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Coming of Age: Human Genomics and the

Cancer-Immune Set Point
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Cancer is largely a disease of the tumor cell genome. As a result,
the majority of genetics research in oncology has concentrated on
the role of tumor somatic mutations, as well as inherited risk
variants, in disease susceptibility and response to targeted treat-
ments. The advent and success of cancer immunotherapies, how-
ever, have opened new perspectives for the investigation of the role
of inherited genetic variation in codetermining outcome and safety.
It is increasingly likely that the entirety of germline genetic variation
involved in regulating immune responses accounts for a significant
fraction of the observed variability in responses to cancer immuno-

Introduction

The entirety of factors that influence antitumor immunity or
tolerance has been described as the cancer-immune set point,
defined as the variable threshold above which an immune response
is likely to occur. An individual’s genetic differences comprise one
aspect of this multidimensional conceptual framework (1). As such,
it is possible that differences in response to cancer immunotherapy
(CIT) are in part driven by how our genomes configure our immune
system to respond to immunologic challenges in general, and cancer
in particular.

The toolbox of human genomics research has improved our under-
standing of the pathophysiology and causes of (auto)immunity and
infectious diseases. In general, a complex pattern of common genetic
variation underlies most complex disease phenotypes (2). Unlike
genetic disorders with high penetrance caused by single genes that
obey simple Mendelian inheritance, these phenotypes reflect the
combined contributions of a multitude of variants, each of them
exhibiting a subtle, mostly additive effect size (2). Applied to the
cancer-immune set point framework, complex genetics controls the
probability of mounting an immune response to cancer, the likelihood
of response to a specific therapy, and the risk of developing a therapy-
associated immune-mediated adverse event (imAE).

Here, we classify germline genomic variation according to its
potential role in cancer immunology (Fig. 1), review initial published
evidence, and make a case for large-scale genetic and integrated
analyses of CIT-relevant phenotypes.
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therapies. Although germline genetic data from patients treated
with cancer immunotherapies are still scarce, this line of research
benefits from a vast body of knowledge derived from studies into
autoimmune and infectious disease phenotypes, thus not requiring
a start from a blank slate. Here, we discuss how a thorough
investigation of genomic variation relevant for individuals’
variability in (auto)immune responses can contribute to the dis-
covery of novel treatment approaches and drug targets, and yield
predictive biomarkers to stratify cancer patient populations in
precision and personalized medicine settings.

Genome-Wide Discovery and the Blank
Slate

A prime example of what human genomics can contribute to our
understanding of complex immune-related traits is the progress
achieved by the International Multiple Sclerosis (MS) Genetics Con-
sortium. The first genome-wide study from this consortium, which
was published in 2007, identified risk variants in IL2RA, IL7RA as well
as the MHC locus (3), and its most recent effort resulted in a genomic
map of more than 200 risk loci, explaining almost 50% of the genetic
contribution of MS (4). The identification of these risk loci, combined
with the use of gene regulation and protein interaction data, made it
possible to map associated loci to specific immune cell types (5). While
supporting the established role of B cells, these studies also suggest
microglia as important players in disease pathophysiology. It is too
early to find evidence for successful clinical translation, but the results
have inspired further investigation of implicated pathways and poten-
tial therapeutic strategies (6). Overall, it has been shown that drug
targets have significantly higher chances of getting approved if there is
supportive genetic data (7, 8).

In contrast to the trailblazing efforts that defined complex disease
genomics for inflammatory disorders, germline genomics research in
CIT does not need to start from a blank slate as it can benefit from
preexisting knowledge of a wide spectrum of autoimmunity-associated
variants and genes (Fig. 1A). There is considerable overlap in the
genetic architecture of complex diseases; immune-related traits cluster
among each other as well as with infectious disease phenotypes (9).
Some genes have been implicated in many immune-relevant traits (7).
For example, a nonsynonymous variant (rs2476601) in the gene
coding protein tyrosine phosphatase nonreceptor type 22 (PTPN22)
is associated with a range of autoimmune diseases, including type
1 diabetes and lupus erythematosus (10, 11). PTPN22 has also been
suggested as a target for CIT, based on experiments in genetically
modified mice that showed a link between PTPN22 phosphatase
activity and antitumor immunity (12). This suggestion is also sup-
ported by human genetics evidence. The autoimmune risk variant
rs2476601 is associated with decreased risk of skin cancer, as well as
better overall survival and increased risk for hyperthyroidism and
hypothyroidism in patients treated with anti-PD-L1.
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Germline genomics research directions in CIT. A, Genome-wide or hypothesis-based association studies can identify genetic variants associated with outcome or
safety phenotypes. The toolbox of human genomics can then be used to link these variants to genes, pathways, and biological functions, ideally offering insights into
novel therapeutic approaches. B, PRSs for immune-related traits can serve as biomarkers for outcome and toxicity risk to stratify patient populations for precision
medicine approaches. Such scores can also be dissected into biologically relevant components to aid drug discovery. C, Prediction of tumor evolution. Germline
genetic variation is strongly associated with many immune-relevant phenotypes and immune cell properties, which in turn exhibit selective pressure on a tumor
genome. As a consequence, single germline variants or genetic risk scores might be able to predict the tumor mutational status. D, Immunogenetic (HLA and KIR)
variants are important in T cell-mediated and NK cell-mediated immune responses, and might be able to predict response as well as the risk for immune-mediated

adverse events in patients treated with CIT.

Generalizing this approach, our knowledge of the polygenic archi-
tecture of complex immune traits allows us to define and analyze
credible sets of common variants in the context of CIT. Although
genome-wide screens are warranted once a critical mass of data is
available, more focused approaches that evaluate the contributions of
individual candidate genes can reduce the multiple testing burden and
generate valuable insight in relatively smaller clinical cohorts (Fig. 2).
With regard to such credible sets of variants, we are not limited to SNPs
associated with immune-relevant, clinically defined disease pheno-
types, but can also make use of recent studies into the genetic
contributions to variations in the baseline immune responses inferred
simply from the profile of cells found in the peripheral blood. Sayaman
and colleagues reported a comprehensive investigation of the role of
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germline genetic variation in shaping the tumor immune landscape,
using immune traits derived from The Cancer Genome Atlas (13).
Among other things, they found variants in IFIHI and STINGI
associated with differences in IFN signaling, and SNPs in RBLI
associated with the abundance of various T-cell subsets.

Large-scale analyses of blood-cell phenotypes in >500,000 partici-
pants in the UK Biobank yielded >5,000 independent genetic associa-
tions with variables including cell counts, relative frequencies of white
blood cells, and hematopoiesis (14). A different study involving 1,000
healthy Western Europeans found that phenotypic variation in innate
immune cells has a stronger genetic component than in the adaptive
immune system, and suggested a strong genetic control of cell-surface
expression of several immune cell markers (15). For example, a variant
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Classification of germline genomic variation and phenotypes of interest. Genome-wide approaches come with a high multiple testing burden, and therefore require
large cohorts to obtain significant results. GWAS in immune-relevant traits have identified a subset of variants with an increased a priori likelihood of also being
relevant in CIT settings, and these can be further summarized as genetic risk scores. Such strategies can facilitate discovery in small, well-characterized patient
cohorts, and hypotheses can be tested not only on clinical outcomes, but also intermediate phenotypes such as the tumor immune phenotype or its mutational

spectrum.

close to the gene coding for sphingosine 1-phosphate receptor S1P1
(CD363) was associated with cell-surface protein expression of CD69
in CD16™ natural killer (NK) cells. A third study of 3,757 Sardinians
also identified >100 genetic associations with immune cell traits (16).
Of note, CD28 levels on diverse T-cell subsets were affected by SNPs in
the genomic locus harboring the CD28 and CTLA4 genes, but also in
trans by a variant in proximity of BACH2. All of these associations were
also previously found to be associated with several autoimmune
diseases (16). It is likely that genetic associations study results for
CIT-relevant outcome and toxicity phenotypes will be enriched for
variants previously implicated in autoimmunity and immune-cell
traits, and the wealth of existing literature will be very useful to obtain
mechanistic hypotheses and inform downstream forward translational
research.

In clinical trial settings, precise measures of response and outcome
(overall and progression-free survival) are usually available and can be
used as endpoints for genetic association studies. This is more chal-
lenging in “real-world” settings, where outcome often must be esti-
mated from other variables including date of treatment onset or death.
But comparable with most complex, heterogeneous, and “fuzzy”
phenotypes, large sample sizes can alleviate the problem and increase
the signal-to-noise ratio. Another promising approach is the utiliza-
tion of intermediate phenotypes, which are quantitative and heritable
biological traits that can be derived from multiple sources including
molecular analyses of the tumor microenvironment. For example, we
can now aim to identify genetic predictors of tumor immune pheno-
types that have been shown to be predictive for outcome in patients
treated with CIT (Fig. 2; refs. 17, 18). It is conceivable that different
germline and tumor genetic profiles predispose patients to develop
inflamed, immune-excluded or immune desert tumors. Furthermore,
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several gene signatures derived from tumor transcriptomic data have
been shown to predict patient outcomes (19, 20), and the strength of
such signatures could be codetermined by germline genetic variation.

In contrast to the investigation of clinical outcomes, studies focusing
on intermediate phenotypes can provide a more direct inside into the
biology underlying a statistical association, thereby possibly offering a
shortcut for the nomination of novel drug targets and combinations, as
well as functional investigations into relevant pathways.

Autoimmune Polygenic Risk

If the entirety of immune-relevant genomic variation contributes to
the positioning of an individual on a spectrum between tolerance and
immunity, or between immune suppression and inflammation, then
one large area of focus should be the evaluation of autoimmune
polygenic risk in the context of CIT outcome and safety phenotypes
(Fig. 1B). Polygenic risk scores (PRS) have emerged as promising
biomarkers for the prediction of disease risk, not only in the area of
cardiovascular disorders, but also oncology (21). These risk scores also
have become increasingly available for a multitude of phenotypes and
are systematically curated in a free online database (22).

It has been shown that certain preexisting autoimmune diseases as
well as the occurrence of imAE upon treatment are associated with
better response to checkpoint inhibitors (23). This link between
autoimmunity and antitumor immunity likely reflects a link between
the propensity of an individual patient’s ability to respond to therapy
and the propensity of response to any immune agonist (24). It is thus
reasonable to hypothesize that PRS for autoimmune diseases might be
predictive of both outcome as well as the risk for imAE in patients
treated with CIT (25). In fact, one study has demonstrated an
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association of PRS for dermatologic autoimmunity with outcome. A
high PRS for vitiligo and psoriasis, as well as a low PRS for atopic
dermatitis, was found to be associated with longer overall survival in
patients with bladder cancer treated with the anti-PD-L1 atezolizu-
mab (26). Of note, this finding possibly reflects the fact that psoriasis is
largely driven by Th17 biology, in contrast to a Th2 polarization for
atopic dermatitis (27). Th2 polarization, mechanistically, is associated
with poor immune responses to cancer (28, 29).

Genetic risk for hypothyroidism, estimated using a PRS derived
from UK Biobank data, was found associated with increased risk for
thyroid dysfunction in patients with cancer treated with atezolizumab,
and also with lower risk of death among patients with triple-negative
breast cancer (30). A similar investigation with patients with non-
small cell lung cancer treated with diverse immune checkpoint inhi-
bitors yielded similar results with respect to hypothyroidism risk,
although no association with outcome was observed (31).

PRS, which consist of a multitude of single variants with small effect
sizes, have the potential to be developed into biomarkers for outcome
and safety. It would also be of interest to dissect them into their
functional components to identify or prioritize potential therapeutic
targets. One possible approach to this problem is the generation of
partitioned polygenic scores according to factors of disease heteroge-
neity, as successfully demonstrated for type 2 diabetes (32). Another
strategy could be the mapping of statistically associated genetic loci to
different immune-cell subtypes according to gene expression patterns
derived from single-cell RNA sequencing (33).

Autoimmune PRS, possibly in combination with other genetic and
nongenetic predictors, may be of importance to manage the risk of
imAE in patients treated with CIT while maintaining treatment
efficacy. This is especially relevant in the context of combination
therapies, because high-grade imAE are more likely to occur with
CIT combinations versus monotherapies (34).

Although the use of autoimmune PRS is of great value, polygenic
scores derived directly from genome-wide association studies (GWAS)
in patients treated with CIT would also be expected to contribute new
insights. However, the GWAS approach will likely require sample sizes
in the tens of thousands, similar to available studies in the field of
autoimmune diseases, and possibly more difficult to accrue in cancer.
It is also important to note that the predictive potential of PRS is
heavily biased toward patients of White European ancestry, a conse-
quence of the same bias in the underlying GWAS (35). A greater
diversity in large-scale genetic association studies is needed to alleviate
health disparities.

Battle of the Genomes

An attractive feature of human genetics research in oncology is
the interaction of two (closely related) genomes, one (the tumor)
evolving in a framework codefined by the other (the host). The
selective pressure underlying tumor evolutionary trajectories is
exhibited by components of the immune system, whose properties
can be defined to be in part determined by inherited genetic
variation. Both genome sequences being available, it is thus possible
to investigate whether the likelihood for a somatic mutation to
become clonal is associated with germline genetic factors (Fig. 1C).
Such studies have been referred to as “genome-to-genome” asso-
ciation studies in infectious disease research, and were successful in
finding footprints of selective pressure exhibited by the host genome
on human immunodeficiency virus and hepatitis C virus (36, 37).

The central question is whether we can use germline genomic
variation to predict the evolutionary path a tumor will take to avoid
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immune recognition. Marty and colleagues have shown that a given
somatic mutation in a tumor is less likely to occur if the patient carries
classical class I or class IT human leukocyte antigen (HLA) alleles that
are predicted to present peptides containing the mutation (38, 39).
Such studies depend on the quality of computational algorithms for
antigen presentation prediction, and they might strongly benefit from
improvements made in this active field of research.

Not all “genome-to-genome” associations need to be primarily
related to the immune system. For example, an intronic variant in
the RBFOX1 gene, which encodes an RNA-binding protein involved in
splicing, was found to be strongly associated with tumor somatic
mutations in SF3BI, which encodes a component of the U2snRNP
spliceosome (40). However, the same study also showed an association
of germline variants on chromosomes 5 and 18 with increased risk for
mutations in CD86, which encodes a ligand for the CD28 costimu-
latory receptor and the CTLA-4 checkpoint.

It is as yet unknown whether autoimmune polygenic risk, which is
likely to be a codeterminant of a patient’s cancer-immune set point,
also impacts the somatic mutation pattern of that patient’s tumor, thus
possibly exhibiting both a direct and indirect effect on therapeutic
outcome. To summarize, genome-to-genome studies can identify
possible drivers of tumor evolution, and they also might be useful to
determine whether germline factors associated with outcome are
due to a direct role of these variants in immune responses, or possibly
result in tumors with different molecular characteristics and associated
prognoses.

Genetics of Signal 1 and Antigen
Presentation

The primary importance of T-cell receptor (TCR) signaling in
adaptive antitumor immunity is well established. Human genetic
variation clearly plays a key role in regulating TCR signaling given
the allelic variation in HLA proteins, the low hanging fruit for most
immune-related phenotypes in terms of genetic associations (Fig. 1D).
An individual patient’s HLA profile determines the spectrum of
neoantigens that can be presented on the surface of tumor cells, ideally
eliciting an antitumor immune response by CD8" T cells. Specific
HLA alleles are strongly associated with the risk for many autoimmune
and infectious diseases, and at least in some cases causally linked to
disease-specific self-antigens (41, 42). This is conceptually different in
a cancer setting, where no two patients share the exact same mutational
profile. It is therefore perhaps not surprising that a previously pub-
lished association of the two HLA class I supertypes HLA-B44 and
HLA-B62 with worse and better outcome in patients treated with
immune checkpoint blockade could not be replicated in a large meta-
analysis (43, 44). Another study found a different allele, HLA-A*03, to
be a predictive biomarker for poor outcome (45). but the same allele
was not found to be associated with outcome in a different publica-
tion (46). Further studies and large-scale meta-analyses will be
required to answer this question, and to shed light on a potential
indication or treatment specificity of such associations.

Because tumor genomes can share important and common driver
mutations, it is possible that statistical associations will be found for
alleles that are predicted to present such shared neoantigens. Vari-
ability in HLA genotypes can also be used to estimate differences in the
diversity of antigens presented to individual TCRs. For example,
individuals who are homozygous for all class I HLA genes would be
expected to be able to present in average fewer neoantigens than
individuals with increased heterozygosity. In a study including 1,535
patients treated with CIT, maximum heterozygosity was associated
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with better outcome compared to cases homozygous at one or more
loci (44). Furthermore, HLA diversity can also be measured in terms of
evolutionary divergence, quantifying physiochemical characteristics of
amino acids in HLA proteins that are relevant for peptide binding.
Increased evolutionary divergence also has been found to be associated
with better outcome (47). However, both results could not be
replicated in a larger meta-analysis, raising doubt about the use-
fulness of HLA diversity metrics as univariable biomarkers to
predict outcome (43, 46). It is likely that the number of different
HLA alleles, and even the diversity of presented neoantigens, are not
good proxies for immunogenicity and T cell-mediated immune
responses. Other factors upstream and downstream of antigen
presentation might mask possible effects, and one can speculate
that these factors include imbalances in HLA protein expression, for
example, through HLA loss or downregulation in the tumor.
Furthermore, T-cell responses are often specific to only few of the
presented neoantigens (immunodominance), possibly restricting
the relevance of a diverse antigen pool.

In addition to their central role in antigen presentation, HLA class I
proteins also contribute to the education of NK cells, showing differ-
ential binding capacities to killer cell immunoglobulin-like receptors
(KIR) that are predominantly expressed on NK cells. KIRs are impor-
tant regulators of NK-cell tolerance and activation, and they can have
inhibitory or activating function (48). NK-cell education is a dynamic
process that determines their degree of responsiveness to “missing self”
phenotypes, for example, as a result of HLA loss or downregulation, a
presumptive and relatively common immune escape mechanism in
cancer (49, 50). HLA alleles can thus be grouped according to their
interaction with specific KIR. For example, the HLA-Bw4 epitope is
defined according to a specific amino acid sequence allowing Bw4
alleles to bind to KIR3DLI receptors. KIR3DL1 " NK cells from Bw4
homozygous donors display increased responsiveness to HLA-
deficient tumors in terms of IFNy production, and KIR3DL1 pre-
dominantly occurs on KIR A haplotypes, which have been associated
with improved response to pathogens (51, 52). Patients with follicular
lymphoma carrying KIR2DL2, KIR3DL1, and their respective ligands
HLA-C1 and HLA-Bw4 show improved outcome, duration of
response and tumor shrinkage upon treatment with the anti-CD20
rituximab (53). Such associations remain to be investigated in large
CIT-treated patient cohorts with solid tumors, which is of relevance
given the high frequency of genetic and epigenetic immune escape
mechanisms resulting in reduced HLA expression (50).

A Fast Track Through Puberty?

Decades of investigations into the genetics of complex diseases
have created a solid basis for human genomics research in CIT, and
also offer a blueprint for how to practically deliver on the promise of
meaningful scientific insight (54, 55). Large-scale collaborations
involving teams of experts in human genomics, cancer immuno-
logy, and clinical discovery research will be required to drive high-
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