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Abstract

Mycoplasma pneumoniae is strongly associated with new onset asthma and asthma exac-

erbations. Until recently, the molecular mechanisms utilized by M. pneumoniae to influence

asthma symptoms were unknown. However, we recently reported that an ADP-ribosylating

and vacuolating toxin called the Community Acquired Respiratory Distress Syndrome toxin,

CARDS toxin, produced by M. pneumoniae was sufficient to promote allergic inflammation

and asthma-like disease in mice. A mouse model of CARDS toxin exposure was used to

evaluate total and CARDS-toxin specific serum IgE responses. Mast cell sensitization, chal-

lenge, and degranulation studies determined functionality of the CARDS toxin-specific IgE.

In the current study, we report that a single mucosal exposure to CARDS toxin was sufficient

to increase total serum IgE and CARDS toxin-specific IgE in mice. Mice given a second

mucosal challenge of CARDS toxin responded with significant increases in total and

CARDS toxin-specific IgE. CARDS toxin-specific IgE bound to an N-terminal peptide of

CARDS toxin but not the C-terminal peptide. Likewise, full-length CARDS toxin and the N-

terminal peptide induced mast cell degranulation. Altogether, these data demonstrate that

exposure to CARDS toxin is sufficient to generate functional IgE in mice. M. pneumoniae

and CARDS toxin are strongly associated with asthma exacerbations raising the possibility

that the CARDS toxin-specific IgE-mast cell axis contributes to disease pathogenesis.

Introduction

Asthma and allergic diseases remain a significant source of morbidity and mortality in the

developed world [1]. This is largely due to the complex interactions between the factors

responsible for the etiology of asthma and allergic diseases [2]. Amongst the many factors con-

tributing to allergic diseases; genetics, environment, the microbiota, and infectious agents have

significant roles in pathogenesis [2–4]. There is strong clinical evidence that both viral and

atypical bacterial agents are associated with worsening asthma, and there is growing experi-

mental evidence that they play a role in the genesis of asthma[5–10].
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Of the atypical pathogens, Mycoplasma pneumoniae is of particular interest due to preva-

lence in the community, the seasonal nature of infections, and the rapidly increasing rates of

macrolide resistance in M. pneumonia [11–13] Currently M. pneumoniae is the leading cause

of community acquired pneumonia amongst children in the US [11]. Depending on geo-

graphic location, macrolide resistance rates range form 95% in Asia to 10% in parts of Europe

[12, 14]. M. pneumoniae colonizes tracheal and bronchial epithelium causing cytotoxicity char-

acterized by loss of ciliary function and epithelial vacuolation [15, 16].

Mycoplasma pneumoniae has strong clinical associations with asthma exacerbations and

morbidity in both children and adults [9, 13, 17]. Recently, a toxin produced by M. pneumo-
niae, the Community Acquired Respiratory Distress Syndrome toxin (CARDS toxin), was

identified [18, 19]. CARDS toxin is an ADP-ribosylating and vacuolating cytotoxin that con-

tributes to many of the pathologies observed during M. pneumoniae infection [10, 18, 20–24].

Recently we demonstrated that a single mucosal exposure to recombinant CARDS toxin is suf-

ficient to induce an asthma-like pulmonary inflammation in naïve mice[10, 20], characterized

by a dominant T-helper type-2 (Th2) response, peribronchiolar cellular inflammation, eosino-

philia, mucus hypersecretion and goblet cell metaplasia[10, 20]. Additionally, these mice had

increased airway resistance and decreased compliance following methacholine challenge. Alto-

gether, these responses are characteristic of asthma-like inflammation.

Mycoplasma pneumoniae infection is strongly linked to exacerbations of asthma in children

and adults[17, 25, 26]. We recently reported that children with refractory asthma and with

CARDS toxin detected in their respiratory secretions reported a worsened quality of life and

disease control relative to those that were CARDS toxin negative[13, 27], suggesting the toxin

worsens disease.

Although many of the mechanisms leading to allergic inflammation remain poorly defined,

the immunoglobulin-E (IgE) and mast cell axis are key mediators of the allergic reaction [28].

In animal models, an animal is typically exposed and becomes sensitized to an allergen only

after multiple exposures, particularly if the exposures are mucosal (intranasal or intratracheal).

Sensitized animals produce allergen-specific IgE that binds to high affinity IgE-receptors on

basophils in the circulation and mast cells in the skin and mucosa [28, 29]. Sensitized basophils

and mast cells can then respond almost instantaneously to a subsequent challenge with aller-

gen resulting in rapid degranulation and mediator release [29]. Degranulation results in the

immediate release of preformed effector molecules including proteases, biogenic amines, cyto-

kines, and leukotrienes that mediate the physiological responses associated with allergy [30].

In addition to the pathologic role in allergy, antigen specific IgE has also been shown to have a

protective role in honey bee and snake envenomation via degradation of toxin by mast cell-

derived proteases [31, 32].

Classically, mast cells and IgE are considered protective against parasitic infections. We

now appreciate that mast cells have a broader role in immunity providing protection against

Gram-negative bacteria, Mycoplasmas, and viruses [33–39]. Likewise, there is precedence for

bacterial toxins to enhance IgE-mediated responses, but this is a feature of the superantigen

toxins from Staphylococci and Streptococci [40–42]. Interestingly, experimental vaccines using

Pertussis toxin (PT), an ADP-ribosylating toxin, as an adjuvant leads to increases in IL-4 and

IgE [43–45]. While it is well known that children with asthma are at higher risk for severe com-

plications from pertussis [46], there is no evidence that pertussis is a significant factor in the

genesis of asthma.

In this study we utilized our mouse model of CARDS toxin-associated asthma to test the

hypothesis that exposure to CARDS toxin leads to the generation of a functional CARDS

toxin-specific IgE.

IgE responses to CARDS toxin
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Materials and methods

Animals

5-week-old BALB/cJ mice were purchased from Jackson Laboratory (Bar Harbor, ME) and

STAT6-/- mice on the BALB/c background were provided by Dr. Michael Berton and bred in

house. All mice were maintained in an AAALAC-approved facility with all animal work con-

ducted according to relevant national and international guidelines. Work was conducted

under a protocol approved by the University of Texas Health Science Center at San Antonio

Institutional Animal Care and Use Committee (protocol #12070X) established. During experi-

mental procedures, animals were monitored by laboratory staff twice a day and there were no

apparent animal illnesses nor unexpected deaths during this study. Animal suffering was mini-

mized by providing free access to food and water, animals had soft bedding for the duration of

the experiments and all procedures were done under general anesthesia, 3% isoflurane and

oxygen.

Primary cells and cell lines

Bone marrow was collected from BALB/c mice and incubated in complete bone marrow mast

cell (BMMC) media and incubated four weeks using a modified protocol previously described

[47]. BMMC media contained RPMI 1640 medium, 10% fetal bovine serum, 20 ml 200 mM L-

glutamine, 10 ml 10,000 U/ml penicillin/10,000 μg/ml streptomycin, 25 ml 1 M HEPES, 10 ml

100 mM sodium pyruvate, 10 ml 100× nonessential amino acids, 50 μM 2-mercaptoethanol

(2-ME), 20 ng/ml murine IL-3 (Peprotech, Rocky Hill, NJ) and 20 ng/mL murine stem cell fac-

tor (SCF) (Peprotech). MC/9 cells were acquired from American Type Culture Collection

(Manassas, VA) and cultured in BMMC media.

Recombinant CARDS toxin

Recombinant CARDS toxin was kindly provided by Drs. Joel Baseman and TR Kannan.

Briefly, rCARDS toxin was expressed and purified as previously described in detail [18, 20]

and bioactivity assessed by its ability to induce vacuoles in HeLa cells [18, 20]. The rCARDS

toxin vehicle (filter sterilized 50 mM tris buffer with 5% glycerol at pH 7.3) was used as a con-

trol. Recombinant CARDS toxin defective in ADP-ribosylation, CARDS E132A, was kindly

provided by Dr. John Hart. Endotoxin concentrations in recombinant toxin were measured

using Limulus Amebocyte lysate assays (Lonza, Walkersville, MD). Endotoxin was determined

to be less than <0.1 EU/ml in all preparations used in this study.

Exposure of animals to CARDS toxin

Mice were sedated with 3% isoflurane in air supplemented with oxygen. Seven hundred pmol

of rCARDS toxin was administered IT via forced oropharyngeal aspiration as we have

described [24]. The dose of toxin used in these studies was determined based on an analysis of

CARDS toxin-mediated pathology in mice as previously described [20]. The actual concentra-

tion of CARDS toxin in the airways of humans during an asthma exacerbation is unknown.

However, the doses used in this study are consistent with the levels detected in the epithelial

lining fluid of baboons given a low-dose experimental infection of M. pneumoniae.

Serum collection

Serum was allowed to clot at room temperature and stored overnight at 4˚C. Samples were

then centrifuged at 14000 rpm for 15 minutes at 4˚C. Serum was collected and stored at -80˚C.

IgE responses to CARDS toxin
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Total IgE and rCARDS toxin specific IgE assays

To measure total IgE, serum samples were diluted at 1:50 and assayed using a commercially

available kit (BD Biosciences, San Jose, CA) according to the manufacturer’s instructions.

rCARDS toxin-specific IgE was determined with a modified ELISA protocol previously

described [48]. Briefly, ELISA plates were coated with 5 μg/mL α-mouse IgE antibody that was

cross adsorbed to mouse IgM and IgG in carbonate buffer pH 9.5 and incubated overnight at

4˚C. Plates were washed 3x with 0.05% PBS tween-20 (wash buffer) and blocked with 10% FBS

in PBS (reagent buffer). Plates were washed as before with wash buffer and incubated with

serum samples diluted in reagent buffer for 2 hours at room temperature. Plates were washed

as before with wash buffer and incubated with 2.5 μg/mL rCARDS toxin in reagent buffer for 2

hours at room temperature. Plates were washed as before and incubated with antigen affinity

purified rabbit anti-CARDS toxin IgG in reagent buffer for 1 hour at room temperature. Plates

were washed 5x with wash buffer and incubated with goat anti-rabbit -IgG-HRP in reagent

buffer for 1 hour at room temperature. Plates were washed 7x with wash buffer and incubated

with substrate for 15 minutes (K-Blue Aqueous TMB reagent, Neogen Corporation, Lansing,

MI). Reactions were stopped with 1M H3PO4 stop solution. Data represents two independent

assays measured in triplicate.

Western blots

2 μg of full-length rCARDS toxin, an amino terminus fragment (amino acids 1–249), a carboxy

terminus fragment (amino acids 261–591), and ovalbumin were run on a 10% SDS PAGE gel.

Gels were transferred to PVDF membranes (BioRad, Hercules, CA) using a semi-dry transfer

Owl apparatus (Thermo Fisher Scientific, Waltham, MA). Membranes were blocked with 5%

milk in TBS with 0.1% tween-20. Membranes were probed with serum from rCARDS toxin

treated mice overnight at 4˚C. Membranes were washed with TBS + 0.1% tween-20 and incu-

bated with anti-mouse IgE cross-adsorbed to IgM and IgG in 5% milk in TBS with 0.1% tween

20 at room temperature for 2 hours. Membranes were washed and probed with a chicken anti-

goat-HRP for 1 hour at room temperature. Membranes were washed and developed with

enhanced luminol reagent (Perkin Elmer LAS Inc., Boston, MA) using autoradiography.

Mast cell degranulation assay

A modified version of a previously described protocol was used [49]. Briefly, mast cells were

sensitized overnight in BMMC media with a 1:10 dilution of complete serum from rCARDS

toxin or vehicle challenged mice at a cell density of 1x106. Mouse serum was not depleted of

non-IgE immunoglobulins prior to sensitization. Cells were washed in Tyrode’s buffer (137

mM NaCl, 5.6 mM glucose, 2.7 mM KCl, 0.5 mM NaH2PO4, 1.4 mM CaCl2, 0.5 mM MgCl,

10 mM HEPES, 0.1% BSA; pH 7.3) and resuspended in Tyrode’s buffer containing 10% deute-

rium to a density of 50,000 cell/well in a 96 well plate. Cells were challenged with full-length

rCARDS toxin, rCARDS toxin fragments or controls and incubated 45 minutes. Cells were

centrifuged and supernatant added to p-nitrophenyl N-acetyl-β-D-glucosamide (PNAG)

(Sigma, St. Louis, MO) (3.5 mg/ml) dissolved in citrated buffer (40 mM citric acid/20 mM

Na2HPO4�7 H2O; pH 4.5) to measure β-hexosaminidase activity. The cell pellet was lysed in

Tyrode’s buffer with 0.1% Triton-X to measure total degranulation and incubated with PNAG.

Supernatant and cell lysates were incubated at 37˚C for 90 minutes. Reactions were stopped

with 400 mM glycine pH 10.7 and plates read at 405 nm with a 620 nm reference filter. Percent

hexosaminidase release was calculated as OD of the supernatant/ (OD of the supernatant +

OD of the lysed cellular pellet) X100.

IgE responses to CARDS toxin
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Statistics

Experiments were repeated a minimum of 2 times with 6–10 animals, depending on the spe-

cific protocol (except where noted). All results were expressed as the mean ± S.D. Statistical

differences were determined using a two-way ANOVA with Bonferroni post-hoc test or two-

tailed Student t-test using GraphPad Prism version 5.04 (GraphPad Software, San Diego CA).

Results

A single exposure to CARDS toxin leads to increased total serum IgE

We previously reported that a single exposure to CARDS toxin results in prolonged changes in

lung histopathology that lasted up to 56 days post-exposure [20]. Further, a single exposure to

CARDS toxin was sufficient to cause asthma-like disease in toxin-naïve mice [10]. We hypoth-

esized that the strong Th2 environment induced by CARDS toxin would promote production

of IgE. As shown in Fig 1, Balb/cJ mice given a single intratracheal (IT) dose of CARDS toxin

developed significant increases in total serum IgE ranging from 3 to 10-fold over vehicle

Fig 1. A single mucosal exposure leads to increased total serum IgE. Mice were treated IT with 700 pmol CARDS toxin or vehicle and then serum

was collected at the indicated time points. Serum was diluted 1:50 and the concentration of IgE determined by ELISA. Data is presented as the mean and

standard deviation of two independent experiments with each circle representing a mouse (** p<0.005, *** p<0.0005, N = 6–8 mice).

doi:10.1371/journal.pone.0172447.g001

IgE responses to CARDS toxin
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controls on days 14 and 56 post-toxin exposure, respectively. While total serum IgE was

increased on day 28 after toxin exposure relative to vehicle controls, these data were not statis-

tically significant. Altogether, these data suggest that a single exposure to CARDS toxin is suffi-

cient to induce increases in total serum IgE.

Increases in serum IgE require CARDS toxin enzymatic activities and

STAT6

Previously, we reported that heat-inactivated (HI) CARDS toxin does not induce the cytokine

responses nor the characteristic changes in pulmonary histopathology observed with expo-

sures to active toxin [20]. To test the role of CARDS toxin-activity and subsequent STAT6-de-

pendent induction of serum IgE, Balb/cJ mice or STAT6-/- mice on the Balb/cJ genetic

background were exposed IT to a single dose of CARDS toxin or HI CARDS toxin. Immuno-

globulin class switching of antibodies to IgE requires IL-4 signaling through the IL-4R ulti-

mately resulting in the activation of the STAT6 transcription factor [50]. As shown in Fig 2,

STAT6 is required for CARDS toxin-mediated increases in total serum IgE. Further, mice

exposed to HI CARDS toxin have, on average, 5-fold less total serum IgE than animals treated

with active CARDS toxin (p< 0.0005). Importantly, these data with HI toxin suggest that the

low levels of endotoxin present in recombinant toxin preparations (<0.1 EU/ml) are not suffi-

cient to promote IgE production. Altogether, these data suggest that the enzymatic properties

of CARDS toxin are required for increasing total serum IgE in a STAT6-dependent manner.

Repeated exposures to CARDS toxin increases total serum IgE

To test the ability of CARDS toxin to boost total serum IgE responses, mice were treated IT

with CARDS toxin and then 21 days later mice received a second IT dose of CARDS TX. Total

serum IgE concentrations were determined by ELISA on days 2, 4, 7, and 10 after treatment

with the second dose of CARDS toxin. Following the second exposure to CARDS toxin, there

was a rapid rise in total serum IgE evident by day 2 after-exposure that peaks at 10-fold over

vehicle controls on days 7 and 10 after- exposure (p<0.005) (Fig 3).

CARDS toxin exposure leads to the production of CARDS toxin-specific

IgE

A single mucosal exposure of mice to CARDS toxin resulted in increased total serum IgE sug-

gesting the production of CARDS toxin-specific IgE. As shown in Fig 4A, serum collected

56-days after a single IT exposure to CARDS toxin resulted in a significant increase in CARDS

toxin-specific IgE concentrations measured by ELISA that remained significant when the

serum was diluted to 1:32. Serum collected from days 14 and 28 also had significant increases

in CARDS toxin-specific IgE (data not shown). Likewise, as shown in Fig 4B, when mice were

exposed to 2 doses of CARDS toxin IT; the concentrations of CARDS toxin-specific IgE were

significantly elevated and remained significant through the 1:128 dilution. Data in Fig 4B

reflects serum harvested 7 days after the second exposure to CARDS toxin. Consistently,

serum collected 2, 4, and 10 days after a second exposure to CARDS toxin had significant

increases in CARDS toxin-specific IgE relative to controls (data not shown). To directly test

the requirement for ADP-ribosylation activity in IgE production, Balb/cJ mice were treated IT

with 700 pmol of CARDS toxin, CARDS toxin E132A, or vehicle. The E132A mutation dis-

rupts the enzyme active site impairing ADP-ribosylation [51]. As shown in Fig 4C, concentra-

tions of antigen-specific IgE were significantly reduced in the serum of animals treated with

CARDS toxin E132A relative to active CARDS toxin at a 1:8 dilution. Altogether, these data

IgE responses to CARDS toxin
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indicate that mucosal exposure(s) to active CARDS toxin results in increased total and

CARDS toxin-specific IgE.

CARDS toxin-specific IgE recognizes epitopes in the N-terminus of

CARDS toxin

To partially define the region of CARDS toxin recognized by CARDS toxin-specific IgE, we

tested immuno-reactivity in Western blots. Briefly, equimolar amounts of full length CARDS

toxin, a 1–249 amino acid N-terminal fragment, a 261–591 amino acid C-terminal fragment,

and chicken ovalbumin (negative control) were fractionated by gel electrophoresis and trans-

ferred to a PVDF membrane. The membrane was probed with pooled sera containing high

titer anti-CARDS toxin-specific IgE. Immunoreactive bands were detected with an anti-mouse

IgE secondary antibody and visualized with chemiluminescence. As shown in Fig 5., CARDS

Fig 2. CARDS toxin activity and STAT6 are required for increased total serum IgE following CARDS

toxin exposure. Balb/cJ mice or STAT6-/- mice were treated with active CARDS toxin or heat-inactivated

CARDS toxin IT and then serum was collected after 56-days. Concentrations of total serum IgE is presented as

the mean and standard deviation of two independent experiments. Each symbol represents a mouse N = 16

mice (***p< 0.0005 note that the STAT6-/- could not be evaluated statistically due to 15/16 values being

undetectable).

doi:10.1371/journal.pone.0172447.g002

IgE responses to CARDS toxin
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toxin-specific IgE recognizes full-length toxin and the N-terminal fragment but not a C-termi-

nal fragment or ovalbumin. The 1–249 amino acid N-terminal fragment is present as two

bands reflecting proteolytic cleavage of this peptide during purification. The N-terminal

domain of the toxin contains the ADP-ribosylating activity [51]. These data suggest that IgE

epitopes in CARDS toxin detectable by Western blot reside in the N-terminal 1–249 amino

acids.

Mast cells sensitized with CARDS toxin-specific IgE release

hexosaminidase when challenged with CARDS toxin

To test if CARDS toxin-specific IgE was functional, mast cells were differentiated from mouse

bone marrow (BMMC). BMMCs were then sensitized with pooled sera containing high titer

anti-CARDS toxin IgE. As controls, BMMCs were sensitized with sera from vehicle control

mice or untreated mice. Sensitized and non-sensitized mast cells were then challenged with

different versions of CARDS toxin or nonspecific activators and hexoaminodase activity in the

cell culture supernatants measured as an indicator of degranulation. Mast cells sensitized with

Fig 3. Multiple doses of CARDS toxin increase total serum IgE concentrations. Balb/cJ mice were treated IT with CARDS toxin or vehicle on day 0

and day 21. Mice were then bled on days 2, 4, 7, and 10 following the second exposure, and concentrations of total serum IgE measured. Total serum IgE

from mice treated twice with vehicle were measured on day 7 after the second treatment. Data represents the mean and standard deviation of two

independent experiments (**p<0.005, ***p<0.0005, N = 8 mice).

doi:10.1371/journal.pone.0172447.g003

IgE responses to CARDS toxin
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serum containing anti-CARDS toxin-specific IgE and challenged with full length or the N-ter-

minus of CARDS toxin resulted in 17–19% hexosaminidase release (Fig 6). Importantly, mast

cells sensitized with CARDS toxin-specific IgE-containing serum did not respond to challenge

with the C-terminal peptide of CARDS toxin. Degranulation of mast cells in response to chal-

lenge with CARDS toxin was specific since mast cells sensitized with sera from vehicle treated

mice did not respond to challenge. Mast cells were capable of responding to nonspecific sti-

muli, ionomycin or anti-IgE treatment, with an 18% or 35% hexoaminidase release, respec-

tively. Altogether, these data strongly suggest that a single mucosal exposure to CARDS toxin

is sufficient to generate functional IgE in mice. Challenge with full length and N-terminal pep-

tides of CARDS toxin induces mediator release in mast cells sensitized with anti-CARDS toxin

IgE and demonstrates functionality in vitro.

Discussion

Allergic diseases remain a significant source of morbidity and in the case of anaphylaxis, risk

of mortality. Infection is a significant source of exacerbation in allergic asthma but the mecha-

nisms underlying pathogen-associated disease worsening are poorly understood. Infections

with Mycoplasma pneumoniae, respiratory syncytial virus, rhinovirus, and exposure to molds

are known to enhance cytokine responses that promote allergic inflammation [5, 7–9, 13, 17,

52]. However, pathogen-associated virulence factors that influence allergic disease develop-

ment and exacerbation are poorly understood.

We previously showed that CARDS toxin could induce allergic-like inflammation in

BALB/c mice after a single challenge. This was defined by mucus hypersecretion, increased

Th2 responses, eosinophilia, and airway hyperreactivity [10]. Additionally, we showed that

rCARDS could exacerbate pre-existing allergic inflammation in BALB/cJ mice [24]. These

data demonstrated that CARDS toxin could increase IL-4 and IL-13 mRNA expression,

worsen airway eosinophilia and increase airway hyperreactivity in ovalbumin sensitized mice

[24]. These aforementioned studies demonstrated increased type-2 inflammatory responses

that could potentially affect IgE production, a central component of allergic inflammation. In

Fig 4. Exposure to active CARDS toxin results in CARDS toxin-specific IgE. A) Mice were exposed to a single dose of CARDS toxin IT and then

serum collected on day 56. The indicated dilution of serum was tested for CARDS toxin-specific IgE in a sandwich ELISA. B) Mice were exposed to 700

pmol of CARDS toxin on days 0 and 21 IT and serum was collected on day seven after the second exposure. C) Mice were exposed to wild type or mutant

CARDS toxin on days 0 and 21 and serum collected on day 28. (* p = 0.05, **p<0.005, ****p<0.0005 N = 6–10 mice/time point).

doi:10.1371/journal.pone.0172447.g004

IgE responses to CARDS toxin
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Fig 5. IgE from mice exposed to CARDS toxin recognizes full-length and N-terminal peptides of

CARDS toxin on immunoblots. Serum collected from mice 56 days after exposure to CARDS toxin was

pooled and used to probe immunoblots containing full-length CARDS toxin, the N-terminal 1–249 amino acid

peptide, the amino acid 269–591 C-terminal peptide, and ovalbumin. Immunoreactive peptides were detected

using an anti-mouse IgE antibody.

doi:10.1371/journal.pone.0172447.g005

IgE responses to CARDS toxin
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the current study we evaluated the impact of CARDS toxin on IgE expression in BALB/cJ

mice. Data presented shows that CARDS toxin elicits greater concentrations of total serum IgE

in mice when mice are subjected to a mucosal CARDS toxin exposure(s). Additionally, we

could detect CARDS toxin-specific IgE in the serum of mice given one or two doses of CARDS

toxin, with the immunodominant epitope(s) located in the first 249 amino acids of the toxin.

The N-terminal peptide was capable of degranulating sensitized mast cells and this peptide

reacted with serum IgE from mice exposed to CARDS toxin on Western Blot. The increased

immunoreactivity of the N-terminus could reflect differences in the immunogenicity of the N-

terminus relative to other parts of the protein or it could have functional importance by direct-

ing antibodies to the portion of the protein with enzymatic activity. This could serve to directly

neutralize the toxin or to indirectly neutralize it through the release of mast cell proteases. The

biological and functional significance of toxin-specific IgE is currently under investigation.

Fig 6. Mast cells sensitized with serum containing anti-CARDS toxin-specific IgE degranulate in response to CARDS toxin challenge. BMMCs

were sensitized with pooled serum collected from mice 56 days after exposure to CARDS toxin or vehicle. As a negative control, BMMCs were mock

sensitized with saline (NT). Sensitized mast cells were then challenged with equimolar amounts of full-length CARDS toxin, C-terminal peptide (amino acid

269–591), N-terminal peptide (amino acid 1–249), HI toxin, vehicle, anti-IgE, ionomycin, and mock challenged (NT). Percent degranulation is extrapolated

from hexosaminidase release into the culture supernatant. (***p<0.005, data is presented as the mean and standard deviation of two independent

experiments done in triplicate.)

doi:10.1371/journal.pone.0172447.g006

IgE responses to CARDS toxin
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Finally, we detected mast cell degranulation due to cross linking of mast cell surface IgE with

CARDS toxin, indicating that CARDS toxin-specific IgE is functional.

The C-terminal peptide of CARDS toxin did not react in immunoblots to sera containing

CARDS toxin-specific IgE. Likewise, the C-terminal peptide of CARDS toxin did not result in

mast cell degranulation when used to challenge sensitized mast cells. These results could imply

that the majority of IgE epitopes are exclusively in the N-terminus of CARDS toxin. However,

we cannot rule out a contribution of conformational or linear epitopes in the C-terminus that

do not respond in our assays due to inappropriate protein folding. Further, we only used full

length CARDS toxin to immunize animals and thus, did not test the ability of N- or C- termi-

nal fragments to induce toxin-specific IgE directly. We did demonstrate that both heat inacti-

vated toxin and the CARDS toxin E132A mutant do not induce a strong IgE response

suggesting that the enzymatic activities of the toxin are required strengthening the suggestion

that full-length toxin is required for optimal IgE responses.

M. pneumoniae infections are associated with increased total IgE, however it was unclear if

CARDS toxin could replicate this aspect of M. pneumoniae infections [53]. IgE is the least

abundant immunoglobulin class making up about 0.0005% of the total free serum immuno-

globulins in non-atopic adults [54]. In atopic individuals, IgE concentrations are higher and

can be a significant factor in allergic inflammation. For example, clinical studies report that

elevated serum IgE is associated with worsened asthma symptoms and wheezing [54–56]. In

this study, we demonstrate that both a single and double dose of CARDS toxin are sufficient to

increase total serum IgE in BALB/c mice. Although not addressed in this study, the increased

total IgE certainly reflects increases in CARDS toxin-specific IgE but could also represent IgE

specific to other environmental allergens or self antigens. There is precedence in the literature

supporting this concept in that a clinical study has shown shifts in IgE specific for other aller-

gens in asthma patients with M. pneumoniae or RSV infections [53]. Likewise, emerging data

suggests that in addition to its role in allergy and host defense, self-reactive IgE contributes to

the pathology of systemic lupus erythematosus and atopic dermatitis [57–59]. Currently the

reactivity of IgE to antigens other than CARDS toxin remains unknown in these animals.

Further, many environmental allergens associated with asthma exacerbations including

house dust mites, cockroaches, fungi and many pollens [48] are known to exacerbate asthma

symptoms in part due to elicited IgE responses [60–62]. Our data demonstrated that CARDS

toxin enhances total IgE production in mice. This finding illustrates the potential of M. pneu-
moniae CARDS toxin to induce an IgE response and its potential to function as a classical

allergen.

Mast cells are important to protect mice from M. pneumoniae infection [37]. However, in

this previous work it was unclear if CARDS toxin-specific IgE was generated. It is now known,

that aside from a role in protecting against helminth infection and mediating allergy, that mast

cells are important cells of the innate immune system contributing to control of bacterial and

viral infections [34–37, 39]. Likewise, IgE has been shown to have additional functions beyond

mast cell and basophil activation especially in response to venoms [31, 32]. At this time, we

have no data to support additional roles for CARDS toxin-specific IgE beyond mast cell sensi-

tization but these other possibilities are currently being investigated.

Although many proteins have been identified as allergenic, bacterial toxins are not common

allergens. Staphylococcal and streptococcal enterotoxins are potent inducers of IgE and toxin-

specific IgE and represent the best-studied group of IgE-associated bacterial toxins [40–42].

Unlike CARDS toxin, these enterotoxins are superantigens with a very different mode of

action and activity. CARDS toxin is an ADP-ribosylating and vacuolating toxin with the ADP-

ribosylating activity residing in the N-terminus and the vacuolating activity in the C-terminus

[22, 51]. There are reports of pertussis toxin inducing increased IgE responses when it is used
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as an experimental adjuvant for mucosal immunizations (38–40). Like CARDS toxin, pertussis

toxin is an ADP-ribosylating toxin, but it lacks vacuolating activity. These data could suggest

that ADP-ribosylating activity is required to generate toxin-specific IgE. We present data that

mutant and heat-inactivated toxin fails to generate increased total IgE. Further, not all ADP-

ribosylating toxins induce IgE responses. Diptheria toxin, a close relative of CARDS toxin, has

been extensively studied and there is no evidence that it induces IgE responses. Cholera toxin

(CT), another ADP-ribosylating toxin, has been used as an adjuvant for mucosal vaccines and

one of the advantages of CT-based adjuvants is a lack of antigen-specific IgE production.

The mast cell-IgE axis is central to allergic inflammation. A series of signaling events occurs

when mast cell surface bound IgE is cross-linked in the presence of allergen, leading to cyto-

kine secretion, de novo synthesis of leukotrienes and mediator release/degranulation by mast

cells [63]. These granules contain various inflammatory mediators such as histamine, seroto-

nin and proteases, all of which have an impact on the allergic response [63]. Our studies reveal

that CARDS toxin-specific IgE cross-linked in the presence of rCARDS toxin leads to mediator

release. We cannot rule out a contribution from IgG immune complexes in our mast cell

degranulation experiments since we did not deplete IgG from the serum prior to sensitization

of the mast cells. However, IgG-immune complex-mediated degranulation of cells is a feature

of anaphylaxis in mice. Recent reports suggest immune complexes might contribute to allergic

inflammation [64]. In other studies, we evaluated animals for a drop in body temperature, an

indicator of anaphylaxis in mice, following a second dose of CARDS toxin or vehicle and there

were no significant differences between treatment groups (not shown). Altogether, these data

support the IgE-mast cell axis in CARDS toxin-mediated allergic responses.

The presence of CARDS toxin-specific IgE in mice that can lead to IgE-dependent mediator

release, suggests the possibility that CARDS toxin could be acting as an allergen in human

asthma. While this remains to be determined, these findings add to rapidly accumulating evi-

dence that CARDS toxin is a significant virulence factor with the potential to contribute to sig-

nificant pathology in experimental and human asthma.
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