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Abstract

In three studies, EEGs from three groups of participants were recorded during progressively more real world situations after
drinking alcoholic beverages that brought breath alcohol contents near the limit for driving in California 30 minutes after
drinking. A simple equation that measured neurophysiological effects of alcohol in the first group of 15 participants
performing repetitive cognitive tasks was applied to a second group of 15 operating an automobile driving simulator, and
to a third group of 10 ambulatory people recorded simultaneously during a cocktail party. The equation derived from the
first group quantified alcohol’s effect by combining measures of higher frequency (beta) and lower frequency (theta) power
into a single score. It produced an Area Under the Receiver Operator Characteristic Curve of .73 (p,.05; 67% sensitivity in
recognizing alcohol and 87% specificity in recognizing placebo). Applying the same equation to the second group
operating the driving simulator, AUC was .95, (p,.0001; 93% sensitivity and 73% specificity), while for the cocktail party
group AUC was .87 (p,.01; 80% sensitivity and 80% specificity). EEG scores were significantly related to breath alcohol
content in all studies. Some individuals differed markedly from the overall response evident in their respective groups. The
feasibility of measuring the neurophysiological effect of a psychoactive substance from an entire group of ambulatory
people at a cocktail party suggests that future studies may be able to fruitfully apply brain function measures derived under
rigorously controlled laboratory conditions to assess drug effects on groups of people interacting in real world situations.

Citation: Gevins A, Chan CS, Sam-Vargas L (2012) Towards Measuring Brain Function on Groups of People in the Real World. PLoS ONE 7(9): e44676. doi:10.1371/
journal.pone.0044676

Editor: James Kilner, University College London, United Kingdom

Received May 24, 2012; Accepted August 10, 2012; Published September 5, 2012

Copyright: � 2012 Gevins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding came from the National Institute of Mental Health R43MH071865, National Institute of Neurological Diseases and Strokes R44NS048815,
National Institute of Alcoholism and Alcohol Abuse R44AA014824, and the United States Air Force Research Laboratory FA8650-05-C-6553. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts. The authors are employed by the San Francisco Brain
Research Institute & SAM Technology which are 100% supported by competing research grants from the U.S. Federal Government. Alan Gevins is the founder and
owner of this private research laboratory which has been operating independently of the University of California San Francisco School of Medicine since 1980. The
organization only performs research and offers no services or products. None of the authors perform consulting work. It is very unlikely that any corporation,
investor, etc. would find it commercially worthwhile to buy or license the technologies that the authors have made to do their research. This does not alter the
authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: alan@sfbri.org

Introduction

Characterizing the neurophysiological effects of drugs with

EEGs is well established [1-2]. The question naturally arises how

drug effects measured in the laboratory extend to real world

situations. Such effects have rarely been measured outside the lab,

for instance in vehicles being driven by fatigued and/or medicated

drivers [3-4]. Further, since so much of human experience involves

social interactions, an additional frontier is to extend brain

function measurements to groups of people simultaneously.

Progress has been made in this regard with EEG and fMRI

measures [5-8], but neurophysiological effects of drugs have not

been measured from more than one person at a time. Again, the

frontier is to extend from contrived laboratory conditions to

studies in real world situations.

Here we report initial progress in this regard in three studies

in which an EEG measure of the effect of a psychoactive

substance during highly controlled repetitive cognitive testing in

the lab was applied first to the more complex activity of

operating an automobile driving simulator and then to a real

world situation in which EEGs were recorded concurrently from

10 ambulatory people during a cocktail party. To establish

feasibility, a strong effect was studied across increasingly

naturalistic conditions, namely the acute neurophysiological

response to alcohol [9-13]. An analytic method developed to

measure drug effects by combining EEG and task performance

measures into a single score [14] was adapted for use here on

EEG measures by themselves. Different groups of subjects were

used in the three studies to help assure that the findings were

not idiosyncratic to the small groups of individuals studied.

Methods

Participants
Ethics. All studies were conducted according to the principles

expressed in the Declaration of Helsinki. All studies were reviewed

and approved by The SAM Human Subject’s Research In-

stitutional Review Board (Department of Health and Human

Services Registration Number DHHS IRB00000816), and all

participation was fully informed and voluntary with written

consent.

Study 1. Participants were 15 healthy adults (21–32 years,

mean age 26, 8 women). Health status of subjects was assessed

by questionnaire. Participants reported having no current or
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past neurological or psychiatric disorders, were non-smokers and

were light to moderate users of alcohol (1 to 12 drinks per

week). Participants with recent or habitual use of illicit drugs or

medications that may interact with alcohol were excluded.

Study 2. Participants were 15 healthy adults (21–58 years,

mean age 31, 8 women), none of whom participated in Study 1.

Participants were licensed drivers, light to moderate users of

alcohol (1 to 10 drinks per week), and had the same health status

Figure 1. EEGs of ten ambulatory participants simultaneously measured during a cocktail party. EEGs were recorded and transmitted to
PCs while the partiers chatted, ate sushi and hors d’oeuvres and drank vodka martinis or vodka and cranberry cocktails according to their personal
inclinations. Participants also measured breath alcohol contents, took photos and checked the data collection (lower photos). The six participants
shown in photos have given written informed consent, as outlined in the PLoS consent form, to publication of their photograph.
doi:10.1371/journal.pone.0044676.g001
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and inclusion/exclusion criteria as in Study 1. Prescription and

non-prescription medications ingested in the prior 48 hours were

recorded and several participants reported having taken multi-

vitamins, aspirin or ibuprofen.

Study 3. Ten scientists, engineers and research associates in

our laboratory (5 women) participated in the study. None had

participated in Studies 1 or 2. Each participant was a test subject

and also helped with data collection. They were light to moderate

users of alcohol (1 to 12 drinks per week), ranged in age from 25 to

63 (mean 39) years, and had the same health status and inclusion/

exclusion criteria as in Study 1.

Test Administration
Breath alcohol content (BAC) was measured with a breathalyzer

,30 minutes post-drinking in all the studies.

Study 1. Participants performed a 2-back spatial working

memory (WM) task in a block of 50 trials, lasting approximately

four minutes, during which they had to decide whether the

position of the current stimulus was in the same (match) or

different (no-match) location as that of the stimulus presented

two trials previously [15–19]. In this task, a stimulus (letter of

the alphabet) was displayed for 200 ms in one of 12 positions

on each trial, every 4.5 s. Participants responded ‘‘match’’ or

‘‘no-match’’ on each trial with the left and right mouse buttons,

respectively. Participants also performed an easier version of the

WM task in which they had to decide whether the position of

the current stimulus was the same as that of the first stimulus in

the block of 50 trials. Stimulus and response parameters were

the same as in the 2-back task. Participants also performed

a zazen control task for 1.5 minutes in which they stared at

a foveally presented dot and focused their attention on their

ordinary inhalations and exhalations. Data from the WM and

control tasks were combined to derive a multivariate metric for

assessing alcohol effects during laboratory cognitive testing

conditions.

Study 2. Participants in this study operated an automobile

driving simulator (STISIM Drive; Systems Technology, Inc.,

Hawthorne, CA) for,20 minutes. The participant watched a first-

person, out-of-the-windshield view on a 20-inch LCD monitor

placed at eye-level ,2 feet from the eyes and controlled the car

using a steering wheel and pedal set (Microsoft SideWinder) with

the position adjusted to suit each participant. For each test,

participants performed one of 30 different scenarios, with the

difficulty and number and position of unpredictable events

equated across scenarios. Each scenario could be performed in

,16–20 minutes and presented a variety of different conditions,

ranging from long stretches of highway driving with few other cars

to urban driving conditions with heavy traffic, stoplights,

pedestrians, and other hazards. The top speed of the simulator

was 80 mph and participants were instructed to reach the

endpoint of the scenario as quickly as possible without causing

accidents and following the rules of the road.

Study 3. The cocktail party was unscripted, other than

withholding drinking for the first 10 minutes to record a pre-

drinking baseline. The partiers intermingled, chatted, ate sushi

and hors d’oeuvres and drank vodka martinis or vodka and

cranberry cocktails according to their personal inclinations. They

also measured BACs, took photos and checked up on the

automated data collection (Figure 1).

EEG Recording
In Study 1, EEGs were recorded from 40 electrodes, including

the sites measured in Studies 2 and 3, using a stretchable cap with

gel-filled electrodes. Signals were sampled at 256 Hz and band-

pass filtered from 0.01 to 100 Hz. Prior to the analysis, sites were

selected and the data was digitally filtered and down-sampled to

match the data recorded in Studies 2 and 3. In Studies 2 and 3,

EEG was continuously recorded with a stretchable nylon cap with

disposable solid-hydrogel electrodes placed over bilateral and

midline dorsolateral prefrontal locations (F3, F4, Fz), midline

sensorimotor cortex (Cz), lateral superior parietal cortex (P3, P4),

and midline parieto-occipital cortex (POz), referenced to digitally

linked mastoids [20-21]. These locations were selected, based on

cognitive EEG studies with 40 or 100 electrodes [16], for their

sensitivity to variations in WM task difficulty. Vertical and

horizontal eye movements were monitored with electrodes placed

above and lateral to each eye. Signals were amplified, digitized at

128 Hz, band-pass filtered from 0.1 to 35 Hz and transmitted to

a PC by an electronic module on the cap. The cap and its

electronics were made in our lab and are not commercially

available.

Procedures
Studies 1 and 2. Each participant completed alcohol and

placebo test sessions, occurring at least one week apart and

conducted according to a double blind, randomized, counter-

balanced design. In each session, participants consumed a fruit

juice drink containing either 0.88 g/kg of 95% ethanol calculated

to produce a peak BAC approaching 0.08 grams per 210 liters of

breath (the legal limit for operating a motor vehicle in California),

or with 5 ml of alcohol floated on top to mimic the smell and taste

of the treatment drink. Participants were tested during a testing

interval that began 30 minutes after drinking, corresponding with

the ,30–90 minute time range of peak BAC [22].

Study 3. Teams placed headsets simultaneously on groups of

participants; total set up time was about a half hour. Data from

each EEG headset was transmitted during the party via Bluetooth

protocol to its own dedicated notebook computer. The data were

time synchronized across computers by a start signal sent via local

Ethernet from one computer to all other recording computers.

Data Analysis
EEG spectral analysis. For Studies 1 and 2, EEG data

during task performance was analyzed from the testing interval

that began 30 minutes after drinking, amounting to ,10 min in

Study 1 and ,20 min in study 2. For Study 3, ,3 minutes before

drinking and ,3 minutes beginning 30 minutes after drinking was

analyzed. Automatic detection and removal of artifacts due to eye

movements and blinks, scalp muscle activity, head and body

movements, and bad electrode contacts [23-24] was followed by

visual inspection of all decontaminated and raw data. Power

spectral estimates were computed from Fast Fourier Transforms of

the decontaminated, Hanning-windowed EEG data of each

electrode of each participant by averaging the 50% overlapped

2-second periodograms over a task(s) in Studies 1 and 2, or over

the two ,3 minute intervals in Study 3. The individual frequency

component powers were then averaged into 3 standard bands,

theta (4–7 Hz), alpha (8–13 Hz) and beta (13–18 Hz) determined

in prior studies to be sensitive to alcohol’s effect on the EEG [9-

12], [18], [25]. The 3 banded powers and their standard

deviations constituted a total set of 6 variables for each of the 7

electrode sites. For each study, the power and standard deviation

values were transformed to z-scores within subjects across alcohol

and placebo or pre-drinking conditions to reduce scale differences

between the variables and between subjects [26], [27]. The values

of the 6 variables at the 7 electrode sites were then averaged over

all sites to produce 6 final candidate variables characterizing

alcohol’s effect over the entire cerebral cortex [14]. Differences in
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the variables between alcohol and placebo/pre-drinking condi-

tions were assessed for each study by ANOVAs with condition and

variable as within-subjects factors. Degrees of freedom in the

ANOVAs were adjusted when appropriate using the Greenhouse-

Geisser technique to correct for violations of the sphericity

assumption.

Multivariate divergence analysis of the EEG effects of

alcohol. The subset of EEG variables from the 6 candidates

which best discriminated alcohol from placebo conditions was

identified in an exploratory analysis of the data from Study 1. The

resulting combination of variables and their weighting in an

equation was then tested on data from Studies 2 and 3 to assess

generalization to the more complex simulated driving task and to

the real world situation of a group of people interacting socially.

Application of divergence analysis to produce such an equation is

described in detail in Gevins et al. [14] and is briefly summarized

here.

Study 1 exploratory analysis. For each participant, the

values of the 6 candidate variables during cognitive testing for both

alcohol and placebo sessions were submitted to a multivariate

divergence analysis, a simple type of discriminant analysis that

searched for the subset of variables producing the largest

divergence between alcohol and placebo data [28], [29]. The

divergence analysis considered all possible subsets of up to 3 of the

6 variables and chose the subset that, considered together as

a group, best recognized alcohol. This resulted in an equation

which produced a score that could be used to classify data samples

from an individual as being either from alcohol or placebo/pre-

drinking conditions.

Study 2. Data during driving simulator operation from

alcohol and placebo sessions were tested with the equation

computed from Study 1. For each participant, for alcohol and

placebo conditions, the values of each of the variables chosen in

Study 1 were weighted by multiplying it by the percentage of the

total divergence contributed by that variable in Study 1 and

dividing by its variance in Study 1. The resulting values were then

summed with a constant to form an EEG score quantifying the

neurophysiological effect of alcohol and a score for placebo. EEG

scores from each study were scaled such that the mean of scores

from Study 1 were 20.5 in the alcohol condition and +0.5 in the

placebo condition. A relatively negative score in the alcohol

condition indicated that the individual was affected by alcohol in

a similar manner to that of participants in Study 1. A relatively

positive score in the alcohol condition indicated that the individual

had variable values more typical of the placebo condition in Study

1. Corresponding interpretations would apply for relatively

positive and negative scores in the placebo condition.

Study 3. The equation from Study 1 was similarly applied to

the pre- and post-drinking data from each cocktail party

participant to produce EEG scores for that individual.

Thus, for each study, data from each participant were combined

into EEG scores in the alcohol and placebo/pre-drinking

conditions, using the up to 3 variables, weights, and variances

calculated in the divergence analysis in Study 1. Then for each

study, participants’ post-drinking and placebo/pre-drinking scores

were compared using a receiver-operator characteristic (ROC)

analysis to assess the significance of recognition of alcohol [30].

Area under the ROC curve (AUC), sensitivity (correctly identify-

ing the alcohol condition), and specificity (correctly identifying the

placebo/pre-drinking condition) values were computed. The

significance of the AUC was then determined by transforming

the AUC into a z-score with respect to the null hypothesis of

AUC=0.5, and referencing the z-score to the normal distribution,

i.e. z score =AUC minus 0.5 divided by the standard error for

AUC=0.5. Pearson correlations were computed to assess the

correlation of the EEG divergence scores to BAC values.

Results

Breath Alcohol Content
The average BAC 30 minutes after drinking was.07 (sd.02) in

Study 1,.07 (sd.01) in Study 2 and.07 (.02) in Study 3 (values from

later in the session were conservatively interpolated for several

subjects due to missing/invalid readings at that time point).

Task Performance
In Study 1, accuracy was not affected by alcohol in either WM

task (easy WM t(1,14) = 0, p..05; difficult WM t(1,14) =21.37,

p..05), nor was reaction time (easy WM t(1,14) =2.34, p..05;

difficult WM t(1,14) = .40, p..05). In Study 2, driving simulator

performance was not affected by alcohol (lane position deviations

t(1,14) = .43, p..05; driving off road incidents t(1,14) = 2.1,

p..05; collisions t(1,14) = 2.0, p..05). The partiers in Study 3

intermingled amiably, consumed cocktails and sushi to their

content, chatted, made jokes, and laughed a lot. It was a good

party.

EEG
In Study 1,,96% of the cognitive task data was valid and,4%

was lost to unrecoverable artifact, resulting in ,9 minutes of data

for analysis from each participant for each of the placebo and

alcohol sessions. In Study 2, ,96% of the driving simulator data

was valid and ,4% was lost, resulting in ,18 minutes of driving

simulator task data for analysis from each participant for each of

the placebo and alcohol sessions. In Study 3, ,60% of the data

was valid and ,40% was lost, resulting in 2.75 to 3.35 minutes of

valid pre- and post-drinking data for each participant.

Figure 2 shows the EEG power and standard deviations in

theta, alpha and beta bands of the alcohol and placebo/pre-

drinking conditions for the three studies. There was no significant

difference between the alcohol and placebo conditions in Study 1

(F(1,14) = 1.92, p..05), but the variables were significantly

different in Studies 2 and 3 (F(1,14) = 10.22, p,.01 and

F(1,9) = 18.20 p,.01, respectively). There was a significant con-

dition 6 variable interaction for Study 2 (F(1,20) = 4.82, p,.05),

but post-hoc comparisons did not reveal significant differences

between alcohol and placebo/pre-drinking for any of the

variables. The condition x variable interaction was also significant

for Study 3 (F(2,15) = 5.04, p,.05), where power was greater in

the alcohol than in the placebo/pre-ingestion condition for the

alpha and beta power and SD variables (F(1,19) = 5.39, p,.05;

F(1,19) = 5.85, p,.05; F(1,19) = 6.68, p,.05; and F(1,19) = 6.92,

p,.05 respectively).

In the Study 1 exploratory analysis, the highest divergence

between alcohol and placebo was produced by a combination of 2

measures from the candidate group of 6: increased beta band

power and decreased theta band power in the alcohol condition.

The equation was as follows:

If {1:88 � betað Þz :80 � thetað Þz 0:44v{0:15,

then the segment was classified as being from the alcohol data

sample.

This resulted in an AUC of 0.73 (z (29) = 2.14, p,.05), with

67% sensitivity and 87% specificity in distinguishing alcohol from

placebo (Table 1, left column).

Applying the equation to the Study 2 data, sensitivity in

recognizing the post-drinking alcohol data was 93% and specificity

Multiperson EEGs at a Cocktail Party
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in recognizing the placebo data was 73% (AUC 0.95, (z

(29) = 4.21, p,.0001) (Table 1, middle column). Applying the

equation to the cocktail party data, sensitivity in recognizing the

post-drinking alcohol data was 80% and specificity in recognizing

the pre-drinking data was 80% (AUC 0.87; z (19) = 2.80, p,.01)

(Table 1, right column).

Individual differences in EEG alcohol responses. Each

participant’s EEG alcohol scores in the three studies are shown in

Figure 3. For Study 1 during cognitive tasks, 11 of the 15

participants showed the same pattern as the group with lower

scores for alcohol than placebo, while 4 had the reverse response.

EEG scores were negatively correlated with BAC (r =2.38,

p,.05). During simulated driving in Study 2, 13 of the 15 had the

same pattern as the group, again with a negative correlation

between EEG scores and BAC (r =2.75, p,.001). For Study 3, 9

of the 10 partiers had the same pattern as the group, with

a negative correlation between EEG scores and BAC (r =2.64,

p,.01).

Discussion

Initial progress is reported towards measuring the effects of

a psychoactive substance on the brain function of an entire group

of ambulatory people measured simultaneously during a real

world activity. An incremental approach was used in which an

equation was generated to assess alcohol effects on the EEG during

cognitive testing in a double-blind, placebo-controlled experiment,

30–50 minutes after drinking when breath alcohol concentrations

were just under the California legal limit for driving. The resulting

equation distinguished alcohol from placebo with a simple

weighted combination of beta band and theta band power

measures. The equation was then applied, with good results, to

a second double-blind, placebo-controlled study of alcohol effects

on a different group of participants performing the more complex

task of operating an automobile driving simulator. Finally, the

same equation readily recognized the effect of alcohol in the third

group who were having a good time at a cocktail party.

Alcohol did not affect working memory task performance in

Study 1 or automobile driving simulator performance in Study 2.

Values for theta, alpha and beta band power and standard

deviation variables were not affected by alcohol in Study 1, but

were affected in Studies 2 (p,.01) and 3 (p,.01). These

differences in EEG ANOVA significances between the three

studies may merely reflect chance variations in the small subject

populations. In Study 3, post-hoc tests showed significantly greater

power and standard deviations for the alpha and beta variables,

consistent with prior studies [9–13], [18], [25], [31]. Thus, the

equation generated on EEG data with a weak alcohol effect

performed well when applied in the two independent studies with

the same BAC level. This suggests that the equation indeed

quantified a salient aspect of the neurophysiological effect of

alcohol.

With few exceptions [14], prior EEG research on alcohol effects

during cognitive performance has not focused on individual

variations in response to alcohol. In the current study, individual

differences were assessed by applying the same equation to the

data of each of the participants. There was a significant negative

correlation between BAC measures and the individual EEG scores

in all three studies. While the EEG scores for most individuals

were relatively more negative after drinking and relatively more

positive in the placebo condition or before drinking, there were

individual variations, more so in Study 1. While some of these

individual differences are interesting (e.g. the two subjects in Study

2, u01 and u31, with the best driving performance had driving

EEG scores that were markedly less affected by alcohol than the

group), the small number of subjects precludes further discussion

of such findings until further research is undertaken.

A major concern in measuring brain function from active

ambulatory people is loss of data because of unrecoverable

contamination due to artifacts. Automated methods for artifact

detection and decontamination have improved over the years [23],

[24], [32–36] and are helpful in reducing human labor, improving

consistency and recovering some of the data that would otherwise

have to be discarded. However, such methods are still far from

perfect and it is still essential that all data be subjected to labor-

intensive expert manual review. In the current studies, data

attrition increased markedly when recording under real world

Figure 2. Mean power values for the six candidate EEG variables. Means over participants of EEG power and within-participant standard
deviation of power in theta, alpha and beta bands for alcohol (dark bars) and placebo or pre-ingestion (light bars) conditions for the three studies.
These variables were not affected by alcohol in (A) Study 1 (p..05), but were in (B) Study 2 (p,.01) and (C) Study 3 (p,.01); the four alpha and beta
variables increased with alcohol in Study 3 (p’s,.05). In an exploratory analysis of Study 1, the divergence analysis selected beta and theta band
power from the group of six, and weighted and combined them in a simple equation that recognized alcohol’s EEG effect. That equation was then
applied to the different groups of participants in Studies 2 and 3. Error bars are standard deviation.
doi:10.1371/journal.pone.0044676.g002

Table 1. Neurophysiological effects of alcohol.

Study 1: Cognitive Tasks Study 2: Simulated Driving Study 3: Cocktail Party

Placebo/Pre-drinking EEG score 0.5 (.72) .44 (.85) 1.08 (1.19)

Post-drinking EEG score 20.5 (1.96) 22.16 (1.38) 2.78 (.56)

AUC (95% CI) 0.73 (.53–.93)* 0.95 (.87–1)*** 0.87 (.68–1) **

Sensitivity (%) 67 93 80

Specificity 87 73 80

Rows show mean (standard deviation) of EEG scores for placebo/pre-drinking and post-drinking conditions, the Area Under the Curve (AUC) (95% confidence interval)
for recognizing post-drinking from placebo or pre-drinking, the sensitivity of recognizing alcohol and the specificity of recognizing the placebo or pre-drinking
conditions.
*p,.05,
**p,.01,
***p,.0001.
doi:10.1371/journal.pone.0044676.t001
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conditions. In Studies 1 and 2 in which participants were seated,

stared straight ahead at a video monitor, made constrained limb

movements and did not talk, ,4% of the data to be analyzed was

lost. By contrast, in Study 3, ,40% of the data to be analyzed

could not be recovered due to artifacts generated by chewing,

swallowing, talking and moving around during the cocktail party.

Yet, even so, it is encouraging that the majority of the data was

valid under such conditions. Future improvements in automated

artifact decontamination methods will hopefully produce higher

rates of valid data.

The results reported here are merely a pilot study that helps to

establish the feasibility of validly measuring the neurophysiological

effects of a psychoactive substance in real world conditions from

groups of people simultaneously. We do not wish to attach too

much significance to the specific findings. Given the small number

of participants, regional cortical effects of alcohol were not

examined because the large number of variables produced by

including data from each electrode site in the divergence analysis

would have produced an unreliable equation that over fitted the

data [37]. Rather, a global effect on the cerebral cortex was

obtained by averaging the data from the individual electrodes.

Application of principal components analysis [38], statistical

pattern recognition methods [39], [40], global field power [41],

[42], independent components analysis [43], etc. might be more

effective. Future studies with larger subject populations might

fruitfully explore differential effects on frontal, parietal and other

cortical areas, for instance using high resolution EEG methods

with many electrodes, spatial deblurring and MRI co-registration

[44]. Amongst the many types of analysis available, the simplest

form of spectral analysis into traditional frequency bands was used

to parameterize the EEG. The beta band and theta band EEG

power variables chosen by the divergence analysis may not be the

best measures of alcohol’s effect during naturalistic situations.

They are merely variables that were most effective in combination

when characterizing alcohol effects 30 minutes after drinking

during performance of repetitive cognitive tasks in one sample of

healthy adults. Other analyses such as, time-frequency analysis,

independent component analysis, autoregressive models of various

sorts, nonlinear dynamical models, etc. might be more effective.

Modest though they are, these initial results promisingly suggest

that future studies may be able to apply brain function measures of

drug effects derived in rigorously controlled laboratory neurocog-

nitive research to groups of people interacting in natural social

situations. By doing so, we hope that the effects of alcohol and

other drugs on particular aspects of social interaction will be

elucidated with a focus on the fine grain structure of interactions

between individuals and relationships to varying doses and

pharmacodynamics. In addition to advancing basic knowledge,

such future research may provide useful information for improving

pharmacological treatments of a variety of psychiatric disorders.
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