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Brownian motion and quantum dynamics
of magnetic monopoles in spin ice
L. Bovo1, J.A. Bloxsom1, D. Prabhakaran2, G. Aeppli1 & S.T. Bramwell1

Spin ice illustrates many unusual magnetic properties, including zero point entropy, emergent

monopoles and a quasi liquid–gas transition. To reveal the quantum spin dynamics

that underpin these phenomena is an experimental challenge. Here we show how crucial

information is contained in the frequency dependence of the magnetic susceptibility and in its

high frequency or adiabatic limit. The typical response of Dy2Ti2O7 spin ice indicates that

monopole diffusion is Brownian but is underpinned by spin tunnelling and is influenced by

collective monopole interactions. The adiabatic response reveals evidence of driven mono-

pole plasma oscillations in weak applied field, and unconventional critical behaviour in strong

applied field. Our results clarify the origin of the relatively high frequency response in spin ice.

They disclose unexpected physics and establish adiabatic susceptibility as a revealing

characteristic of exotic spin systems.
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I
n spin ice materials like Ho2Ti2O7 or Dy2Ti2O7 (refs 1–7)
magnetic rare earth ions (for example, Ho, Dy) occupy a
lattice of corner-linked tetrahedra. In the low temperature spin

ice state two atomic magnetic moments or ‘spins’ point into, and
two point out of each tetrahedron. This is equivalent to the ice
rule that determines proton configurations in water ice1,2, and
hence spin ice has a residual entropy equal to the Pauling entropy
of water ice3. The thermodynamic properties of spin ice are well
described by a classical spin Hamiltonian with a dominant
dipole–dipole interaction4,8. The self-screening of the latter
establishes the ice rule ground state4, but this property does not
extend to excited states5. A spin flip out of the ice rule manifold
creates a dipolar magnetic excitation that may fractionalize to
produce free defects. These inhabit the diamond lattice formed
by tetrahedron centres and behave as magnetic monopoles on
account of the integrated dipole–dipole interaction5,6.

The spin ices are part of the family of rare earth pyrochlores, a
series of frustrated magnets for which collective quantum effects
have been widely discussed9–15. Recent theoretical work16,17 does
not rule out the possibility that such effects may be relevant to
Ho2Ti2O7 and Dy2Ti2O7 but, to a good approximation, the
monopoles may be treated as classical objects, with local quantum
mechanics setting local parameters such as attempt frequencies.

The magnetic monopole current density in spin ice is defined
as the rate of change of magnetization: J¼ qM/qt, with the
conductivity proportional to the monopole density6. However,
even in an infinite system, magnetic monopoles in spin ice cannot
sustain a direct current (dc), on account of the destruction of the
spin ice entropy by magnetization of the system6. This means that
dc ‘magnetricity’ in spin ice18,19 is necessarily transient20,21.
Alternating current (ac) ‘magnetricity’ does not suffer from this
limitation as monopoles can in principle be driven indefinitely
back and forth by an oscillating magnetic field. The theory of
ac-current6 has not yet been tested as existing ac-magnetization
studies either precede the theory22,23 or focus on the low
temperature regime24,25 where complicating factors are
expected19–21.

Here, we present the first experimental test of the theory of
Ryzhkin6, where we add experimental support to a number of
ideas and arguments about monopole diffusion20,21,26 and spin

tunnelling22,27,28, and derive new information on the microscopic
processes involved. Our dynamical magnetization measurements
also estimate the isothermal susceptibility wT and the adiabatic
susceptibility wS. Although the former is a much discussed
magnetic response function, the latter is typically neglected.
We also report a striking contrast between the temperature
dependence of wS and wT in weak applied field, showing that wT is
best interpreted as a spin response, while wS is best interpreted as
a monopole response. This contrast has its root in the fact that
configurational entropy ultimately confines the monopoles when
they are driven by a magnetic field6. Finally, in strong applied
field along the cubic [111] direction, spin ice exhibits a liquid–gas
type phase transition with a critical point29 at m0HC¼ 0.929 T,
TC¼ 0.36 K. This transition has been interpreted as a monopole
condensation5 and has been treated in renormalization group
theory30. We extend our comparison of wT and wS to the
‘supercritical regime’ at T4TC, where we observe strong
signatures of critical behaviour and find that monopoles behave
increasingly like dipole pairs, in agreement with the comments of
Shtyk and Feigel’man30.

Results
General features of the magnetic response in spin ice. The
temperature and field regimes probed in this paper are illustrated
in Fig. 1. In the figure we show the relationship between mono-
poles and dipoles in spin ice and we broadly define regimes of
monopolar response and dipolar response. It should be empha-
sized that, as in other cases where novel quasiparticles accurately
account for the low-energy physics, monopole and spin
descriptions are never in conflict. Instead, certain properties are
best discussed in terms of spins and others are best discussed in
terms of monopoles. Our study clarifies how this division should
be made.

One of our key results is that in spin ice, the adiabatic sus-
ceptibility wS is finite, with the ratio wS/wT increasing with
increasing applied static magnetic field. This basic observation is
emphasized in Fig. 2, which displays representative experimental
data at T¼ 1.95 K, in different applied static magnetic fields.
The figure clearly shows the presence of a finite offset, wS, in the
limit of infinite frequency.
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Figure 1 | Field-temperature phase diagram of spin ice. (a) Dy2Ti2O7 with H k ½111�. The full line is a line of first order phase transitions, terminating in a

classical critical point, that has been interpreted as a monopole condensation5. Monopoles are deconfined in zero field but become confined in an applied

field. The right hand diagrams show how the monopoles reform flippable spins or dipole pairs near the critical field. Dotted lines are guides to the eye.

Experimental points with error bars (s.d.) show the applied field of the maximum in the adiabatic susceptibility measured here. Hopping of emergent

magnetic monopoles: fragment of spin ice’s cubic pyrochlore lattice, which consists of corner-linked tetrahedra, showing spin configurations (arrows).

(b) Illustrates crystallographic axes, the applied field direction and how internal fields may be transverse to the local spin direction. Blue (red) circles

represent negative (positive) monopoles. (c) Illustrates how a monopole hop can be associated with a spin flipped by a transverse field or a tunnelling event

through a potential barrier.
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Magnetic relaxation in zero DC field. The theory of Ryzhkin6

applies the thermodynamics of irreversible processes to the
problem of magnetic monopole transport in spin ice, specifically
exploiting the spin ice-water ice analogy and the Jaccard theory of
defect motion in water ice31. It is shown that the usual entropy
gain of driving a current (in this case a monopole current) is
opposed by the entropy loss in magnetization of the system.
A current is only possible when the dynamical magnetization
M(t) is less than its equilibrium value wTH. The expression for the
frequency dependent susceptibility of spin ice, w(o) calculated in
Ryzhkin’s theory6 therefore depends on both wT and the
monopole transport coefficients. This result is discussed at
length in Ref. 32 where it is suggested, following the classical
thermodynamic arguments of Casimir and Du-Pré33, that for
practical purposes, the expression for the susceptibility calculated
in Ryzhkin’s theory6 should be modified to include a finite
adiabatic susceptibility wS. With this modification, the result of
Ryzhkin’s theory6 becomes:

wðoÞ� wS

wT� wS
¼ 1

1þ iot
; ð1Þ

where t is a relaxation time. Although this expression looks like
that for ordinary paramagnetic relaxation, there is an important
difference, in that t is a function of monopole rather than spin
parameters. It may be written t� 1¼ m0uQx/V0wT where u is
the monopole mobility, Q¼ 4.266� 10� 13 J T� 1 m� 1 the
monopole charge5, x the total monopole density per diamond
lattice site, and V0¼ 1.29� 10� 28 m3 the volume per diamond
lattice site32. The relaxation time t therefore depends on three
temperature-dependent parameters: u(T), x(T) and wT(T). Of
these, only the isothermal susceptibility wT(T) can be directly
measured. The density x(T) evolves with temperature in a way
that cannot be expressed in closed form26, but we have estimated
it with sufficient accuracy by fitting specific heat data to Debye–
Hückel theory (refs 26,34), Methods and Supplementary Note 1).

Knowledge of the experimental x(T) and wT(T) allows us to
determine the monopole mobility u(T) by dividing our measured
t� 1(T) by x(T)/wT(T).

In practice we found the assumption of a single relaxation time
to be too restrictive, and therefore considered a modified model
with one extra parameter introduced to describe a distribution
of relaxation times. The Cole–Cole model35, which describes a
roughly Gaussian distribution of log-relaxation times, was chosen
because it was found to fit the experimental data and has some
physical justification in that its approximately Gaussian cutoff at
high frequency is consistent with a monopole hopping model:
certain other commonly-used models are less suitable in this
regard (Supplementary Fig. S1 and Supplementary Note 2, for a
discussion). The expression used to fit the data therefore took
the form:

wðoÞ� wS

wT� wS
¼ 1

1þðiotÞ1� a ; ð2Þ

where a is the Cole–Cole parameter that determines the width of
the log-relaxation time distribution (see Methods). Representative
experimental data and results, along with characteristic fits,
are shown in Fig. 3. The model fits the experimental data
well at T43.5 K but describes only the high frequency part at the
lowest temperatures (for details of fits in this range,
Supplementary Fig. S1).

Figure 3d shows the temperature evolution of the monopole
mobility, u(T). At T410 K the apparent mobility diverges in
accord with an expected Orbach type spin flip process22,27,28 that
is not considered further here. At lower temperatures u(T)
becomes accurately proportional to 1/T, which is consistent with
the Nernst–Einstein equation for the Brownian diffusion of
magnetic monopoles:

u¼ DQ
kT

: ð3Þ

Here, our transformed data indicates that the diffusion
constant D is temperature-independent, as shown in the inset
of Fig. 3d. The athermal diffusion constant shows that the
observed temperature dependence of the magnetic relaxation22,
in this temperature range, is completely accounted for by the
temperature evolution of the monopole density, the isothermal
susceptibility and the temperature factor characteristic
of Brownian diffusion. This general behaviour is insensitive to
small applied field (typically m0Ho50 mT, Fig. 3d). Writing
D¼ n0a2/6 where a is the diamond lattice constant and v0 the
monopole hop rate26,32, we find a temperature-independent hop
rate of n0¼ 2.43(6)� 103 s� 1. This athermal hop rate may be
treated as evidence of quantum tunnelling of the spin involved in
the monopole hop (Fig. 1c). Note that, owing to the several
non trivial temperature-dependent terms in the expression for
t(T), it could be quite misleading to plot log(t) versus 1/T
(Supplementary Fig. S2) as is commonly done when considering
thermally activated relaxation processes: however, a treatment of
this sort is given in Supplementary Note 3.

Our results are fully consistent with the theory of Ryzhkin6 and
the numerical analysis of Jaubert and Holdsworth20, which
assumed an athermal hop rate, but also indicate an essential
refinement that must be made to both these approaches. That is,
we find a finite a, suggesting a significant dispersion of relaxation
times, as previously observed23, rather than the single relaxation
time assumed in the theory. However, the theory neglects
monopole interactions (except insofar as they determine x(T)),
which might be expected to influence the hopping rate of
individual monopoles. A detailed theory of such effects is far
beyond the scope of this contribution, but we may derive a
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Figure 2 | Finite adiabatic susceptibility in spin ice. The adiabatic (wS) and

isothermal (wT) susceptibilities are estimated as the real part of the

frequency dependent susceptibility wðoÞ in the limits o!1 and o! 0,

respectively, as indicated in the main plot. Experimental data are at

T¼ 1:95 K at applied static magnetic field m0 jH j ¼0 (black circles), 0:86

(grey circles) and 10 T (light grey circles). At 10 T both susceptibilities are

nearly zero. At 0.86 T, the two are of similar magnitude. At zero applied

field wS � wT, but still finite. The respective lines are the fit to a Cole–Cole

model (see text). The inset shows the m0H¼0 data on log–log scales. The

clear deviation from a linear curve at large o confirms the presence of a

finite offset, wS. Here the blue line is the fit to the Cole–Cole function using

finite wS and the red line is the same fit with wS constrained to be zero.
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working model using the results of Bramwell32, where it was
found that the mean square monopole field at a point is
proportional to the monopole density. A heuristic argument for
this is that the squared Coulomb field per monopole scales as 1/r4

(where r is distance) while the number of monopoles scales as
xr2dr; hence, neglecting monopole correlations, the mean square
field scales as x times a finite definite integral over r. We assume
that in zero applied field, spins are flipped by transverse fields36

arising from the dense ensemble of atomic dipoles, and we

decompose the instantaneous local transverse dipolar field as
follows:

H¼H0ð1þ h1þ h2
ffiffiffi
x
p
Þ; ð4Þ

where H0 is an effective field that causes flipping at rate n0. Here,
hi (i¼ 1,2) are assumed to be uncorrelated random variables
with zero mean and variance s2

i . Assuming t� 1
pH, it follows

that ln t � ln H0þ h1þ h2
ffiffiffi
x
p

, for small h1, h2. Then using
the additivity property of cumulants (here the variance) of
uncorrelated random variables, we find

s2
ln t¼ s2

1þ xs2
2: ð5Þ

Our measured a(T) may be transformed37 to give the quantity
on the left (Methods) and hence we can test the above expression.
Figure 4 confirms a very satisfactory agreement between theory
and experiment in zero and weak applied field, with the fitted s2

increasing rapidly in an applied dc field of 1mT, but thereafter
more slowly. We may firmly conclude that the observed
dispersion of rates is in large part a monopole property that
obeys Equation 5. Given our derivation of Equation 5, our result
suggests that monopole hopping is assisted by mutual monopole
interactions, an inference that we examine further in the
Supplementary Note 4 and Supplementary Fig. S3.
Isothermal and adiabatic susceptibilities. The isothermal sus-
ceptibility wT extracted from the fits to theory is in close agree-
ment with the directly measured wT (Supplementary Fig. S4).
At low temperature the isothermal susceptibility is predicted to be
twice the Curie susceptibility6, wT¼ 2C/T, but recent work38 has
established that in spin ice there is a gradual crossover from a
Curie constant C at very high temperature to the expected 2C at
low temperature. Our results are consistent with a gradual
evolution from wTE1.8C/T at T¼ 2 K to wTE1.2C/T at T¼ 10 K,
consistent with this crossover, assuming a Curie constant of
3.95 K (Supplementary Note 5). However a much more detailed
experimental and theoretical study of the Curie Law crossover in
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Dy2Ti2O7 would be worthwhile. The Curie like wT is of course
characteristic of a spin system: indeed there is no direct monopole
signature in this quantity. This may be traced to the
configurational entropy in the problem, which in applied field
confines the monopoles6,32, making the magnetic response
spin-like at long time.

The thermodynamic adiabatic susceptibility wS is the ac-
susceptibility extrapolated to infinite frequency (or more strictly
to a frequency where spin-spin relaxation is active but where
spin-lattice relaxation is not33). Figure 5b illustrates a striking
correlation between our measured adiabatic susceptibility wS(T)
and the measured monopole density x(T) (detailed checks on this
result are given in Supplementary Note 6 and Supplementary
Figs S5, S6). Thus, we find wS¼ w0x(T) with w0¼ 0.030(1),

a temperature-independent constant. The athermal prefactor
suggests that monopole diffusion is not involved in this
magnetization process. Instead, in a simple classical inter-
pretation, we may imagine a frictionless, and hence reversible,
displacement of magnetic monopoles by distance r in the applied
field—like a driven plasma oscillation. We write the force on a
positive monopole as m0H(o)Q¼Kr(o), where K is the force
constant, and use the fact that the magnetization is the magnetic
moment per unit volume, or M(o)¼ (x/V0)Qr(o). From these
relations we find wS¼ xm0Q2/KV0, which is of the observed form,
wSpx. From the value of wS, we find KE0.06 N m� 1, implying
an energy barrier between lattice sites at a distance r¼ a/2 of
order 100 K. The latter seems too large to be a Coulombic barrier,
and is more likely connected with the crystal field energy scale of
several hundred kelvin. The amplitude of motion implied in our
field of m0H¼ 5� 10� 5 T is of the order of femtometres, which is
much less than one lattice spacing. This frictionless oscillation of
the monopole ensemble is reminiscent of a plasma oscillation in
an electrical plasma, though the absence of an accelerative term in
the equation of motion means that the monopole plasma
oscillation cannot occur in the absence of a driving field. Of
course a finite wS in a magnetic system can always be formally
represented as an oscillation of magnetic charge, but in this
case the proportionality of wS with x shows that it is associated
with the displacement of recognizable positive and negative
magnetic monopoles.

In a magnetic system wS is always less than the isothermal
susceptibility wT, as it obeys the thermodynamic relation:

wS¼ wT�
T qM=qTð Þ2

CH
; ð6Þ

where CH Z0 is the specific heat at fixed applied field H. For an
ideally paramagnetic rare earth salt a typical behaviour of wS

would be to roughly track the increase of wT as T-0 according to
the Curie Law wT¼C/T. The striking difference we observe
between wT(T) and wS(T) (Fig. 5a) reflects a transition from spins
to monopoles as the natural variables by which to describe the
magnetic response, monopoles being more appropriate at high
frequency.

Nevertheless, we can explore the origin of wS in spin language if
we consider a monopole as a label for a set of ‘flippable’ spins
(Fig. 1). We assume that the adiabatic susceptibility is equal to the
isolated susceptibility, which in a semi-classical approximation is
given by39:

wS¼Z� 1
X

n

qMn

@H

� �
e�En=kT : ð7Þ

Here, Z is the partition function, n labels the energy states
of the system, and Mn is the magnetic moment per unit volume
of the state n. Our experimental observation that wS¼ w0x(T) is
obtained if the ground state is assigned null adiabatic
susceptibility and the monopole excited state is assigned
qMn/qH¼ w0, where w0 is temperature independent. As
Mn¼V� 1qEn/q(m0H) (where V is volume) our result reveals a
quadratic term in the energy per monopole: E0n¼ðVm0w0=2ÞH2.

A quadratic energy expression generally indicates ‘stretchable’
magnetic moments. A small quadratic (Van Vleck) term is
expected for a free Dy3þ ion through mixing of the ground state
with states of higher total angular momentum J. However, in our
case, the observation that only flippable spins contribute to w0 and
that flippable spins and non-flippable ones are distinguished only
by a thermal energy scale at these temperatures, appears to rule
out any single spin mechanism. It is interesting to note that the
monopole spin texture is predicted to produce an electric dipole40
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and it appears from our result that it is associated with a magnetic
polarizability as well.

These findings have very important ramifications for the
monopole description of spin ice. Previous work by neutron spin
echo27,28 on Ho2Ti2O7 and mSR (ref. 41) on Dy2Ti2O7 has
suggested a high frequency response that thermally evolves to low
temperature, and that at first sight seems disconnected from the
monopole picture. However, our results indicate that the
dynamical spectrum in the approach to the high frequency
limit is fully accounted for by magnetic monopoles, and they
clearly explain the thermal evolution observed in the previous
work. A very recent thermal conductivity study42 indirectly
estimates a diffusion constant for magnetic monopoles that is
much faster than ours, but our adiabatic susceptibility results
show that there is no necessary contradiction, as monopoles
mediate a dynamical response over a very broad frequency range.
Finally, our results rule out any significant spectral weight beyond
that associated with monopoles, contrary to a recent proposal43.

Adiabatic susceptibility in applied field. Figure 1 shows the spin
ice phase diagram for a dc-magnetic field applied along the cubic
[111] direction. A small applied field orders one spin per tetra-
hedron in the pyrochlore structure, but maintains the ice rule of
two spins in and two out per tetrahedron, thus creating the so
called ‘kagome ice’ phase of two-dimensional disordered sheets,
which still possess residual entropy29,44,45. With increasing field
at T¼ 0 there is a breaking of the ice rules, pictured as the
flipping of one spin per tetrahedron, to create an ordered ‘three
in, one out’ state. Extending from this point there is a line of first
order phase transitions that terminates in a critical end point.
The positive slope of this line reflects the destruction of the spin
ice entropy by the applied field, according to the Clapeyron
equation. In the monopole representation, the applied field tunes
the chemical potential of monopole-antimonopole pairs such that
the increased monopole density drives a first order condensation
from a sparse monopole fluid to a dense ‘liquid’ (or perhaps
better, ionic crystal) of alternating positive and negative
monopoles5. The detailed theory of magnetic relaxation near

the critical point30 predicts mean field critical exponents modified
by logarithmic corrections. Here, we are interested in the
supercritical region at temperatures well above the critical
point, where the system may be described as a dense monopole
plasma. Recently, a peak in the ac-susceptibility at finite
frequency was observed in this region46. We examined the
behaviour of the adiabatic susceptibility as a function of field in
this regime, to compare it with our zero-field measurement.

In weak fields (m0Ht0:3 T) the thermal evolution of wS(T)
shows a slow increase with field, including a noticeable peak at
higher temperature (Fig. 6). In much stronger fields (m0H�1 T)
the adiabatic response is completely suppressed as would be
expected (Fig. 6), but at an intermediate field (m0HE0.920(8) T),
wS(H) exhibits a striking peak very near to the (internal)
field of the zero temperature phase transition. At this field the
ice rule is locally broken44 and 1/4 of the spins in the sample may
then be flipped at zero energy cost. However, in contrast to the
zero-field result, wS(T) measured near this crossover field (0.86 T)
exhibits a simple Curie law, wS¼C0/T (Fig. 5a), indicating a
different type of magnetic current to that observed in the weak
field limit, as anticipated in Shtyk and Feigel’man30. We may
regard the magnetic response in this regime as characteristic of
switching magnetic dipoles, rather than magnetic monopoles.
Note that the temperature evolution was measured at this point
just off the peak maximum as it was found that systematic errors
in fitting to the Cole–Cole function are minimized at this
point (Supplementary Note 6). The Curie constant C0 may be
calculated under the assumption that 1/4 of the spins are
thermally active and that these have a projection of 1/3 of
their full classical value on the field direction. Thus, we predict
C0 ¼C/36¼ 0.1097 where CE3.95 is the high temperature Curie
constant. A fit of the experimental data to the expression
wS(m0H¼ 0.86 T)¼ a/(T�TC) gave a¼ 0.090(5), TC¼ 0.4(2) in
close agreement with our prediction (Fig. 5a).

The striking 1/T divergence and location of the peak position
in the H�T plane (Fig. 6) suggests that the adiabatic
susceptibility is dominated by the classical critical point for
monopole condensation (Fig. 1), for which the isothermal
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Figure 6 | Evidence of unconventional critical behaviour. Adiabatic susceptibility versus applied magnetic field, showing an unusual Lorentzian field

dependence, suggestive of anomalous critical behaviour. The figure illustrates zero response at strong field and a peak at the field where the ice rule
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. Experimental

data appear to rule out the possibility of a different scaling—for example, linear scale h/t.
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susceptibility wT is predicted30 to diverge as 1/|T�TC|g, with
g¼ 1 and TC � T here. Usually the ratio wT/wS, analogous to the
Landau–Placzek ratio in a fluid, should diverge towards the
critical point. However, our data for wT and wS (Fig. 5a) illustrate a
fairly typical paramagnetic response, as discussed above, with
wS 	 wT. Hence, both wS and wT diverge, but the latter is always
larger, as required by thermodynamics (Equation 6).

According to Shtyk and Feigel’man30, the field dependence of
the susceptibility should be mean field like, with logarithmic
corrections: hence, we would expect w 	 j H�HC jð1=dÞ� 1 with
d¼ 3. However, we observe an exponent of 2 rather than 2/3
(Supplementary Fig. S7). Thus, defining reduced variables
t¼T�TC (with TC¼ 0.36 K here), and h¼H�HC, we find to
a good approximation (suppressing dimensional constants):

wS 	
1

tþ h2
: ð8Þ

This implies h=
ffiffi
t
p

scaling (Fig. 6, inset), which is formally
characteristic of a zero dimensional phase transition
(Supplementary Note 7). An alternative interpretation of the
field dependence is in terms of a classical single spin flip process,
associated with the ‘free’ moments in the eventual ordered
structure, which would be characterized by a response of the type
wS 	 t=ðt2þ h2Þ and hence h/t scaling, but our data appear to
distinctly rule against this possibility (Fig. 6, inset). Thus, the
behaviour of wS(H) seems inconsistent with both the ‘monopole’
and T¼N fixed points. One possibility, as discussed further in
Supplementary Note 7, is that the susceptibility is dominated by
a zero temperature quantum critical point, but again with
anomalous exponents. It is noteworthy several other examples of
anomalous exponents have been reported for the quantum critical
behaviour of rare earth magnets47,48.

Discussion
Although the concept of magnetic monopoles in spin ice is
supported by much experimental evidence49–51, the microscopic
mechanism of monopole motion has yet to be identified. Our
investigation of Dy2Ti2O7 has isolated the characteristics of this
mechanism to which any future theory must conform.

Our first result is that, over the temperature ranged probed,
monopoles obey the Nernst–Einstein equation with temperature
independent diffusion constant, a strong signature of Brownian
diffusion. It should be emphasized that this is an experimental
result and not a theoretical input. We envisage Brownian
diffusion in the sense of an electrolyte, where the motion of
oppositely charged ions is strongly correlated, yet the Nernst–
Einstein equation is obeyed if the Debye length is sufficiently
small (as it is here)32.

It would be useful to apply our methods to investigate
monopole diffusion in the low temperature regime, as zero-field
measurements in that regime await an unambiguous interpreta-
tion in the monopole picture24,25, and the theory of Shtyk and
Feigel’man30 has yet to be comprehensively tested. In this context
we emphasize that the characteristic relaxation time t(T) depends
on at least three temperature-dependent factors, which shows that
it cannot be treated in terms of an effective activation energy.
However, our method disentangles all three factors and allows
direct experimental estimation of the monopole mobility, which
may be used to infer the monopole hop rate. We note a result52,53

published while this paper was in final revision, that presents
significant evidence of a low temperature (o1.5 K) crossover to a
regime where the monopole hop rate is roughly proportional to
monopole density (see also Castelnovo et al.26). The precise
temperature dependence of the hop rate can be experimentally
determined by the general method presented here.

It is interesting to discuss our result of Brownian motion in the
context of band theory. Just as water ice can be thought of as an
intrinsic protonic semiconductor54, so spin ice may be expected
to be an intrinsic semiconductor for magnetic monopoles. These
are produced by the thermal unbinding (or ‘fractionalisation’5) of
conventional magnetic excitons. They tunnel from site to site and
have an effective mass determined by the inverse Debye length
(proportional32 to

ffiffiffiffiffiffiffiffi
x=T

p
). However, one may ask the question,

how are these expectations consistent with the diffusive motion of
monopoles that our experiments have revealed? An answer might
be found in the theory of Chen et al.55 on the hopping of ionic
defects in water ice, where it is shown how diffusive motion of
defects can arise in a tight binding model that is constrained
by the ice rules.

Our second result is that the adiabatic susceptibility gives a
clear perspective on the magnetic properties of spin ice, revealing
a direct measure of the magnetic monopole concentration and
critical behaviour in applied field. Our analysis of the adiabatic
susceptibility has revealed a new property of magnetic mono-
poles: their partial magnetic polarization by an applied field.
More generally we may conclude that the adiabatic susceptibility,
often ignored as an uninteresting by-product of ac-susceptibility
analysis, may contain a wealth of information about strongly
correlated spin systems at low temperature.

If we combine these results with the remarkable prediction that
a monopole will carry an electric dipole moment (the equivalent
of its spin, if we reverse the roles of electricity and magnetism)40 a
fascinating picture of the local properties of the monopole is
starting to emerge. In general, the properties that we have
discovered will have an important influence on any future
application of magnetic monopoles in spin ice that seek to exploit
their magnetic and thermal response.

Methods
The dynamical magnetization of a 0.0326(1) g cubic crystal of Dy2Ti2O7 was
measured with the ACMS (AC-Measurement System) option of a PPMS (Physical
Property Measurement System, Quantum Design). Alternating and dc magnetic
fields (Hac and Hdc, respectively) were applied parallel to the cubic [111] axis of the
sample. Data were collected at different temperatures between 1.9 K rTr14 K in
the ac-frequency range of 10 Hz to 10 kHz. A variable dc field of m0H¼ 0� 10 T
was applied (at low field the absolute field was calibrated in dc-sweep
measurement). Scans were taken at different ac fields in the range m0Hac¼ 0.05
� 3� 10� 4 T to dispel the possibility of non-linear response of the system.
The results presented here were taken at m0Hac¼ 5� 10� 5 T. Data were
corrected taking into account a demagnetizing factor D¼ 1=3 to give
wac¼Mac= ðHac�DMacð Þ. The calibrated response function of the instrument
was checked by measurement of a very dilute paramagnetic salt (Supplementary
Fig. S5, panel b and c).

The data were fitted to the phenomenological model for the frequency
dependent susceptibility described in (refs. 33,35). By separating Equation 2 it is
possible to derive analytical expressions for the real and imaginary parts and
Argand diagram (Cole–Cole plot), which were each fitted to the experimental data
at a given temperature using a single set of parameters wS, wT, t, a.

The Cole–Cole formalism assumes a symmetric unimodal distribution of
logarithmic relaxation times ln t0 with mean lnðtÞ. It can be shown that37:

s2
ln t0 ¼

p2

3
1

ð1� aÞ2 � 1

� �
: ð9Þ

In the text we label s2
ln t0 simply as s2

ln t for ease of reading, although strictly t is a
fixed parameter at a given temperature. It should be noted that there is no general
way to derive the true mean relaxation time ht0i from ac-susceptibility data: here
we approximate it to the Cole–Cole parameter t.

The dimensionless monopole density xðTÞ was estimated by fitting experimental
specific heat data to Debye–Hückel theory26,34. The specific heat was represented as
the temperature derivative of the energy per diamond lattice site:

u¼ð� mþ mDHÞxþ uDCM ; ð10Þ
where m is the monopole chemical potential, mDHðTÞ is the Debye-Hückel
correction, calculated self consistently with the dimensionless monopole density
xðTÞ, and uDCMðTÞ is a correction for double charge monopoles. The experimental
specific heat data, taken between 0:4 K � T � 10 K, were fitted by adjusting m, with
the best fit value m=k¼ � 4:33 K. The theory is not exact in the temperature range
of interest and Figs 4,5 report an approximate envelope of systematic error, found
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by extrapolating the theory between low and high temperature according to
different schemes (Supplementary Note 1).
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