response of some neurons to a

fixed local input changes if a secondary contextual input to others differs. This role for recur-

rence complements many other functions that it may serve in neuronal computation (e.g.,

maintaining working memory, enabling winner-take-all computation, sharpening tuning

curves, etc.).

Finally, we argue that the encoding mechanism based on spike patterns we outline in this

paper enhances earlier balanced network encoding mechanisms. Classic results point to

important properties of balanced population-averaged activity: its response to global external

inputs is both rapid—much faster than single neuron time constants—and linear [5]. If the

inputs to our network evoke different population firing rates, then population averages carry

the necessary information for discrimination. In contrast, when two inputs have similar statis-

tics and differ only in the fine temporal patterns they carry, we show that the same network

can rely on spike-time based mechanisms to classify them. It is unclear if such dynamics are

present in cortical circuits and if so, in which regime they typically operate. However, there is

evidence of different activity states a given cortical network can take (e.g. up and down states)

depending on various contextual factors [67]. In light of the results we outlined, it is conceiv-

able that cortical networks encode different aspect of inputs depending on these input features.

Under this assumption, the emergent nature of chaos in recurrent networks may act as a natu-

ral mechanism to implement adaptive coding schemes, without any changes required to the

network or neurons themselves.

Future work

The results presented in this manuscript address a specific class of models, albeit one that is

fairly prototypical. Further studies should focus on the effect of single neuron dynamics and

connectivity statistics on stimulus encoding. Specifically, while we briefly investigated the

effect of modest variations of network size N and connectivity in-degree K, a more substantial

study is needed to understand network behavior in large-size limits. Moreover, beyond the

amplitude effects studied here, the correlation of stimulus inputs across neurons can also

impact the resulting chaotic network responses (see Discussion of [14]). At the same time,

these input correlations effectively diminish the dimensionality of the stimulus by introducing

redundancies. An interesting area of future work is to better understand the relationship
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between input and output dimension with respect to stimulus coding in recurrent, spiking

networks.

In experiments, is not an easy task to test whether or not a particular neural circuit is cha-

otic. Indeed, even for a dynamical system that does not receive input drive, and for which one

can observe all degrees of freedom, it is still a hard problem to attribute variability to stochastic

or deterministic (chaotic) mechanisms (see e.g. [68, 69]). Therefore, the problem of experi-

mentally verifying the nature of variability in neural circuits found in the brain is not a simple

one. Nevertheless, we note that some in vivo experiments show stimulus-evoked spikes that

appear to have the type of intermittent variability we described in this article [17, 33]. This

invites future work to make closer connections between mechanistic models of chaotic

dynamics and neural recordings.
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