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Abstract: In this study, we provide the reader with an overview of quantum dot application in solar
cells to replace dye molecules, where the quantum dots play a key role in photon absorption and
excited charge generation in the device. The brief shows the types of quantum dot sensitized solar
cells and presents the obtained results of them for each type of cell, and provides the advantages
and disadvantages. Lastly, methods are proposed to improve the efficiency performance in the
next researching.
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1. Introduction

Solar cells have grown very rapidly over the past few decades, which are divided into
three generations: the first generation is a monocrystalline and polycrystalline Si solar cell
with an efficiency of 26.7% [1] and 21.9% [2], respectively. The 2nd generation solar cells
are a thin film such as CdTe [3], amorphous Si [4], the cost is lower than the 1st generation,
and the efficiency is 21.7% [5]. The 3rd generation solar cells include dye sensitized solar
cells (DSSCs), quantum dot sensitized solar cells (QDSSCs), perovskite cells with much
lower cost than the 1st and the 2nd generation, and photoelectric conversion efficiency of
over 40% according to the theoretical calculation. The highest yield obtained for DSSCs
11.9% lower than that of perovskite solar cells (19.7%) [6]. This shows the huge potential of
the perovskite solar cell, it reaches an efficiency of 25.2% by 2020 [7], and it is predicted
to reach 28% in the future. In addition to perovskite cells, QDSSCs are predicted to reach
more than 40% efficiency according to theoretical calculations, this is also very potentially
a 3rd generation solar cell.

One of the main reasons for the growing interest in quantum dots is their use in cheap
solar cells, which have the possibility to increase the thermodynamic conversion efficiency
above the Shockley–Queisser limit [8]. The thermodynamic limit of the light to electric
power conversion efficiency, also known as Shockley–Queisser limit, originates from the
fact that photons with energies below the band gap energy are not absorbed, while photons
with energies above the band gap energy release the additional energy (Ephoton − Egap)
mostly as heat. Third generation solar cells aim for conversion efficiencies beyond the
Shockley–Queisser limit through advanced photovoltaic concepts such as multijunction
cells, optical up and down converters, and multiple carrier generation by impact ionization.
Their development has been based on different p–n junctions and the use of quantum dots
(QDs) to replace dyes. Performance above 40% has been obtained [9].
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Now the focus is on the next generation solar cells with high efficiency at an eco-
nomically viable cost [10,11]. QDs are drawing great attention as a material for the next
generation solar cells due to high absorption coefficient, tunable band gap, and multiple
exciton generation (MEG) effect [12,13]. Therefore, QDs have been used in dye-sensitized
solar cells (DSSCs) as the photosensitizer instead of organic dyes to form quantum dot
sensitized solar cells (QDSSCs) [14–16]. The typical structure of the QDSSCs is similar to
that of the DSSCs, which consists of mesoporous photo anode (TiO2 film), sensitizer (QDs),
electrolyte (polysulfide), and the counter electrode [17–20]. During operation, photons are
captured by QDs, yielding electron–hole pairs that are rapidly separated into electrons and
holes at the interface between the nanocrystalline TiO2 and the QDs. The electrons inject
into the TiO2 film and the holes are released by redox couples in the liquid polysulfide
electrolyte [17,20,21].

Improving the power conversion efficiency (η) of QDSSCs has always been an overar-
ching concern for all scientists. One of the approaches has been focused on constructing
and fabricating nanostructural oxides, such as TiO2 [22], ZnO [23,24], and SnO2 [25] to
harvest more amounts of QDs. On the other hand, many efforts have been concentrated on
designing and synthesizing QDs to get high photoelectric performance [26–28].

In recent years, researchers have discovered the QDs, which can create the high per-
formance of solar cells [29]. QDs can be changed in particle size, leading to a change in the
absorption spectrum [30]. Controlling QDs size, we can change their absorption spectrum.
Furthermore, in association with biological molecules, QDs can transfer charge faster while
reducing losses and helping the passivated surface (reduced defect states) of them. In 1990,
Vogel and his colleagues have used CdS QDs with the Pt cathode [31]. However, this is a new
direction in QDSSCs research. Since then, there have been a large number of studies such as
different QDs replacement, TiO2 semiconductor materials, electrolyte, and counter electrodes
to enhance the photovoltaic performance [32–34]. Lee and his colleagues studied CdSe and
CdTe QDs using the Pt counter electrode with an efficiency of under 1% [35]. One year
later (2008), they went on investigating CdS and CdSe QDs and improved the performance
efficiency to 1.2% with the use of polysulfide electrolyte [32]. Meanwhile, Lopez-Luke et al.,
Mora–Sero et al., Shen et al., and Tachibana et al. [36–39] synthesized CdS and CdSe QDs
with the Pt counter electrode, but in different electrolyte systems (Na2S, NaOH + Na2S+S)
and obtained a better performance efficiency of 2.2%. From 2009 to 2012, various QDSSCs
were studied. Cheng et al. [40] examined CdS and CdSe cosensitized TiO2 nanowires and
nanorods by using the Na2S+Na2SO3 electrolyte and obtained a high efficiency of 2.41%.

Recently, a few research showed that some doping ions in the sulfide QDs, such
as Hg2+ into PbS [41], and Mn2+ into CdS [42], could increase the current density and
efficiency of the solar cells. Compared with CdS and PbS QDs, CdSe are more attractive
owing to its high potential for light harvesting in the visible light region [43,44]. The
efficiency of CdSe QDs sensitized solar cells is much higher than that of the sulfide QDs
sensitized solar cells [45–49]. Therefore, doping metal ions into CdSe QDs is considered a
useful way for designing high efficiency solar cells [50,51].

In this study, a review on QDSSCs based on photoanodes with single quantum dot,
with binding agents, with passive surfactant, with multilayer QDs, and with doped QDs,
different counter electrodes, and different electrolytes are briefly provided.

2. Quantum Dot Sensitized Solar Cells (QDSSCs) Based on Single Quantum Dots
(QDs) Photoanode
2.1. A Review on QDSSCs Based on Single QDs

Single QDs are individual QDs synthesized by several methods such as colloidal QD,
chemical bath deposition (CBD), successive ionic layer absorption and reaction (SILAR),
etc. Those QDs are assembled on the surface of metal oxides, which have large electronic
bandgaps such as TiO2, ZnO, SnO2, etc. Both QDs and metal oxide layers are put on top
of fluorine doped tin oxide (FTO) substrates to form a complete photoanode, which is
illustrated in Figure 1. Thus far, there are many QDs that have been attractive globally, for
example, PbS [52,53], CuInS2 [54], AgInSe2 [55], PbSeS [56], Ag2Se [57], CdS [58], CdSe [59],
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CdTe [60], etc. Among them, CdS, CdSe, and CdTe QDs are prominent candidates because
of their high stability in fabricated QDSSCs [61] and achieving the highest photoelectric
conversion efficiency (PCE) as illustrated in Table 1.
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Figure 1. Schematic of a QDSSC’s structure with a single QDs CdSe photoanode.

Table 1. Review of the same field publications.

Metal Oxide Layer QDs Counter Electrode Electrolyte Synthesis Method FF (%) PCE (%) Ref

TiO2 CdS Pt KCl+Na2S SILAR - - [61]
TiO2 CdSe Pt [Fe(CN)6]3−/4− CBD - - [62]
TiO2 CdSe Pt Na2S+Na2SO4 CBD - - [63]
TiO2 CdS Pt Na2SO3 CBD - - [64]
TiO2 CdSe Pt Polysulfide CBD 59 1.03 [65]
TiO2 CdSe Pt Na2S CBD 40 0.7 [66]
TiO2 CdSe Pt Na2S CBD 27.7 0.84 [67]
TiO2 CdSe Pt Na2S+S+NaOH CBD 43 0.4 [68]
TiO2 CdS Pt LiI+I2+DMPII+TPB CBD 70 0.3 [69]
TiO2 CdSe Pt LiI+I2+HMII+TPB CBD, Linker 56.3 1.19 [70]
TiO2 CdS/CdSe Pt Na2S+S CBD 41.5 1.42 [71]
TiO2 CdS Pt KCl+Na2S SILAR - - [72]
TiO2 CdS/CdSe Pt Na2S+S+KCl SILAR 36 1.14 [73]
TiO2 CdS/ZnSe Pt Thiourea CBD, Linker 58 0.86 [74]
TiO2 CdS/CdSe Pt Na2S+S+KCl CBD 37 1.33 [75]
TiO2 CdS/CdSe/ZnS CuS, CoS Polysulfide SILAR 35 2.7 [76]
TiO2 CdS/ZnS Pt Sulfide SILAR 46 1.72 [77]

TiO2/ZnS CdS/CdSe Cu2S Na2S+S SILAR 66 4.21 [78]
TiO2 CdS/CuInS2 Carbon Na2S+S Colloid 37 1.47 [79]
TiO2 CdS/JK24 Pt Na2S+S Colloid 38.2 1.18 [80]

Graphene-TiO2 CdS Pt Na2S+S Colloid 41 1.31 [81]
TiO2 CdS/CdSe Pt Na2S+S+KCl SILAR 36 1.14 [73]
TiO2 CdS/ZnSe Pt Thiourea CBD, Linker 58 0.86 [74]

When a photon is absorbed, an excited electron is generated in the conduction band
of a single QDs and transferred to the metal oxide layer to form a close electronic circuit.
Several PCE of QDSSCs based on single QDs are shown in Table 1, whose efficiencies are
relatively small, specifically, 1.31% and 1.03% [62], the highest PCE for CdS and CdSe QDs,
respectively. These results are due to the absorption spectra of CdS and CdSe QDs being
limited to 450 and 550 nm wavelength, respectively. This leads to the strong absorption
of QDs with photons whose wavelengths are shorter than 550 nm. Otherwise, QDs are
transparent to photons having wavelengths longer than 550 nm. Due to the restriction
of QDs’ absorption spectra, the number of electrons produced after photo excitation is
limited and greatly lost due to recombination centers (the material is imperfectly fabricated)
resulting in low current density and clearly small PCE.
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2.2. The Causes of Low QDSSCs’ PCE and Solutions

Based on the references and obtained results, there are some main reasons for the
reduction of QDSSCs’ PCE, which are:

a. Low fill factor

The fill factor (FF) is defined from the current density–voltage (J–V) characteristic
measurement. FF depends on the value of open circuit potential, resistance of series-
connected components, and recombination processes in the QDSSCs, which relate to the
fabricated materials. Low FF may be caused by the small open circuit potential, which
strongly depends on the photoanode, and excessive recombination in QDSSCs. Moreover,
FF is also affected by series resistors and parallel resistors of QDSSCs. To achieve higher
PCE and reduce recombination in QDSSCs, it is required to have smaller series resistance
RS and larger parallel resistance RSH. From Table 1, RS values of QDSSCs based on CdSe
QDs are relatively large, in the range of 27.4–732 Ω. This obstructs the electrons moving
through the contact layers. Similarly, relatively small RSH values, which can be seen in
Table 2, tend to reduce the performance of QDSSCs.

Table 2. The resistance values of QDSSCs as calculated by physical approach.

QDSSCs RD (Ω) Rd (Ω) RS (Ω) RSH (Ω) PCE η (%)

1-h soaked TiO2/CdSe 1230.0 498.0 732.0 239.0 0.020
10-h soaked TiO2/CdSe 538.2 382.0 156.2 588.1 0.046
18-h soaked TiO2/CdSe 157.3 83.1 74.2 2027.0 0.184
20-h soaked TiO2/CdSe 60.8 33.2 27.4 5396.0 0.575
24-h soaked TiO2/CdSe 136.5 80.0 56.5 2130.0 0.150

b. Impaired electrolyte

To investigate the factors that can cause a reduction in QDSSCs’ PCE, the reduced
absorption ability of the electrolyte after photoanode immersion is studied. According
to Kamat et al., the electrolyte is in direct contact with the TiO2/CdSe membrane, so, in
operation, CdSe QDs react with the electrolyte and generate byproducts, which impair both
the electrolyte and CdSe QDs. Those reactions are described by the following equations:

• A dynamic balance is existed in the S2−/Sn
2− aqueous electrolyte:

S2− + H2O↔ HS− + OH− (1)

• Electron–hole pairs are generated after CdSe QDS are photoexcited by possibly the
following equations:

CdSe + hν→ CdSe (e + h)→ CdSe + hν’ (2)

CdSe (e + h) + TiO2 → CdSe (h) + TiO2 (e) (3)

• Reaction at the CdSe/electrolyte interface:

CdSe (h) + S2− → CdSe + S−* (4)

• The S2−/Sn2− strongly obstructs the hole movement from CdSe QDs into the elec-
trolyte [27] as described in Equation (4) and S−* is in an excited ion.

As can be seen in Figure 2, the absorption of the electrolyte was dramatically decreased
after 2 days of immersion. This proves the large influence of the electronic exchange reactions
between CdSe QDs and the electrolyte, as generated byproducts from Equations (1)–(4)
impaired the electrolyte absorbance and reduced the QDSSCs’ PCE.
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Figure 2. The absorption spectrum of polysulfide electrolyte before and at specific times after
photoanode immersion.

c. Strong recombination processes

A typical structure of QDSSCs includes the photoanode, counter electrode, and poly-
sulfide electrolyte. Under the light condition, the operated processes happening inside
QDSSCs are shown in Figure 3. These processes are indicated by arrows. When the pho-
toanode surface is illuminated, exciton generation and electron–hole recombination are
exhibiting simultaneously inside CdSe QDs (1). Free electrons in the conduction band of
CdSe QDs are easily transferred to the TiO2 conduction band (2). Those electrons, however,
may be trapped in surface states due to CdSe QDs imperfection (3) and diffused into the
electrolyte afterward (4), or recombined with holes inside CdSe QDs. The recombination of
free electrons in the conduction band (CB) with CdSe QDs surface state and the recombina-
tion of electrons in the electrolyte and holes in CdSe QDs valence band (VB) are indicated
as (5) and (6) processes, respectively. The (1), (2), and (6) processes are useful in QDSSCs
operation. In contrast, the remaining processes cause a reduction in QDSSCs’ performance.

d. Shortage of binding agents between QDs and TiO2 membrane

Among QDSSCs, which are prepared based on TiO2, the membrane is soaked directly
into TOP organic solvents, where CdSe QDs are dissolved. The solvents, however, create
unsustainable chemical bonding with TiO2 molecules. Consequently, it reduces the carrier
transport efficiency in QDSSCs.



Molecules 2021, 26, 2638 6 of 21Molecules 2021, 26, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. Schematic of the energy levels of different material layers and main processes in an oper-
ating QDSSC: (1) exciton generation in CdSe QDs, (2) electrons transferring from CdSe QDs into 
TiO2 layer, (3) electron trapping causing by QDs’ surface trap states, (4) electrons diffusion from 
CdSe QDs into electrolyte, (5) relaxation in CdSe QDs, and (6) recombination of electrons in elec-
trolyte and holes in CdSe QDs by reduction reaction at the QDs/electrolyte interface. It was ob-
tained from Mora-Sero and co-works, 2009 [79]. 

d. Shortage of binding agents between QDs and TiO2 membrane 
Among QDSSCs, which are prepared based on TiO2, the membrane is soaked directly 

into TOP organic solvents, where CdSe QDs are dissolved. The solvents, however, create 
unsustainable chemical bonding with TiO2 molecules. Consequently, it reduces the carrier 
transport efficiency in QDSSCs. 

3. QDSSCs Based on Photoanode Binding Agents 
The single QDs presented in the last section are directly absorbed onto the metal ox-

ide membrane. It is difficult to achieve perfect absorption at the QDs/TiO2 interface, hence 
electronic trap states have consequently arisen. To reduce the recombination at QDs/metal 
oxide interface, binding agents, such as mercaptopropionic acid (MPA), 
trioctylphosphine, or trioctylphosphine oxide [82,83], thiolacetid acid (TAA), or mercap-
tohexadecanoic acid [84], are frequently used. With the formation of COOH-R-SH, the 
COOH- (carboxyl) group of binding agents can establish chemical bonding with metal 
oxides, while -SH (thiol) group is linked to single QDs, as illustrated in Figure 4. The pres-
ence of binding agents supports the electron transport from the CB of QDs into the metal 
oxide layer, consequently, the current density enhancement in QDSSCs has been ob-
served. 

Figure 3. Schematic of the energy levels of different material layers and main processes in an
operating QDSSC: (1) exciton generation in CdSe QDs, (2) electrons transferring from CdSe QDs into
TiO2 layer, (3) electron trapping causing by QDs’ surface trap states, (4) electrons diffusion from CdSe
QDs into electrolyte, (5) relaxation in CdSe QDs, and (6) recombination of electrons in electrolyte
and holes in CdSe QDs by reduction reaction at the QDs/electrolyte interface. It was obtained from
Mora-Sero and co-works, 2009 [79].

3. QDSSCs Based on Photoanode Binding Agents

The single QDs presented in the last section are directly absorbed onto the metal oxide
membrane. It is difficult to achieve perfect absorption at the QDs/TiO2 interface, hence
electronic trap states have consequently arisen. To reduce the recombination at QDs/metal
oxide interface, binding agents, such as mercaptopropionic acid (MPA), trioctylphos-
phine, or trioctylphosphine oxide [82,83], thiolacetid acid (TAA), or mercaptohexadecanoic
acid [84], are frequently used. With the formation of COOH-R-SH, the COOH- (carboxyl)
group of binding agents can establish chemical bonding with metal oxides, while -SH (thiol)
group is linked to single QDs, as illustrated in Figure 4. The presence of binding agents
supports the electron transport from the CB of QDs into the metal oxide layer, consequently,
the current density enhancement in QDSSCs has been observed.
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4. QDSSCs Based on a Photoanode with a Passive Surfactant

The actual PCE of the majority of QDSSCs, which have a single QDs photoanode, is
less than from the theoretical calculation due to the strong recombination inside QDs and
at QDs/TiO2 interface or direct contact of QDs with the different electrolyte systems. To
limit the number of surface trap states, materials with large band gaps, such as ZnS, SiO2,
MgO, or Al2O3 (shown in Table 3), have been frequently used as a passivation layer [85–90].
The passivation layer is covered on the surface of QDs to create a boundary that prevents
the direct contact of QDs with the electrolyte and hence the dark current, i.e., stimulated
electron transport from QDs to the electrolyte. One can imagine that the excited electrons
are blocked by the presence of this passivation layer and only able to move from QDs to
TiO2 and then to the outer circuit.

Table 3. Review on QDSSCs with passive surfactant.

QDs Passivation Layer PCE (%) References

CdSe ZnS 2.1 [91]
CdS/CdSe ZnS 4.92 [92]
CdSexTe1-x ZnS/SiO2 8.55 [93]
PbS/CdS ZnS 4.2 [94]
PbS/CdS ZnS/SiO2 7.19 [95]

CdTe/CdSe ZnS 6.76 [96]
ZnTe/CdSe ZnS 6.82 [97]
CdS/CdSe ZnS 2.07 [98]

CdS/CdSe:Mn ZnS 3.77 [99]
CdS/CdSe:Cu ZnS 4.22 [100]

Currently, ZnS has been widely used as the most effective passive surfactant for
QDSSCs since this semiconductor has a large band gap of approximately 3.6 eV and
CB level (−3.6 eV) of nanocrystal ZnS is higher than that of CdSe (−4.3 eV) and CdS
(−4.11 eV), which is studied by Tung et al. and illustrated in Figure 5a. The efficiency was
significantly increased by 150% with the presence of a passivation layer. In addition, Tung
and colleagues reported an efficiency enhancement from 1.64% to 3.77% on QDSSCs based
CdS/CdSe:Mn photoanode and from 1.64% to 4.22% on CdS/CdSe:Cu-based photoanode
with the presence of ZnS passivation layer [99–102]. As reported by Hachiya et al. [95],
a significant improvement of excited electron transport from QDs into TiO2 layer and
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a dramatic reduction of surface trap states at the QDs/TiO2 interface by covering ZnS
nanocrystals on PbS QDs were observed and proved by transient grating (TG) spectra.
Apart from ZnS, other materials, such as ZnSe [103], Al2O3 [104], or SiO2 [101], have been
used as a passivation layer for QDSSCs. According to Tung et al., the QDSSCs efficiency
was sharply increased by 375% when a SiO2 passivation layer was absorbed onto the
surface of CdS/CdSe QDs. Since SiO2 conduction level in a vacuum (4.5 eV) was much
higher than those of CdSe (−4.3 eV) and CdS (−4.11 eV), the dark current was mostly
suppressed in QDSSCs leading to the PCE enhancement. Furthermore, the combination of
ZnS and SiO2 as a passivation layer has shown promising efficiency in recent studies. The
passivation layer of ZnS/SiO2 covered on the surface of CdSexTe1−x QDs, in particular,
leads to the significantly increased efficiency from 6.37% to 8.55% [103].
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5. QDSSCs Based on a Photoanode with Multilayer QDs

QDSSCs based on single QDs have limited absorption spectra in the visible region.
To overcome CdS, CdSe, CdTe, and PbS QDs are combined to be able to absorb photons
with different wavelengths in the visible region. Recently, photoanodes with multilayer
QDs, such as CdS/CdSe [105], CdS/CdTe [106], CdS/PbS [107], CdS/CdSe/PbS [108],
CdSe/CdTe [109], or ZnTe/CdSe [110], have been studied. Osada et al. reported a 70%
increasement in PCE of QDSSCs by covering a CdS layer prior to TiO2, i.e., CdS acts as a
buffer layer, while only 50% enhancement with CdSe prior covering. This result has good
agreement with others reported by Tung and colleagues [111]. Specifically, they observed a
raise from 0.6% to 1.05% in QDSSC’ PCE when a CdS layer is sandwiched between TiO2
and CdSe outer layers. Several publications on the electric transport researched inside
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QDSSCs based on TG spectra have proved that the tandem (or parallel or cophotosensitive)
structure, as can be seen in Figure 5a, leads to more photon absorption and hence more
exciton generation [112,113].

In Figure 6a, TiO2, CdS, and CdSe are in bulk scale, so the CB level of bulk CdSe is
lower than those of bulk TiO2 and CdS. This structure obstructs the electron movement
from the CB of CdS and CdSe QDs into the TiO2 layer. However, when CdS and CdSe
are in the nanoscale, their band gap can be manipulated. As can be seen in Figure 6b,
the band gaps of CdS and CdSe nanocrystals were 2.39 and 1.8 eV, respectively. Due to
quantum confinement, the conduction energy levels of both CdS and CdSe nanocrystals
were higher than that of bulk TiO2. This yielded a tandem structure at the photoanode
energy, which is favorable for electron transport from QDs into TiO2. Moreover, with the
tandem structure shown in Figure 6, light propagates in order through FTO, TiO2, CdS,
CdSe, and ZnS layers. FTO glass substrate is transparent, so light energy is preserved
when reaching the TiO2 layer. Due to the large bandgap of 3.2 eV, the TiO2 layer just
absorbed photons with wavelengths less than 400 nm. Other longer wavelength photons
were continuously propagated and then those with wavelengths less than 450 nm and
650 nm were absorbed by CdS and CdSe QDs, respectively. Therefore, the tandem structure
of photoanode energy led to a broader absorption spectrum from the ultraviolet region to
650 nm in the visible region and more exciton generation, consequently, PCE of QDSSCs
may be enhanced. However, the excited electrons can be trapped by a number of surface
states at TiO2/CdS/CdSe/ZnS interface due to the imperfect synthesis process, which
affects the performance of QDSSCs [100].
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6. QDSSCs Based on a Photoanode with Doped QDs

In recent years, CdSe QDs has been attractively researched and applied in QDSSCs
fabrication due to their simple synthesis, low cost, and high chemical stability. The resis-
tance, however, of CdSe was relatively high and the CB level of this material in the bulk
state was slightly slower than that of TiO2, which obstructed the movement of photoexcited
electrons from the CB of CdSe QDs into TiO2. To improve the current density and hence the
PCE of QDSSCs, several research have been carried out on doping metals, such as Mg [115],
Mn [99], Cu [100], Ag [116], Hg [117], Co [118], or Eu [119], into CdS, CdSe or PbS QDs.

As reported by Tung et al., by doping Mn and Cu into CdSe QDs, the efficiencies
of QDSSCs were increased from 2.55% with pure tandem-structure photoanode to 3.77%
and 4.22% with Mn- and Cu-doped photoanode, respectively. These results have good
agreement with those in Reference [97]. The current density enhancement in QDSSCs
with the doped photoanode was due to the presence of doping metal energy level in
the bandgap of pure QDs, as can be seen in Figure 7b. Hence, one can manipulate the



Molecules 2021, 26, 2638 10 of 21

bandgap of QDs, for instance, CdSe:Cu2+ QDs, by controlling the doping concentration
and layer thickness. Without doping, photons whose energy was less than the pure
QDs bandgap cannot be absorbed. However, by the presence of doping energy levels
inside the pure QDs bandgap, those aforementioned photons were able to be absorbed.
This led to a significant improvement of the photoexcited electron density and hence
the current density of QDSSCs [120–122]. Moreover, by doping metals into pure QDs,
the resistance of different components in QDSSCs, such as TiO2/QDs interface and TiO2
diffusion layer resistance (Rct2) or electrolyte/counter electrode resistance (Rct1), were
dramatically decreased, while the significant increasement of photoexcited electron lifetime
in the QDs CB was observed [100].
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7. QDSSCs Based on Different Counter Electrodes

Counter electrode has a large contribution on the operation of QDSSCs, so choosing
the suitable material for counter electrode fabrication is strongly required. The reduction
reaction of the electrolyte system is occurred at the counter electrode surface, hence the
counter electrode material must have low resistance and high electrochemical catalyst
activity, i.e., to reduce the redox potential of the electrolyte. Pt was previously used as the
cathode material due to its compatibility with the I3−/I− electrolyte as a Figure 9. However,
the resistance of the counter electrode/electrolyte interface is relatively high, which reduces
the electron transport efficiency through the cathode surface [123]. For QDSSCs, QDs
are easily corroded in the I3−/I− electrolyte and hence limit the light absorption ability
of those QDs. Several cathode materials, such as nanocarbon tubes, CuS, nanocarbon
tube–Cu2S, NiS, or Au (Figures 8 and 9) [124–126], have been studied in QDSSCs with
a polysulfide electrolyte. Among them, nanocarbon tube, Au and NiS are suitable for
the polysulfide electrolyte but have high resistance at the counter electrode/electrolyte
interface, hence limiting the electron movement from counter electrode to electrolyte and
reduce the efficiency of QDSSCs. CoS and NiS materials have been studied for better
results, but they leave impurities in the electrolyte and counter electrode, which affect
QDSSCS in the long-term operation [127,128].
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Graphene is a two-dimensional single layer of carbon atoms, which has a large surface
area and high electronic mobility of 1.5 × 104 cm2 V−1 s−1 so having prominent electrical,
optical, thermal dynamics, and mechanical properties [130–132]. Therefore, graphene
has become promising for science and technology revolution. Moreover, graphene oxide
is more applicable due to possessing -COOH and -OH function groups lying between
horizontal lattices and on the corner of the horizontal plane, which can form carbonyl or
carboxylic (Figure 10) to easily establish chemical bonding with inorganic materials, such
as CuxS, on counter electrodes of QDSSCs.
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CuxS and its compounds have superior absorption and decompose chemical reac-
tion ability, which lead to efficiency enhancement, so they have been widely used as
counter electrode materials in QDSSCs [134]. Lee et al. studied the composite of Cu2S and
nanocarbon tube, but only 0.08% efficiency was achieved due to the carrier mobility of the
nanocarbon tube is much lower than that of graphene [135].

8. QDSSCs Based on Different Electrolytes

As discussed in Section 6, QDSSCs derived from the previous type of solar cells, which
had dye molecules as photo absorbers, so keep using the I−/I3− electrolyte. This electrolyte,
however, is the main cause of corrosion and functional degradation of QDs and hence low
efficiency, for instance, 1.52% PCE of QDSSCs based on CdS/CdSe QDs [123]. Therefore,
seeking for a more compatible electrolyte with QDs to improve QDSSCs performance is the
main challenge. The electrolyte, according to recent reports (Table 4), can now be divided
into three categories, which are liquid, pseudo-solid, and solid electrolytes.

Table 4. Review on QDSSCS based on different counter electrodes.

Counter Electrode QDs PCE (%) References

Pt CdS/CdSe 1.52 [123]
Au CdS/CdSe 4.22 [136]

CuxS CdSexTe1−x 9.28 [137]
CuxS CdSexTe1−x 8.72 [138]
Cu2S CdSexTe1−x 6.12 [139]
CoS CdS/CdSe 4.16 [140]

Cu2S CdS/CdSe:Cu 4.22 [100]
rGO-Cu2S CdS/CdSe 4.4 [141]

NiS CdS 2.5 [142]
NiS2 CdS/CdSe 2.25 [143]
PbS CdS/CdSe 3.91 [144]

Among them, liquid polysulfide electrolyte has been widely used due to its compatibil-
ity with QDs and counter electrodes, which greatly improve the QDSSCS performance [144].
This electrolyte, unfortunately, causes oxidation of the QDs and makes the open circuit
potential (VOC) and FF low [145]. To protect from corrosion, QDs are frequently covered by
a layer of passivation surfactants, such as ZnS or SiO2, as discussed above. In addition to
the polysulfide electrolyte, the pseudo-solid [146] or solid [147] electrolyte has been used in
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the combination with organic compounds, such as polyethylene glycol [148] and guanidine
thiocyanate [149].

9. Opportunities and Challenges

Currently, QDs have been made with high purity, quality, less defects, manipulated
bandgap energy, and good optical properties to replace photosensitive molecules. However,
the PCE of QCSSCs has not exceeded 10%, which is much lower than that from theoretical
calculations. There are two major issues one has to overcome:

Firstly, substantial excitation electron loss in QDSSCs. There are many types of losses
in QDSSCs operation, such as the recombination process inside QDs or on their surfaces due
to imperfect fabrication, electron loss when transported through the QDs/TiO2 interface,
electron diffusion process inside the TiO2 membrane, and QDs corrosion by electrolyte or
electron loss due to redox reaction at the electrolyte/counter electrode interface. Among
them, the losses due to internal and surface defects of QDs are limited for those QDs
synthesized by the colloidal process at high temperature or extended for those made
by the CBD or SILAR method. Losses due to electrolyte corrosion can be improved by
using passivation surfactants, such as ZnS or SiO2, to limit the contact between QDs and
electrolytes. However, more defects are observed in the multilayer photoanodes with
tandem structure.

Secondly, researching on the new kind of QDs materials.

a. QDSSCs based on QDs possessing intermediate band (IB)

Limitations in traditional solar cells, such as a narrow absorption spectrum of photo-
sensitive materials, leads to the degradation of absorbed photon density, current density,
and open circuit potential. Those photons, which have energy larger or equal than the
photosensitive material bandgap, are absorbed. For materials with IB structure, this issue is
overcome since the material is a compound of two or more materials with different bandgap
energies. As can be seen in Figure 11, photons with different energies E1, E2, and E3 are
absorbed, corresponding to the energy gap between two VBs of the two materials, valence
and CBs of the narrower bandgap material and two CBs of the two materials, respectively.
These absorptions result in the enhancement of the excited electron concentration in the
CB of a wider bandgap material, which is then collected and transferred to an external
circuit and creates the electric current density. These IB structure materials have great
potential to replace traditional photosensitive materials due to predicted PCE in QDSSCs
up to 46% [150].
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Figure 11. Schematic diagram of energy levels of an IB structure material from Wu and co-works,
2012 [151].

b. Graphene thin film with QDs for photoanode fabrication

Graphene is a two-dimensional single layer of carbon atoms, which has a large surface
area and high electronic mobility of 1.5 × 104 cm2 V−1 s−1 so having prominent electrical,
optical, thermal dynamics, and mechanical properties [151–153]. Carbon-based graphene
materials have outstanding properties, especially graphene quantum dots with extremely
effective electron transport properties, and other interesting phenomena due to the quan-
tum confinement effect [154]. Therefore, graphene has become promising for science
and technology revolution. Several reports on this kind of material have been observed.
Dutta et al. synthesized graphene QDs and then absorbed onto the surface of ZnO fibers
by chemical deposition method, resulting in a 0.8 V open circuit potential [154]. Zhong and
colleagues combined graphene QDs with CdSe QDs covering the TiO2 membrane for 6%
conversion efficiency [155]. Graphene QDs combined with other QDs, such as CdSe, CdS,
or CdTe, is an effective method to improve PCE of QDSSCs.

Figure 12 shows a schematic diagram of a QDSSCs based on a photoanode with
graphene. Core–shell structure CdSe/ZnS QDs absorbed on a graphene membrane has
demonstrated the faster electron transportation from QDs to the TiO2 layer [156]. The
superiority of graphene is demonstrated in another report, which studied the transient
absorption spectrum of pure and CdTe QDs absorbed graphene resulting in a significant
increase of relaxation time from 50 ps in pure QDs to 200 ps in absorbed graphene and hence
increases the excitation electron density in the CB of QDs and is the basis for increasing the
current density in QDSSCs [157].
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