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ABSTRACT
Ever since its first proposal in 1976, Jackiw-Rebbi zero-mode has been drawing extensive attention for its
charming properties including charge fractionalization, topologically protected zero-energy and possible
non-Abelian statistics. We investigate these properties through the Jackiw-Rebbi zero-modes in quantum
spin Hall insulators.Though charge fractionalization is not manifested, Jackiw-Rebbi zero-mode’s
zero-energy nature leads to a double-frequency Aharonov-Bohm effect, implying that it can be viewed as a
special case of Majorana zero-mode without particle-hole symmetry. Such relation is strengthened for
Jackiw-Rebbi zero-modes also exhibiting non-Abelian properties in the absence of superconductivity.
Furthermore, in the condition that the degeneracy of Jackiw-Rebbi zero-modes is lifted, we demonstrate a
novel non-Abelian braiding with continuously tunable fusion rule, which is a generalization of Majorana
zero-modes’ braiding properties.
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INTRODUCTION
Jackiw-Rebbi zero-mode was first raised as the zero-
energy soliton solution ofDirac equation in one spa-
tial dimension [1]. In the presence of such a zero-
mode, the total charge of the ‘Dirac sea’ is half-
integer [2–6] due to charge-conjugation symmetry,
which is regarded as another mechanism of charge
fractionalization, in addition to the prestigious frac-
tional quantum Hall (FQH) effect [7–10]. In con-
densed matter physics, Jackiw-Rebbi zero-mode is
closely related to the band topology [11,12]. The
first famous example is the Su-Schrieffer-Heeger
(SSH) model [13] whose low-energy effective
Hamiltonian is equivalent to a 1D topological insula-
tor (TI), and Jackiw-Rebbi zero-mode resides in the
domainwall separating topologically distinct phases.
Another celebrated example is the Kitaev’s chain
[14]whose effectiveHamiltonian is again equivalent
to a 1DTI.The difference is that the zero-mode here
is self-conjugate due to the superconductivity and
therefore aMajorana one. In this vein, Jackiw-Rebbi
zero-mode can be regarded as a special case of Ma-
jorana zero-mode (MZM) in the absence of particle-
hole (PH) symmetry [10,15].

In the last decade, Jackiw-Rebbi zero-mode was
proposed in topological systems including spin lad-
ders [16,17], Rashba nanowires [18–21], and quan-
tum spin Hall insulator (QSHI) with constriction
[22,23] or external magnetic field [24]. These zero-
modes are created or annihilated pairwisely, hence
the braiding processes are non-commutative [8] due
to the fermion parity conservation [16,25]. How-
ever, on the contrary of its Majorana cousin [26],
Jackiw-Rebbi zero-mode’s non-Abelian nature has
not yet been demonstrated in a practical device such
as trijunction [17,27–30] or cross-shaped junction
[31,32] as has been done for MZMs.

Another peculiar property of the Jackiw-Rebbi
zero-mode is the 1/2 charge fractionalization, which
has been claimed [24] to be detectable in a pumping
process [33] or by Coulomb blockade. Recently, a
novel 3/2FQHplateau is observed in single layer 2D
electron gas with confined geometry [34]. Jackiw-
Rebbi zero-mode induced by the confined geome-
try could be a tentative explanation [34] that similar
mechanism has been proposed in QSHI [22].

In this article, we first construct a QSHI het-
erostructure supporting Jackiw-Rebbi zero-mode.
Then we investigate the Aharonov-Bohm (AB)
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Figure 1. (a) Schematic diagram of the QSHI heterostructure lattice [with finite width
Ny = 30 through (a-e)] which is composed of two semi-infinite QSHI halves (yellow
and blue, respectively) whose energy spectrums are shown as (b) and (c), respectively.
Hamiltonian parameter Ay = 2 in (b) and there are four edge channels; Ay = 40
in (c) and the edge channels here are destroyed. (d) The DOS inside the shaded region
(Nx = 60) of (a). (e) The local density of states distribution inside the shaded region of
(a) at energy E = 0. Other parameters are Ax = 2.2, B = 1, M = 2,�z = 0.6,
and �x = 0.15.

effect where a single Jackiw-Rebbi zero-mode is em-
bedded in an AB ring, showing a double-frequency
AB oscillation at zero-energy. A comparison with
MZM’s AB effect supports the aforementioned re-
lation between Jackiw-Rebbi zero-mode and MZM.
We also set up a cross-shaped QSHI junction and
numerically confirm the non-Abelian braiding prop-
erties of Jackiw-Rebbi zero-modes to be in analogy
withMZMs. Importantly, Jackiw-Rebbi zero-modes
represent a novel non-Abelian braiding correspond-
ing to a generalized fusion rule when the zero-
modes’ degeneracy is lifted by chiral-symmetry-
breaking disorder or by tuning gate voltages. Such
generalized and continuously tunable non-Abelian
braiding can also be realized for MZMs if ‘fictitious’
disorder breaking PH-symmetry is presented.

LATTICE REALIZATION OF JACKIW-REBBI
ZERO-MODE
The 1D effective Hamiltonian describing four edge
channels of QSHI constriction can be constructed
[22] as H1D = vF p̂xρzτ0 + �xρxτ0 + �zρzτz +
tρxτx , where the four terms represent the kinetic

energy, the spin-orbit interaction (SOI), the
Zeeman term, and a spin-conserved inter-edge
tunneling term, respectively (ρi , τi are Pauli ma-
trices working in right-/left-moving spinor and
chirality spinor, respectively). The competition
between the Zeeman term �z and the tunnel-
ing strength t induces two distinct topological
phases and the Jackiw-Rebbi zero-mode resides
in the domain wall. The effective Hamiltonian
Heff = (�x/t)pxπx + (�z − t)πz describing
topological phase transition has the form of 1D
TI (πi are Pauli matrices for real spin). It is worth
noting that quantumHall insulator with two pairs of
edge channels [34] possesses similar Hamiltonian.

The 2D Hamiltonian of QSHI constriction sup-
porting Jackiw-Rebbi zero-modes is obtained by
adding the Zeeman term �z and the SOI term
�x into the Bernevig-Hughes-Zhang (BHZ) model
[35,36] as:

HQSHI (p) =
(
h(p) + �zσ0 �xσ0

�xσ0 h∗ (−p)−�zσ0

)
,

(1)
where h(p) = (Ax pxσx − Ay pyσy ) +
(M − Bp2)σz (σi for Pauli matrices). The dis-
cretized version of Equation (1) in a 2D lattice
with finite width Ny generally possesses four edge
states. However, a strong inter-edge tunneling will
destroy these edge states and bring about a topolog-
ically trivial phase. The strength of such tunneling
depends on the overlap between opposite edge
states, therefore it can be modulated through the
Hamiltonian parameters [e.g., Ay , see Fig. 1(b, c)]
or lattice width Ny (i.e., QSHI constrictions
[22,23]). Based on the method of Green’s function,
the density of states (DOS) [Fig. 1(d, e)] of a
QSHI heterostructure [Fig. 1(a)] composed of
two topologically distinct halves demonstrates the
subgap zero-energy Jackiw-Rebbi state localized
at its interface. It is worth noting that the Jackiw-
Rebbi zero-mode’s energy may deviate from zero
[e.g. if kinetic term (C − Dp2) is presented in
the BHZ model]. However, both the transport
and the braiding properties of the Jackiw-Rebbi
zero-modes remain unchanged in the presence of
such a constant shift of energy.

THE AHARONOV-BOHM EFFECT OF
JACKIW-REBBI ZERO-MODE AND A
COMPARISONWITH MZM
Apart from pumping of the domain wall [24,33],
transport signature of Jackiw-Rebbi zero-mode
is also shown in the Jackiw-Rebbi zero-mode
intermediated electron transmission [18,37],
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Figure 2. (a) Sketch of the AB ring in a lattice model. An AB ring enclosing a mag-
netic flux φ is sandwiched between two identical 2D metal leads (green lattice). The
upper arm of the ring is the direct hopping with strength td between the two leads
(black arrows), and the lower arm contains a Jackiw-Rebbi zero-mode in a QSHI het-
erostructure (yellow and blue lattice) which is equally coupled to the two leads with
hopping strength tJR (orange arrows). (b-d) [(e-g)] In the condition of weak (strong) td ,
numerical results of T12 at fixed energies as (b) [(e)] E = 0, (c) [(f)] E = 0.0002, and
(d) [(g)] E = 0.01, respectively. For simplicity, in (b-g), conductance constants irrel-
evant to the oscillations have been subtracted. (h) T12 solely induced by the Jackiw-
Rebbi zero-mode, where numerical results (orange) can be perfectly fitted by the ana-
lytic formula (green) with Ẽ ≈ 95E .

whose peculiarities may be revealed by a two-path
interference with a normal electron transmission,
i.e., AB effect with a Jackiw-Rebbi zero-mode
embedded [Fig. 2(a)]. The direct hopping strength
between the two leads is td , and thehopping strength
between the leads and the QSHI heterostructure
supporting Jackiw-Rebbi zero-mode is tJR . The
transmission coefficient between the two leads T12
depending on the incident electron’s energy E as
well as the magnetic flux φ inclosed [φ is in the
unit of φ0/(2π), φ0 is the flux quantum] can be
numerically investigated by the Green’s function.
For weak td [Fig. 2(b-d)], the AB effect shows an
unexpected π -period sinusoidal oscillation in the
zero-energy case that the incident electron’s energy
Ematches the zero-mode’s energy level. AsE slightly

deviates from zero, T12 becomes the superposition
of a π -period and a 2π -period sinusoidal functions.
The AB effect comes back to the normal 2π -period
sinusoidal oscillation for significant non-zero E.
For strong td [Fig. 2(e-g)], though no longer in the
simple sinusoidal form, the AB effect still exhibits a
π -period oscillation for E = 0, while a 2π -period
oscillation for E �= 0.

The S-matrix theory [38,39] shows that T12 has
the analytical form as:

T12 = 4t̃2d · Ẽ 2 + 4t̃d cos φ · Ẽ + 1[(
1 + t̃2d

)
Ẽ + t̃d cos φ

]2 + 1
, (2)

where t̃d ≡ td
2v f

, and Ẽ ≡ v f

t20
(E − ε0) (see Supple-

mentaryMaterial). In the resonant tunneling condi-
tion Ẽ = 0, T12 reduces to 1/(t̃2d cos

2 φ + 1) thus
verifies the π -period AB oscillation. Furthermore,
the numerical results can be well fitted by Equation
(2) (see Supplementary Material). In the limit of
t̃d → 0, T12 = 1/(Ẽ 2 + 1) indicates the transmis-
sion solely induced by the Jackiw-Rebbi zero-mode
has a peak value of 1, other than the naively expected
1/2. Such analytic result drawn from S-matrix is nu-
merically verified [Fig. 2(h)] and consistent with
previous research [18].

For comparison, if the Jackiw-Rebbi zero-mode
in the AB ring is replaced by a MZM [40,41], then
the transmission conductance G 12 between the two
leads is related to the S-matrix in the Bogoliubov-de
Gennes basis [38,42] as

G 12 = e 2
h · {∣∣See12 |2−∣∣ She12 |2}

= e 2
h · −32t̃d sin φ+8t̃d(1−t̃2d) cos φ·Ẽ+4t̃2d(1+t̃2d)·Ẽ 2

(1+t̃2d)·[16+(1+t̃2d )
2·Ẽ 2]

,

(3)
where 1, 2 for lead indices, e , h for electron
and hole, respectively, t̃d ≡ td

2v f
, and Ẽ ≡ 2v f

t2M
E

(see Supplementary Material). In contrast to
the Jackiw-Rebbi zero-mode, Equation (3) in-
dicates that MZM’s AB effect oscillates in a
2π -period at both zero-bias (Ẽ = 0) and finite-
bias (Ẽ �= 0) [40]. However, as discussed above,
Jackiw-Rebbi zero-mode can be viewed as a special
case of MZM where PH symmetry is absent.
The electron and hole indices in Equation (3)
are replaced by two electron subband indices
(denoted by α and β) if the Majorana condition
is not imposed. Hence the sign difference be-
tween electron and hole is absent, and Equation
(3) is modified as G 12 = e 2

h {|Sαα
12 |2+|Sβα

12 |2} =
e 2
h

16
16+(1+t̃2d )

2·Ẽ 2 .{ 12 + t̃2d
(1+t̃2d )

2 + t̃2d
4 Ẽ

2 + t̃d
2

1−t̃2d
1 + t̃2d

cos φ · Ẽ − t̃2d
(1+t̃2d )

2 cos 2φ}, which qualitatively
retrieve the consequence that the Jackiw-Rebbi
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Figure 3. (a) Sketch of the cross-shaped QSHI junction. Distributions of the three
pairs of Jackiw-Rebbi zero-modes (ψi = 1, 2, ..., 6) before braiding are shown. (b-d)
Evolution of an eigenstate φ(t ) as ψ2 and ψ3 are swapped twice in succession with
T = 200 (b) in the clean limit; (c) in the presence of chiral-symmetry-breaking
disorder H dis with W = 10−3; (d) in the presence of chiral-symmetry-conserved
disorder H C

dis with W = 3. |〈φ(t = 6T )|ψ 12
− 〉|2 + |〈φ(t = 6T )|ψ 12

+ 〉|2 = 1
is valid in (b) and (c), while invalid in (d) for strong disorder destructing topo-
logical gap. (e) |〈φ(t = 6T )|ψ 12

+ 〉| in a fixed chiral-symmetry-breaking disorder
profile with different disorder strength W and braiding time T. Numerical re-
sults can be well fitted (black curve) by Equation (5) as |〈φ(t = 6T )|ψ 12

+ 〉| =
1/(�̃2

12 + 1)1/2 for intermediate T satisfying adiabatic condition �b 

1/T 
 ε12, ε34. Topological gap �b ≈ 0.2, the coupling energy ε12, ε34 ≈
7 × 10−5.

zero-mode exhibits π -period (2π -period) AB effect
at zero-bias (finite-bias).

NON-ABELIAN BRAIDING PROPERTIES
Thesimilarities between Jackiw-Rebbi andMZMre-
vealed by the AB effect inspire us to investigate the
possible non-Abelian statistics of Jackiw-Rebbi zero-
modes through cross-shaped junction [Fig. 3(a)].
Each of the four arms of the junction is a topologi-
cally nontrivialQSHI supporting Jackiw-Rebbi zero-

modes, and three gates (G1,G2, andG3) are located
near the crossing. If the gate voltage is turned on
(off), then the corresponding arm is separated (con-
nected) due to the presence (absence) of the gating
potential barrier. Initially, G1 and G3 are turned on
while G2 is turned off, hence three pairs of Jackiw-
Rebbi zero-modes (ψ1, ψ2, . . . ψ6) are localized
at the ends of the three divided parts [Fig. 3(a)].
The braiding protocol [31] takes three steps (time
cost for each step is T) to swap ψ2 and ψ3 spatially.
Firstly, G1 is turned off and then G2 is turned on,
henceψ2 is moved to the top of G2. Secondly, G3 is
turned off and then G1 is turned on, so nowψ3 is at
the left of G1. Thirdly, turning off G2 is followed by
turning onG3, as a resultψ2 andψ3 are swapped. In
the whole braiding process taking time of 2 × 3T ,
ψ2 andψ3 are swapped twice in succession.

In the following, we verify that swapping ψ2 and
ψ3 once lead to ψ2 → ψ3 and ψ3 → −ψ2, which
is identical to the MZM [26,43]. In the clean limit,
finite-size induced coupling betweem paired Jackiw-
Rebbi zero-modes ε2i−1,2i e iα2i−1,2i ψ

†
2i−1ψ2i + h.c .

(i = 1, 2, 3, and α2i−1,2i for arbitrary phase)
leads to symmetric and antisymmetric eigenstates
ψ12

± = 1√
2
(ψ1 ± e−iα12ψ2) [16]. Numerical sim-

ulation of the adiabatical time-evolution (see Sup-
plementary Material) shows that an eigenstate φ(t)
evolving from ψ12

− to ψ12
+ after ψ2 and ψ3 are

swapped twice in succession [Fig. 3(b)], which in-
dicates ψ2 → −ψ2. Similarly, ψ3 → −ψ3 is con-
firmed for another eigenstate evolving from ψ34

− to
ψ34

+ simultaneously. Consequently, braiding prop-
erties ψ2 → ψ3 and ψ3 → −ψ2 (after swapping
ψ2 and ψ3 once) can be drawn from the above re-
sults up to a gauge transformation. It is worth not-
ing that the basis of the wavefunction we adopted
here is (|ψ12

− 〉, |ψ34
− 〉, |ψ34

+ 〉, |ψ12
+ 〉) [Fig. 3(b)],

while the basis usually chosen for MZMs’ braid-
ing is (|0〉, �

†
1 |0〉, �

†
2 |0〉, �

†
1�

†
2 |0〉) [26,31,32]

instead.

GENERALIZED NON-ABELIAN BRAIDING
IN SYSTEMSWITH DEGENERACY
LIFTING
The QSHI constriction [Equation (1)] is in the
AIII symmetry class possessing chiral symme-
try −HQSHI(−p) = C HQSHI(p)C−1 [44,45],
which protects the degeneracy of Jackiw-Rebbi zero-
modes (C = πy σy ,πy is Paulimatrix for real spin).
Strikingly, the eigenstate φ(t) evolves from ψ−

12 to
a superposition of ψ−

12 and ψ+
12 [Fig. 3(c)] in the

presence of tiny chiral-symmetry-breaking disorder
Hdis = diag{V1(r), V2(r), V3(r), V4(r)} (Vi (r)
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uniformly distributed within [−W/2, W/2])
where disorder strength W comparable with
ε12, ε34 but much smaller than the topological
gap �b . On the contrary, the non-Abelian braiding
remains integrity until the disorder is strong enough
to destruct the topological gap [Fig. 3(d)], if the
disorder has a chiral-symmetry-conserved form
as HC

dis = diag{V1(r), V2(r), −V2(r), −V1(r)}
(see Supplementary Material).

Due to the self-conjugation condition γ
†
i = γi ,

MZM’s occupation energy term γ
†
i γi = 1 is a triv-

ial constant. For Jackiw-Rebbi zero-mode, however,
ψ

†
i �= ψi and the energy deviation �2i−1,2iψ

†
i ψi

(e.g., originated from disorder effect or gate voltages
tuning local chemical potential) can be introduced
into the Hamiltonian as:

HJR = �12 ψ
†
1ψ1 − �12ψ

†
2ψ2 + �34ψ

†
3ψ3

−�34ψ
†
4ψ4 +

(
ε12e iα12ψ

†
1ψ2

+ ε34e iα34ψ
†
4ψ3 + h.c .

)
(4)

(widely separated zero-modes ψ5 and ψ6 with
negligible coupling are dropped).The eigenstates of
Equation (4) spanned by |ψ1〉 and |ψ2〉 are ψ12

± =
1√
2C±

12
{ψ1 + e−iα12 [±(�̃2

12 + 1)1/2 − �̃12]ψ2}
(�̃12 ≡ �12/ε12, and C±

12 are normalization
constants). In case of non-zero �12, numerical
simulation confirms that the exchange properties
ψ2 → ψ3 and ψ3 → −ψ2 are still valid (see
Supplementary Material). However, due to the new
form of eigenstatesψ12

± with different weights ofψ1
and ψ2 (in other words, �̃12 induces a ‘rotation’ of
the eigenstates ψ12

± ), a novel non-Abelian braiding
is obtained:

|φ (t = 6T)〉 = −sin δ · ∣∣ψ12
−

〉 + cos δ · ∣∣ψ12
+

〉
,

(5)

where |φ(t = 0)〉 = |ψ12
− 〉, and

δ ∈ (−π/2, π/2) is defined as sin δ ≡
�̃12/(�̃2

12 + 1)1/2 and cos δ ≡ 1/(�̃2
12 + 1)1/2.

With the increase of |δ| describing the degeneracy
lifting, the |ψ12

− 〉 component in |φ(t = 6T)〉
increases from 0 to 1, while the weight of |ψ12

+ 〉
decreases from 1 to 0. In the adiabatic condition
�b 
 1/T 
 ε12, ε34 [31], numerical simu-
lation results are T-independent and well fitted
by Equation (5) [Fig. 3(e)]. According to the
model described above, if moderate coupling
strength ε2i−1,2i between Jackiw-Rebbi zero-modes
is provided, δ will be relatively small for weak
disorder and therefore the non-Abelian braiding
properties identical to the MZMs can be retrieved.

Table 1. Braiding operator B = F −1 R 2 F , fusion operator
F, and the square of exchange operator R for both Jackiw-
Rebbi zero-mode and MZM. θB is an overall phase factor.

Operator Jackiw-Rebbi zero-mode MZM

B e−i θB

⎛
⎝−sin δ cos δ

cos δ sin δ

⎞
⎠ e−i π

4

⎛
⎝0 1

1 0

⎞
⎠

F

(
−sin ( δ

2 − π
4 ) cos ( δ

2 − π
4 )

cos ( δ
2 − π

4 ) sin ( δ
2 − π

4 )

)
1√
2

⎛
⎝1 1

1 −1

⎞
⎠

R2 e−i θB

⎛
⎝1 0

0 −1

⎞
⎠ e−i π

4

⎛
⎝1 0

0 −1

⎞
⎠

Furthermore, by exerting additional gate voltages
modulating the local chemical potentials of ψ1
and ψ4, δ and then the non-Abelian braiding prop-
erties can be modulated in a controlled manner.
For chiral-symmetry-conserved disorder HC

dis, in
contrast, disorders in opposite signs are imposed
on edge states with opposite chirality, hence the
energy deviation �12 = 0 and the corresponding
non-Abelian properties remain the same as the
MZM.

Mathematically, in the basis of {|ψ1, ψ2;
ψ12

− 〉, |ψ1, ψ2; ψ12
+ 〉} (where |ψ1, ψ2; ψ12

± 〉
indicating ψ1 and ψ2 fusing into ψ12

± ), as shown
in Table 1, such novel braiding can be expressed in
the form of braiding operator B [46,47]. Besides,
the fusion operator F and the exchange operator
R can also be extracted from B = F −1 R2F
(see Supplementary Material). The fusion rule
of Jackiw-Rebbi zero-mode can be tuned by δ

and is a generalization of MZM (Table 1). In the
limit of δ = 0, as expected, it retrieves MZM’s
fusion rule up to a phase θB . Such generalized and
tunable fusion rule implies potential application in
topological quantum computation.

Finally, if ‘fictitious’ PH-symmetry-breaking dis-
order is introduced into a p ± i p-wave supercon-
ductor (D symmetry class [48,49]), then similar
δ-dependent braidings are also observed for MZM
(see Supplementary Material). The only difference
is that the important role preserving MZMs’ degen-
eracy is played by PH symmetry instead of chiral
symmetry.

DISCUSSIONS
The relation and similarity between Jackiw-Rebbi
andMZMare uncovered by bothAB effect and non-
Abelian braiding properties. Though the double-
frequency AB oscillation of the Jackiw-Rebbi zero-
mode is irrelevant to the charge fractionalization,
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such effect relies on the resonant condition Ẽ = 0
in which Jackiw-Rebbi zero-mode’s zero-energy na-
ture is topologically protected, while such peculiar-
ity can be easily removed for an ordinary zero-mode
such as a localized state in a quantum dot. As for
thenon-Abelianproperties, the symmetry-protected
degeneracy for MZM is robust since PH symme-
try is always presented provided that the supercon-
ductivity is not destroyed, therefore the fusion rule
of MZM has a fixed form while the Jackiw-Rebbi
one is tunable. Furthermore, for MZM-based braid-
ing, considering the adiabatic condition ε12, ε34 

1/T 
 �b [31]where theSCgap�b is in theorder
of 1 meV, it requires relative low braiding frequency
1/T and larger device scale to reduce the finite-size-
induced coupling ε12, ε34. These restrictions could
be relaxed for Jackiw-Rebbi zero-modes since super-
conductivity is no longer required and the topologi-
cal gap�b could be generally larger. These compar-
isons show the possibility of quantum computation
devicewithhigher integration level andhigher braid-
ing frequency.
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Supplementary data are available atNSR online.
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