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Mechanism of copper-free Sonogashira reaction
operates through palladium-palladium
transmetallation
Martin Gazvoda 1, Miha Virant 1, Balazs Pinter 2,3 & Janez Košmrlj 1

The seminal contributions by Sonogashira, Cassar and Heck in mid 1970s on Pd/Cu- and Pd-

catalysed (copper-free) coupling of acetylenes with aryl or vinyl halides have evolved in

myriad applications. Despite the enormous success both in academia and in industry, how-

ever, critical mechanistic questions of this cross-coupling process remain unresolved. In this

study, experimental evidence and computational support is provided for the mechanism of

copper-free Sonogashira cross-coupling reaction. In contrast to the consensus monometallic

mechanism, the revealed pathway proceeds through a tandem Pd/Pd cycle linked via a

multistep transmetallation process. This cycle is virtually identical to the Pd/Cu tandem

mechanism of copper co-catalysed Sonogashira cross-couplings, but the role of CuI is played

by a set of PdII species. Phosphine dissociation from the square-planar reactants to form

transient three-coordinate Pd species initiates transmetallation and represents the rate-

determining step of the process.
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Over recent decades, palladium-catalysed cross-coupling
reactions have gained an enormous power in the art of
synthetic organic chemistry by providing a fundamental

tool for the formation of a carbon–carbon bond in many relevant
academic and industrial applications1–5. In the array of cross-
couplings, the reaction between aryl or vinyl halides and terminal
alkynes has become the most general, reliable, and effective
method to prepare substituted alkynes (Fig. 1a)1,4,6–14. It is
known as the Sonogashira reaction—less often, as the
Sonogashira–Hagihara reaction. Industrial applications of the
Sonogashira reaction are well documented4,9. There are two main
characteristically distinct protocols for Pd-catalysed alkynylations
differing profoundly in the use of co-catalysts. The original
Sonogashira reaction requires a copper(I) salt as a co-catalyst in
combination with the palladium source. Although beneficial for
the effectiveness, the usage of copper as a co-catalyst in Pd/Cu
catalysed Sonogashira reaction entails several drawbacks includ-
ing the application of environmentally unfriendly reagents, the
formation of undesirable alkyne homocoupling side products,
and the necessity of strict oxygen exclusion in the reaction mix-
ture8. Efforts to overcome these unsought circumstances have led
to amazing developments in the field of Cu-free Sonogashira
reaction, also known as the Heck–Cassar coupling or Heck
alkynylation.

According to the consensus mechanism depicted in Fig. 1b, the
Pd/Cu catalysed Sonogashira reaction comprises oxidative addition,
transmetallation and reductive elimination, and proceeds along two
synergistically operating catalytic cycles15. In Cycle A, the Pd0

species undergoes oxidative addition of the C(sp2)–X (X= halide)
bond of aryl or vinyl halide to provide PdII complex A. Ligand X is
then replaced by the acetylene group of a copper acetylide reagent
in the transmetallation step to generate σ-alkynylpalladium(II)
species B. The copper acetylide reagent is produced from the
acetylene substrate in the second reaction sequence shown in Cycle
B. Finally, species B undergoes reductive elimination releasing
acetylene derivative and regenerating the starting Pd0 species.
Although some specifics of the transmetallation step and Cycle B
are not fully established, the mechanism of the Pd/Cu catalysed
Sonogashira reaction from Fig. 1b is generally accepted in the
chemical community1,2,6,8,10,13,14,16–18. With some modifications,
the oxidative addition–transmetallation–reductive elimination cycle
is common to other palladium-catalysed cross-couplings, such as
the Suzuki–Miyaura, Stille–Migita–Kosugi, Negishi, Kumada–
Tamao–Corriu, and Hiyama–Denmark reactions, where the aux-
iliary metal, i.e. boron, tin, zinc, magnesium, and silicon, respec-
tively, is essential to assist the transmetallation1,16.

Although the first report on the Cu-free Sonogashira reaction
dates more than 4 decades ago19,20, its mechanism remains elu-
sive. It was tentatively proposed by the group of Soheili in 2003 to
consist of the oxidative addition and the reductive elimination
steps, as depicted in Fig. 1c21. It has been argued that the Cu-free
variant cannot build on a transmetallation process. Instead, the
formation of B was proposed to take place through a reversible π-
coordination of the alkyne reagent to complex A into η2-
alkyne–palladium intermediate C and subsequent base mediated
deprotonation of the terminal acetylenic proton. Although great
deal of experimental and theoretical effort has been undertaken in
support of this mechanism22–31, numerous questions are still
open and the proposed model remains unconfirmed. Adversely,
recent thorough computational investigations revealed a relatively
high activation barrier for the formation of π-complex C from the
acetylene and the oxidative adduct A, for example, refs. 26,27,31.

In contrast to the currently accepted mechanism, we hypo-
thesize that the Cu-free Sonogashira reaction proceeds through a
tandem Pd/Pd double-cycle shown in Fig. 1d. This pathway is
practically identical to the Pd/Cu catalysed mechanism from

Fig. 1b, but the role of the copper co-catalyst is taken by a Pd
complex. This concept stems from our recent endeavour in the
field32. The experimental evidence and computational investiga-
tion presented in this study convincingly support the operation of
a general tandem Pd/Pd cycle in the coupling of aryl halides and
terminal alkynes under various conditions.

Results
Model reactions and conditions. To genuinely map out the
pathway of the Cu-free Sonogashira mechanism, it is essential to
identify pertinent model reactions and conditions. For the
experimental analysis, we tentatively selected 4-iodotoluene (1)
and phenylacetylene (2) as archetypal substrates, and
triphenylphosphine-based palladium pre-catalysts. Triphenyl-
phosphine, along with other bulky phosphines, is a widely used
ligand, with [Pd0(PPh3)4] and trans-[PdII(PPh3)2Cl2] being the
most common catalyst precursors for the Sonogashira reaction1.
It is well documented that the choice of the catalysts precursor is
highly specific to the selection of base, solvent, and reaction
temperature, prompting us to consider two discrete reaction
conditions shown in Fig. 2a, which were taken directly from lit-
erature. Reaction a employs [Pd0(PPh3)4] as a Pd0 pre-catalyst, N,
N-dimethylformamide (DMF) as a polar solvent and sodium
methoxide as a base19, complementary, for Reaction b we selected
trans-[PdIICl2(PPh3)2] as a PdII pre-catalyst with pyrrolidine base
in apolar dichloromethane27. Both reactions were run at 2 mol%
(0.01 M) and 20 mol% (0.1 M) loadings of the palladium catalyst
at room temperature, and where applicable, the results in terms of
tolan formation were consistent with the literature reports27. The
phosphine-containing pre-catalyst made 31P NMR spectroscopy a
sensitive and effective probe for monitoring the reactions under
this study; however, satisfactory quality of the spectra was
obtained only at higher 20 mol% loadings (Supplementary Note 1
and Supplementary Figs. 1–8). Combined with other NMR
spectroscopic and mass-spectrometric techniques, as well as
independent preparation of intermediates, our synergic analysis
enabled the unambiguous identification of all detected species
(Supplementary Table 1, Supplementary Note 2 and Supple-
mentary Figs. 9–14).

Analyses of Reaction a after 1 and 4 h by 31P NMR
spectroscopy (20 mol% catalyst loading, Fig. 2c) revealed the
presence of the following phosphorous containing species: trans-
[PdIII(p-tolyl)(PPh3)2] (4), trans-[PdII(C≡CPh)(p-tolyl)(PPh3)2]
(5), trans-[PdII(C≡CPh)2(PPh3)2] (6), trans-[PdIII2(PPh3)2] (7),
[Pd0(PPh3)2], PPh3, and O= PPh3 (Supplementary Notes 1–2).
Later in the reaction, deceleration is evident from Fig. 2b, which
can be explained by the presence of increasing amounts of PPh3
liberated from the pre-catalyst (vide infra). A completely different
reaction course was realized for Reaction b. Early in the reaction
(1 h), complex trans-[PdII(C≡CPh)2(PPh3)2] (6) was detected in
the 31P NMR spectra as the only relevant phosphorous containing
species (Fig. 2d). At longer times (4 h), the complexity of the
reaction mixture increased, with resonances for species 4, 8,
[PdIII(p-tolyl)(PPh3)(pyrrolidine)] (9), and [PdIII(C≡CPh)(PPh3)
(pyrrolidine)] (10) appearing in the spectra. The formation of 9
and 10 was rationalized by a PPh3 ligand exchange to pyrrolidine
in 4 and 8, respectively, as confirmed by independent experi-
ments (Supplementary Figs. 13–14), and consistent with the
literature data for related Pd-species23,33. In both, Reaction a and
Reaction b, after 4 h homocoupled acetylene dimer (Glaser–Hay
product) was detected in negligible amounts (<5% by 1H NMR).

In view of the mechanistic proposal in Fig. 1d, the above
observations could be interpreted as follows: intermediate 4
corresponds to the product of the oxidative addition step
(trans-A), 5 and 8 are the direct transmetallation products
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(trans-B and trans-E, respectively), while complex 6 serves as
trans-D delivering acetylene to 4 in the transmetallation step. To
close the Cycle B in Fig. 1d, the bisalkynylpalladium complex 6
(trans-D) is regenerated in a base mediated reaction between 8
(trans-E) and 2. Indeed, the high propensity of 8 to combine with
2 into 6 in the presence of a base (Fig. 3a) was confirmed by an
independent experimental work (Supplementary Note 2).

The analysed reaction mixtures recorded for Reaction a and
Reaction b in Fig. 2, reveal characteristically different courses of
reactions. Namely, in Reaction a, the successive dissociation of
PPh3 ligands from the [Pd0(PPh3)4] pre-catalyst generates the
catalytically active Pd0 species ([Pd0(PPh3)2] or [Pd0PPh3])1,34,
which undergoes oxidative addition with 1 to form 4 (trans-A).
Along with 4 (trans-A), bisalkynylpalladium 6 (trans-D) is
essential for the tandem catalytic cycle to operate. The latter
complex is formed via homocoupling of 4 to give trans-
[PdIII2(PPh3)2] (7) (Fig. 3b), which subsequently combines with
acetylene 2 via the intermediacy of 8 (Fig. 3a, X= I). The ability
of 4 to undergo homocoupling has been confirmed independently
(Supplementary Note 4 and Supplementary Fig. 24). Due to the
high reactivity of 8 towards acetylene 2 to form 6 we could not
detect this species, unlike 7, in the reaction mixture of Reaction a
(Fig. 2c). The fact that trans-5 (trans-B) could only be detected in
Reaction a indicates its relatively slow reductive elimination into
3 that can be well explained by the presence of excess PPh3, which
has a decelerating effect, as previously noticed by Stille et al.35 and
discussed below.

In contrast to Reaction a, combining acetylene 2 and trans-
[PdIICl2(PPh3)2] reagents in Reaction b initially results in the
accumulation of complex 6 (trans-D). Its partial reductive
elimination, likely through the intermediacy of cis-6, affords the
butadiyne by-product (PhC≡C)2, and the active Pd0 species, e.g.
[Pd0(PPh3)2]36. The latter, undergoing oxidative addition with 1,
initiates Cycle A in Fig. 1d. With the progress of Reaction b,
sufficient amounts of 4, 8, 9 and 10 are accumulated in the
reaction mixture to be detected by NMR (Fig. 2d). In summary,
the detected species in both the reaction mixtures of Reaction a

and Reaction b are fully consistent with the hypothesized tandem
Pd/Pd mechanism.

Transmetallation. The key step of the proposed mechanism is
transmetallation between two palladium species A and D inter-
connecting the two catalytic Pd-cycles from Fig. 1d. To demon-
strate the feasibility of such a transformation, we let
independently prepared 4 and 6 to react as shown in Fig. 4a. As
pointed out by Amatore and Jutand, reactions performed on
isolated putative catalytic cycle segments may proceed quite dif-
ferently to those under the catalytic conditions37. It is thus
important to note that the composition of the reaction mixture
from Fig. 4c is highly reminiscent to that of Reaction a and
Reaction b (Fig. 2) confirming the presence of key intermediates
from our mechanistic proposal shown in Fig. 1d. Accordingly,
complex 8 (trans-E) is the result of transmetallation between 4
(trans-A) and 6 (trans-D), while [Pd0(PPh3)2] (Fig. 4c) originates
from the reductive elimination of 5 (B). Along with 6, mono-
alkynylpalladium 8 should also be considered as a potential
alkynyl carrier in the transmetallation with 4. Indeed, we have
confirmed that 4 and 8 also yield tolan 3, albeit in a more sluggish
process (Fig. 4b). Although the progress of the reactions shown in
Figs. 2 and 4 (both 0.01M in Pd) appear similar, a more precise
comparison is not in place due to the apparently different reac-
tion conditions. Nevertheless, the progress of transmetallation
reaction of 4 and 6 is in the same range as in Reaction a and
Reaction b with a similar concentration of Pd-cat. (0.01M), and is
comparable with the literature data27. The formation of homo-
coupled acetylene dimer (Glaser–Hay product) could not be
detected by 1H NMR.

An independent reaction between the authentic oxidative
addition product 4 (trans-A) and acetylene 2 in the presence of
excess base (Fig. 5a) should mimic, at least at the onset, the
segment from the mono-metallic proposal from Fig. 1c where the
acetylene π-coordination into C is followed by a base assisted
deprotonation into B. As a result, however, slow progress towards
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tolan 3 with an apparent induction period was noticed (Fig. 5b).
The induction period in the reaction of 2 with 4 is fully consistent
with a lack of another species in the reaction medium that is of
key importance to the catalytic cycle to operate, i.e. Pd-acetylide 6
(or 8, vide supra). This can arise by partial decomposition of 4
through the reaction sequences shown in Fig. 3. Progression of
these reactions in the induction period, including the
transmetallation-reductive elimination events, result in the
concentration build-up of 6, and, accordingly, the reaction is
gaining in rate. Should, however, the Cu-free Sonogashira
reaction proceed via intermediate C, i.e. through the mono-
metallic proposal from Fig. 1c, one would expect the kinetic
profile with an initial maximum reaction rate that is absent of an
induction period.

Under identical reaction conditions, in CDCl3 and in the
presence of pyrrolidine (Fig. 5), the maximum rate of the reaction
of 4 with 2 (7.2 × 10−6 mol L−1 min−1) was compared to that of 4
with 6 (7.4 × 10−6 mol L−1 min−1). In contrast to the latter,
where the maximum reaction rate corresponds to the initial rate
and is absent of the induction period, the maximum rate in the
reaction of 4 with 2 was attained at 81 min. Practically identical

maximum rates in these two reactions indicate the transmetalla-
tion event in the reaction of 4 with 2, and, accordingly, in the
copper-free Sonogashira reaction.

Finally, the revealed induction period cannot be ignored in
Reaction a and Reaction b (Fig. 2b, Supplementary Note 5 and
Supplementary Figs. 29–31). As presented above, in Reaction a
the oxidative addition intermediate that is generated from the
catalytically active Pd0 species [Pd0(PPh3)2], formed by PPh3
dissociation from [Pd0(PPh3)4], and aryl iodide cannot proceed
towards tolan 3 in the absence of Pd-acetylide 6, whereas the
induction period in Reaction b is due to the build-up of 4. It
should be noted that the appearance of the induction period in
the Cu-free Sonogashira reaction strongly depends on the
reaction conditions, and can easily remain unnoticed. Never-
theless, it is apparent from some previous mechanistic studies
where the reactions were intentionally made sluggish for the
monitoring purposes29.

An attempt was made to determine the order in palladium by
running Reaction a at different loadings of Pd(PPh3)4 (3, 4, and 5
mol%) while monitoring the formation of tolan 3 over time
(experimental details are provided in Supplementary Note 5). For
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each Pd loading, the first derivative of the sigmoid curves that
resulted from the experimental data fitting process returned the
maximum reaction rates. In a log–log graph, these were plotted
against Pd concentrations, returning tentative first-order kinetics
in palladium (Supplementary Fig. 32 and Supplementary Table 2).
Since the oxidative addition of 4-iodotoluene (1) with Pd(PPh3)4
into 4 is under the investigated conditions nearly instant, as
confirmed by independent experiments (Supplementary Fig. 25)
one could interpret this result by either reductive elimination
from Cycle A or palladium bis-acetylide 6 formation from Cycle
B as the potential rate-limiting steps. On the other hand, if the
concentration of 4 is always much higher than 6, which is an
acceptable presumption in case of prompt oxidative addition, and
consistent with the results shown in Supplementary Fig. 2, then
the rate of transmetallation virtually depends on the concentra-
tion of 6. In this case, transmetallation can be well approximated
as a pseudo-1st-order kinetics, and hence it should not be
excluded from the list of possible rate-determining steps based on
our preliminary kinetic study.

Computational studies. To gain a molecular-level insight into the
mechanism of the transmetallation event, we computed the most
plausible reaction trajectories using the parent models of the
experimentally used complexes, trans-[PdII(C≡CPh)2(PPh3)2] (6)
and trans-[PdIII(phenyl)(PPh3)2] (4) (Fig. 6 as well as Supple-
mentary Figs. 33–41). The most likely pathway is illustrated in
Fig. 6 (blue) together with the direct activation of phenylacetylene
by 4 (red). As anticipated in Fig. 6, the onset of transmetallation is

phosphine dissociation from 4 to form the three-coordinate PdIII
(phenyl)(PPh3) (4-PPh3) with a relative solution-state free energy
of 22.7 kcal mol−1. We perceive this step to be the rate-
determining step of the process (vide infra). Once 4-PPh3 is
formed its rapid association with 6 yields the bi-metallic inter-
mediate 11, in which the bridging PhC≡C− functionality binds to
the Pd centres of 6 with its σ-lone pair (η1) whereas to the pal-
ladium of 4-PPh3 in η2-fashion through the π-system of the C≡C
triple bond. The key motive of transmetallation is the transfor-
mation of 11 into intermediate 13, in which the linking acetylide
ligand already binds to the 4-PPh3 fragment with its σ-lone pair
and to the 6 derived PdII(C≡CPh)(PPh3)2 fragment with its π-
system. This migration of acetylide takes place in two steps via the
intermediacy of 12 and traversing transition states TS11/12 and
TS12/13. The key structural changes in the latter TSs are the
swinging of the migrating PhC≡C− group from one palladium
centre to the other. The structure at the midway of this transition,
i.e. the quasi-symmetric Pd–C–Pd core, appears as a local mini-
mum (12) on the potential energy surface. The key significance of
the exposed mechanism is the low energy nature of this central
transmetallation process with stable transition states and transient
intermediates, which are indeed the features of efficient catalytic
processes. We attribute this balanced energy landscape and facile
ligand migration to the almost ideal square-planar arrangements
around both Pd centres throughout the entire process. The iodide
ion that stays in the proximity of both Pd2+ centres also massively
contributes to the stabilization via electrostatics.

The next step 13→ TS13/14→ 14 initiates the dissociation of
the fragments; the η2–type PhC≡C…Pd bond breaks and this Pd
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centre shifts towards the iodide and develops an I–Pd interaction
in 14. Our analysis indicates that the direct dissociation of 14 to 8
and three-coordinate cis-5-PPh3 (27 kcal mol−1) might be
possible under certain circumstances. To form stable square-
planar species, however, a coordinating substrate needs to react
with 14; the associative mechanism for PPh3 attack to yield cis-5
and 8 is illustrated in Fig. 6, traversing transitions state TScis-5+8.
Although this dissociation event is associated with a relatively
high computed barrier (25.7 kcal mol−1), the error associated
with conformational diversity38 is expectedly in the order of
10–12 kcal mol−1 in this transition state rendering this process to
be operative at room temperature. Other dissociation routes from
14 might be operational as well, leading to a myriad of
transmetallation products and eventually to trans- and cis-5
through subsequent ligand exchange processes.

In order to put the transmetallation process into context with
the same function of monometallic mechanisms (to deliver 5), we

also scrutinized direct activation of phenylacetylene (2) by 4. This
analysis was necessary because we could not directly compare our
results to earlier computational findings due to the applied
oversimplifications of systems, e.g. using PH3 ligands, and
unrealistic assumptions, e.g. spontaneous deprotonation of
phenylacetylene by pyrrolidine27. Similarly to the earlier proposed
ionic mechanism, the monometallic pathway shown in Fig. 6 also
begins with the dissociation of iodide from 4 to yield 4-I with
solution-state Gibbs free energy of 20.2 kcal mol−1. This cationic
species might bind phenylacetylene through the π-system of
its H–C≡C functionality. Rapid deprotonation by pyrrolidine
takes place in the formed intermediate 15 through TS15 (19.9 kcal
mol−1) to generate base-H+ and trans-5, which converts to cis-5
via ligand exchange processes before initiating reductive elimina-
tion. We revealed a much slower deprotonation and less probable
product formation for phosphine dissociation initiated activation
of acetylene (Supplementary Note 6 and Supplementary Fig. 34).
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The computed activation parameters imply that both mechan-
isms are plausible under the experimental setup and, accordingly,
the Cu-free Sonogashira reaction might proceed via several, often
competing mechanisms and certain substrates, solvents, ligands,
substituents, bases, and other factors might favour one pathway
over another. As we found the alternative direct associative
mechanisms to have higher activation energies (Supplementary
Fig. 33), than the dissociative pathways, we predict the formation
of the three-coordinate species, 4-PPh3 and 4-I, through ligand
dissociation to be the rate-determining step of the corresponding
transmetallation and monometallic processes. Since the associa-
tion of the three-coordinated 4-PPh3 and 4-I with 6 and 2,
respectively, are considered to be barrierless processes39, the
stability of the transient intermediates 4-PPh3 (22.7 kcal mol−1)
and 4-I (20.2 kcal mol−1) determines the activation barriers of the
corresponding processes. While density functional theory (DFT)
cannot realistically differentiate between the plausibility of the
formation of these two species40, experimental studies demon-
strated phosphine dissociation from square-planar PdII species41

as well as stable three-coordinate Pd(II) species containing only
one bulky phosphine group42,43. In addition, we found that
pyrrolidine preferably substitutes phosphine rather than iodine in
4, forming complex [PdII(phenyl)(PPh3)(pyrrolidine)I] (9), which
is in complete agreement with the literature data23,33 (Supple-
mentary Fig. 13). The accessibility of three-coordinated T-shaped
PdII intermediates, like 4-PPh3, has been assessed computation-
ally44 and such species have already been considered explicitly in
mechanistic studies45. The extrusion of bulky phosphines is
mostly driven to ease steric strain leading to such short-lived
three-coordinate palladium centres, which, implied by our
findings, might play a hitherto unrevealed, critical role in other
transformations as well. In conclusion, these findings support that
phosphine dissociation initiated transmetallation is plausible
under standard experimental conditions confirming the predic-
tion of Lledós and Espinet and co-workers that ‘This [bulky
groups] will eventually switch the substitution and transmetalla-
tion steps of the catalytic cycles (for instance cross-coupling
reactions) from the classical associative pathways to dissociative
mechanisms’44.

In line with the above-perceived reaction trajectories for the
transmetallation, previous experimental and computational
reports established alkynyl ligand transfer from several other
metals including Cu, Ag, Au, and Pt to arylpalladium
intermediates46–56. The migration of the acetylide was found to
be reversible, passing through bimetallic intermediates/transition
states with Pd coordinated to the π-bond of the metal-acetylide.
Reversible alkynyl ligand transfer between two PdII complexes,
trans-[PdII(C≡CPh)(p-tolyl)(PEt3)2] (PEt3 analogue of 5) and
trans-[PdIII(p-MeO-C6H4)(PEt3)2] (close analogue of 4), to
give trans-[PdIII(p-tolyl)(PEt3)2] (PEt3 analogue of 4) and
trans-[PdII(C≡CPh)(p-MeO-C6H4)(PEt3)2] (close analogue of 5)
has been observed by Osakada and Yamamoto, but reductive
elimination has not been reported57,58, and this process has never
been put into the context of the copper-free Sonogashira reaction.
Importantly, in alkynyl ligand transfer between an alkynylcopper
and trans-[PdIII(aryl)(PEt3)2] species, upon addition of excess
PPh3 to the reaction mixture the authors observed a decelerating
effect and formation of trans-[PdII(C≡CPh)(aryl)(PEt3)2] (close
analogue of trans-5). This was not observed in the absence of the
coordinative ligand. Taking into account these results57, those by
Stille et al.35, Espinet et al.59,60, as well as our experimental
evidence, there is a dynamic, PPh3-mediated equilibrium process
between cis-5/trans-5 isomers with the latter being the resting
state, as also predicted by DFT (trans-5 is more stable than cis-5
by 2.0 kcal mol−1).

Discussion
We provided a detailed experimental and computational scrutiny
for plausible transmetallation in the copper-free Sonogashira
reaction, i.e. in the palladium-catalysed cross-coupling of acet-
ylenes with aryl halides. In addition, in contrast to the earlier
proposed mono-metallic mechanism, our systematic experiments
intuitively revealed a tandem Pd/Pd catalytic cycle, analogous to
the tandem Pd/Cu mechanism of the copper co-catalysed Sono-
gashira reaction. Although alternative mechanisms are plausible,
our experimental results imply that the transmetallation-centred
tandem Pd/Pd mechanism holds true under distinct characteristic
conditions of the copper-free variant of the Sonogashira cross-
coupling. Solution-state DFT simulations are in accord with these
notions revealing a low-energy pathway for acetylide migration
through a multi-step transmetallation process. Dissociation of the
bulky phosphine ligand, PPh3, from the PdIII(phenyl)(PPh3)2
reactant to form the three-coordinate active species and initiate
transmetallation is predicted to be the rate-determining slow
process of the investigated transmetallation event. Our compu-
tational analysis based on the full models of experimental species
also puts forward a plausible, potentially competing monometallic
pathway for the direct activation of phenylacetylene, also initiated
by ligand dissociation. The evidence of the bimetallic pathway,
which is the first identified palladium–palladium cross-coupling
reaction, shall inspire new design principles and new coupling
reactions.

Methods
General procedure for transmetallation reactions. Oxidative adduct 4 (0.0136
M, 1 equiv.) and the source of acetylene (palladium bis-acetylide 6, palladium
mono-acetylide 8 or acetylene 2) (0.0163M, 1.2 equiv.) were let to react in an oven-
dried NMR tube in chloroform-d (0.70 mL) under argon atmosphere at 302 K for a
given time. The reactions were monitored by NMR spectroscopy. The formation of
the product 3 over time is presented in Figs. 4 and 5. All reactions were conducted
at least in triplicates, always returning consistent results.

General procedure for Reaction a and Reaction b. To a stirred mixture of 4-
iodotoluene (1, 545 mg, 2.5 mmol), phenylacetylene (2, 281 mg, 2.75 mmol), and
appropriate base (1,3,5-trimethoxybenzene was added as internal standard) in
given solvent (5 mL) palladium catalyst (0.50 mmol, 20 mol% or 0.05 mmol, 2 mol
% of Pd) was added at room temperature under argon atmosphere. Stirring was
continued at room temperature. After given time, an aliquot (50 μL) was directly
diluted with CDCl3 (0.6 mL), transferred into NMR tube, and 1H and 31P NMR
were recorded immediately. It has been confirmed that this workup completely
stops the reaction by re-acquiring the 1H NMR spectrum of the same sample after
being aged in the NMR tube for 1 h, with the same result. The conversion into
product 3 was determined by 1H NMR spectroscopy and is shown in Fig. 2b. Both
reactions were conducted at least in triplicates, always returning consistent results.

Computational investigations. All calculations were carried out using DFT as
implemented in the Gaussian09 program package61. In this in silico study, we used
the parent models of the complexes investigated experimentally, meaning that we
only replaced the methyl substituent in p-tolyl to hydrogen (i.e. p-tolyl to phenyl).
Final geometry optimizations were performed using the hybrid-meta-GGA
TPSSh62 functional in combination with the relativistic core potential containing
cc-pVDZ-PP basis set for Pd and I63 whereas the cc-pVDZ basis set for light
atoms64. Analytical vibrational frequency calculations were carried out at the same
level of theory to confirm that the optimized structures correspond to either
minima or first-order saddle points (transition state) of the potential energy sur-
face. Dispersion was taken into account in all calculations, including geometry
optimizations, using Grimme’s D3 method65 with the original D3 damping
function and with SR6 and S8 parameters of 1.660 and 1.105, respectively, ori-
ginally recommended for TPSS. The energies of the optimized structures were
reevaluated using the triple-ζ basis set cc-pVTZ(-PP) (-PP applies for Pd and I)66.
Solvation energies for DMF were also computed at triple-ζ basis set (TPSSh/cc-
pVTZ(-PP)) using the SMD implicit solvation model67. We used the Solvent
Accessible Surface (SAS) method to create the molecular surface of the
solute–solvent boundary where the atomic radii used to generate the solute surface
were the followings: H (1.400 Å), P (2.500 Å), C (2.300 Å), I (2.600 Å), and Pd
(1.800 Å) while the radius of solvent (DMF) was set to be 1.80 Å. In all of these
calculations, an ultrafine grid has been used. As computing precisely the solvation
energy of small charged ions, such as I−, is challenging68, we used a solvation
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energy of −55.0 kcal mol−1 for bare I− in DMF derived from experimental Gibbs
free energy of hydration (−59.9 kcal mol−1) and Gibbs free energy of transition
from water to DMF (+4.9 kcal mol−1)68.

Detailed synthetic procedures for preparation and characterization of
compounds 3–10 are provided in Supplementary Note 2, along with the copies of
NMR spectra (Supplementary Figs. 42–75) and additional details of computational
investigations are provided in Supplementary Note 6 and Supplementary Dataset.

Data availability
The data that support the findings of this study are available within the article and
Supplementary Information files, and are also available from the corresponding authors
upon reasonable request.
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