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Abstract

Background: Observational studies are increasingly being used to provide supplementary evidence in addition to
Randomized Control Trials (RCTs) because they provide a scale and diversity of participants and outcomes that
would be infeasible in an RCT. Additionally, they more closely reflect the settings in which the studied interventions
will be applied in the future. Well-established propensity-score-based methods exist to overcome the challenges of
working with observational data to estimate causal effects. These methods also provide quality assurance
diagnostics to evaluate the degree to which bias has been removed and the estimates can be trusted. In large
medical datasets it is common to find the same underlying health condition being treated with a variety of distinct
drugs or drug combinations. Conventional methods require a manual iterative workflow, making them scale poorly
to studies with many intervention arms. In such situations, automated causal inference methods that are
compatible with traditional propensity-score-based workflows are highly desirable.

Methods: We introduce an automated causal inference method BCAUS, that features a deep-neural-network-based
propensity model that is trained with a loss which penalizes both the incorrect prediction of the assigned
treatment as well as the degree of imbalance between the inverse probability weighted covariates. The network is
trained end-to-end by dynamically adjusting the loss term for each training batch such that the relative
contributions from the two loss components are held fixed. Trained BCAUS models can be used in conjunction
with traditional propensity-score-based methods to estimate causal treatment effects.

Results: We tested BCAUS on the semi-synthetic Infant Health & Development Program dataset with a single
intervention arm, and a real-world observational study of diabetes interventions with over 100,000 individuals
spread across more than a hundred intervention arms. When compared against other recently proposed automated
causal inference methods, BCAUS had competitive accuracy for estimating synthetic treatment effects and provided
highly concordant estimates on the real-world dataset but was an order-of-magnitude faster.

Conclusions: BCAUS is directly compatible with trusted protocols to estimate treatment effects and diagnose the
quality of those estimates, while making the established approaches automatically scalable to an arbitrary number
of simultaneous intervention arms without any need for manual iteration.
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Background
The ability to identify causal variables and estimate their
impact is a critical task across many industrial and scien-
tific fields [1–5]. Causal inferences can be drawn from
two, generally distinct, types of analytical methods: ran-
domized experiments and observational studies. Ran-
domized Controlled Trials (RCTs), such as FDA trials to
approve new drugs, are the gold standard for causal in-
ference but they are not without shortcomings. Their
rigor is often associated with high costs and therefore
necessitates relatively small cohorts and short trial dura-
tions and may feature surrogate endpoints. Observa-
tional studies are increasingly being used to provide
supplementary evidence in addition to RCTs [6, 7] be-
cause they provide a scale and diversity of participants
and outcomes that would be infeasible in an RCT. Add-
itionally, observational studies more closely reflect the
settings in which the studied interventions will be ap-
plied in the future. In many application areas there is
therefore increasing interest in using observational stud-
ies to complement randomized experiments to deter-
mine which actions are likely to produce the most
desired outcome for a given circumstance or patient.
While observational studies have advantages, they

present a distinct set of challenges. In particular, the ef-
fects of interventions may be confounded by variables
that affect both treatment assignment as well as treat-
ment outcome. Well-established techniques exist to con-
trol for cofounding variables in observational studies and
estimate causal treatment effects. The propensity-score
method pioneered by Rubin and Rosenbaum [8], and its
many extensions such as inverse probability of treatment
weighting (IPTW) [9] and Double-Robust (DR) [10] esti-
mation, is widely used in medical research, healthcare,
and epidemiology [11]. In addition to providing causal
estimates, these methods also provide quality assurance
diagnostics that assess balance in covariate distributions
between intervention arms. When all potential con-
founders have been identified, these diagnostics help
evaluate the degree to which the estimates can be
trusted. However, these methods were developed for
studies that involved relatively few simultaneous inter-
vention arms and, being iterative in nature [12], they do
not scale well to many modern observational datasets
that can involve thousands of simultaneous arms.
In recent years several automated causal inference

methods have been reported that demonstrate high ac-
curacy in estimating treatment effects on semi-synthetic
datasets where the ground truth is known. Some ap-
proaches extend logistic regression models [13, 14] to
provide covariate balance. Bayesian Additive Regression
Trees [15] (BART) have been used for causal modelling
[16] and have demonstrated superior performance on
benchmark datasets [17]. With recent interest in using

deep neural networks for predictive modelling [18], they
have been deployed in the causal inference context as
well. Shi et al. [19] and Alaa et al. [20] have used them
for joint modeling of propensity scores as well as condi-
tional outcomes. Others have focused on using neural
networks to estimate effects of counterfactual treatments
without estimating propensity scores [21, 22]. Causal in-
ference using neural-network-based generative models
has also been demonstrated [23, 24]. While some of the
deep learning architectures mentioned above generate
propensity scores [19, 20], their use in conjunction with
popular techniques like IPTW or DR for computing
average treatment effects (ATE) and assessing bias re-
moval has not been demonstrated. Also, the use of these
methods in situations where there are a large number of
intervention arms has not been explored.
In this study, we developed a method we call Balan-

cing Covariates Automatically Using Supervision
(BCAUS) that is directly compatible with trusted proto-
cols to estimate treatment effects and diagnose the qual-
ity of those estimates, while making these approaches
automatically scalable to an arbitrary number of simul-
taneous intervention arms without any need for manual
iteration. Our approach removes manual iteration
through the training of deep neural networks for pro-
pensity modelling that explicitly remove covariate imbal-
ance [19, 20]. This is accomplished by training networks
with a joint loss function which penalizes both the in-
correct prediction of the assigned treatment as well as
the degree of imbalance between inverse probability
weighted covariates of intervention arms.
We compared BCAUS with multiple state-of-the-art

approaches on two clinical datasets. First, on the Infant
Health and Development Program (IHDP), a common
public semi-synthetic dataset where the ground truth
was known, to assess parity in the accuracy of estimation
of the ATE. Second, on a private real-world dataset for
Type-2 diabetes, which involved 133 simultaneous inter-
vention arms, to assess scalability. While the ground
truth ATEs on the diabetes dataset are unknown, we an-
alyzed similarities between the estimations of BCAUS
and BART. We found that BCAUS had competitive ac-
curacy for estimating synthetic treatment effects and
provided highly concordant estimates on the real-world
dataset but was an order-of-magnitude faster. We see
our work as being complementary to other automated
approaches while still being compatible with conven-
tional causal inference workflows.

Methods
The BCAUS method trains a deep neural network with
a joint loss term consisting of two components. The first
component penalizes the incorrect prediction of treat-
ment assignment as in traditional propensity-score
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models. The second component depends explicitly on
the imbalance or bias between intervention arms in the
data, forcing the network to learn parameters that
minimize this bias. A schematic of our method is shown
in Fig. 1. The propensity model is a binary classifier
which takes the covariates of each individual as input
and predicts whether they have been assigned to the
control group or the treatment group. In our work we
use deep neural networks with dropout regularization
and rectified linear unit (ReLu) activations as the pro-
pensity model. The output of the network, p(i) (referred
to as a propensity score) is trained against targets 0 (for
the control group) or 1 (for the treatment group) using a
binary cross entropy loss LBCE . All covariates of each in-
stance are weighted by its inverse probability weight
(IPW) and the mean squared error between treatment
and control groups is computed to obtain the bias loss

LBIAS . The losses LBCE and LBIAS can have very different
scales and their relative magnitudes may vary batch-to-
batch during training. To account for this and to ensure
that the contributions of the two components can be
precisely tuned, for each training batch we compute a
scalar ratio of the losses, μ ¼ LBCE=LBIAS that is de-
tached from the computation graph i.e. gradients are not
computed for μ during backpropagation. The total loss
term for training the network is:

LTOTAL ¼ LBCE þ νμLBIAS ð1Þ

The hyperparameter ν can be adjusted to tune the
relative contributions of the two modeling objectives.
The cross-entropy loss is computed as:

Fig. 1 Schematic of BCAUS. Structured data composed of control and treatment instances is fed to a neural network. The output of the network
p(i) for each instance i is a propensity score that optimizes a combination of two loss functions. A The binary cross entropy loss LBCE is computed
by comparing p(i) against targets t(i) = 0 for control and t(i) = 1 for treatment. B The bias loss LBIAS is computed as follows: (i) p(i) is used to
compute an inverse probability weight (IPW, orange box) that multiplies all covariates of instance i (ii) weighted means x j are computed
separately for treatment and control groups for each covariate xj, and (iii) the mean squared error between weighted means of treatment and
control covariates defines the bias loss. The sum of both losses is computed and backpropagated. μ is the scalar ratio of LBCE to LBIAS that is
detached from the computation graph. The relative contribution of each loss component is tuned using hyperparameter, ν
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Here t(i) ∈ {0, 1} is the treatment given to individual i.
To compute the bias loss, the propensity score p(i) is
used to compute the IPW:
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Here ϵ is a small positive number used to stabilize the
denominator. The mean squared error of the M covari-
ates weighted according to Eq.3 is used to calculate the
bias loss:
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The two terms in the Eq. 4 represent the weighted

means of the covariates for the treatment and control
groups respectively. The bias loss LBIAS is not calculated
against a fixed ground-truth label as is the case for the
cross-entropy loss, LBCE . However, being composed en-
tirely of differentiable elements, gradients of this loss
can be computed efficiently via backpropagation.
To assess balance, the standardized difference Δj for

the covariate xj is computed according to:

Δ j ¼
x j;treatment−x j;control

�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j;treatment þ s2j;control

� �
=2
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Here x j is the weighted mean of xj and s2j is its

weighted variance with weights assigned according to
Eq. 3. The standardized difference can also be defined
for the raw data without the weights, in which case x j

and s2j represent the unweighted mean and variance

respectively.
During training we consider a covariate as being bal-

anced if the standardized difference, Δ for the weighted
covariate is less than 0.1. Several authors have recom-
mended that the standardized difference be used as a
diagnostic in clinical observational studies [25–27] with
the value of 0.1 being widely accepted as a sufficient
threshold for ensuring the removal of bias between
treated populations [28, 29]. We note here that the exact
value of this threshold is incidental to our method and
any user-specified value may be used; the loss term
LBIAS tries to explicitly reduce Δ to 0 for each covariate
regardless of this value. We pass the threshold value as a

parameter to our training function and use an “early-
stopping” strategy where training terminates when Δ <
0.1 for all covariates. While training may proceed in
batches, it is crucial that the number of balanced covari-
ates is always evaluated for the entire dataset.

Results
We demonstrate the use of BCAUS on two datasets: i)
The IHDP dataset with a single pair of control and inter-
vention arms that was introduced by Hill [16] and is
used as a benchmark dataset in several recent deep-
learning causal inference studies [19–24, 30] and ii) A
large observational diabetes dataset studying the effects
of anti-hyperglycemic medications on hemoglobin-A1c
(HbA1c) values. The ground-truth ATE values for the
semi-synthetic IHDP dataset are known. We combined
BCAUS with IPTW and DR to estimate ATEs and com-
pared them against the ground-truth. Since the diabetes
dataset is drawn from real-word evidence, the ground-
truth ATE is unknown. For this reason, we compared
ATE values estimated by BCAUS-IPTW against those
returned by BART. The choice of BART for comparison
was motivated by the fact that it was one of the top per-
formers at the 2016 Atlantic Causal Inference competi-
tion [17]. As a diagnostic, we also evaluated the
specification of all models by comparing standardized
differences Δ between covariates before and after
BCAUS training.

IHDP dataset results
The IHDP dataset is a modified version of data from a
randomized experiment [31] that was conducted to de-
termine the effect of an interventional program on the
cognitive development of pre-term babies. The data con-
sists of 25 covariates (labeled x1 through x25) of which 6
are continuous and the rest are binary, a treatment vari-
able, and simulated factual and counterfactual outcomes.
The continuous covariates are z-scored to have zero
mean and unit variance. By intentionally censoring data
from certain subjects, the dataset has been imbalanced
to simulate an observational study. To compare results
of BCAUS against earlier studies [21–23], we use 1000
realizations of the IHDP dataset made available by Shalit
et al. [22]. This dataset was generated by the authors of
Ref. 22 using the formulae specified in Ref. 16 such that
each realization has a distinct ATE value. While each
realization contains a single intervention arm, in aggre-
gate the dataset is analogous to a multi-arm study with
1000 intervention arms. There are 747 individuals in the
dataset of whom 608 belong to the control group and
139 belong to the treatment group. The 747 individuals
are divided into a training set with 672 individuals and a
holdout set of 75 individuals. We subdivided the larger
dataset into training (500 samples) and cross-validation
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(172 samples) sets as in other studies [21, 22] but did
not perform any additional transformations.
The neural network trained on the IHDP data con-

sisted of two hidden layers with 50 neurons each. The
output layer was a single neuron which represented the
propensity score. We trained a set of 5 models on a sin-
gle realization of the IHDP dataset with different values
of the hyperparameter ν to demonstrate the effect the
loss term of Eq. 4 has on achieving covariate balance.
The results of our experiments are shown in Fig. 2. In
Fig. 2(a), we show the number of balanced covariates as
training proceeds for different values of ν. We observe
that when the network is trained with only LBCE i.e. ν =
0, only a fraction of the covariates are balanced at the
end of training. Higher values of ν result in faster con-
vergence. The classifier loss LBCE and the bias loss LBIAS

are shown in Fig. 2(b) for the model trained with ν = 1.
The very different scales of the two losses demonstrates
the importance of the parameter μ in the loss function.
Figure 2 (c) shows the standardized difference Δ be-
tween treatment and control, with and without inverse
propensity weight (IPW) adjustment, for the model
trained with ν = 1. For each of the 25 covariates the ad-
justed difference lies below 0.1 indicating that the pro-
pensity model is well specified. The inset of Fig. 2 (c)
shows normalized histograms of the distribution of

propensity scores, i.e. output of BCAUS, for treatment
and control groups. The large degree of overlap between
the distributions is essential for matching-based methods
that may be used downstream to estimate the ATE.
To compare against previous work on neural-network-

based causal inference methods, we evaluated BCAUS
on 1000 realizations of the IHDP dataset. For each
realization we trained BCAUS on 500 training samples
and computed the ATE using IPTW and DR. For DR,
we trained two linear regressors (for control and treat-
ment respectively) with an L2 penalty and chose the
regularization parameter by performing 3-fold cross-
validation on the training set. We computed the mean
absolute error between the estimated and ground-truth
ATEs, ϵATE across 1000 realizations and picked BCAUS
hyperparameters to minimize this value on 172 cross-
validation samples. Table 1 reports ϵATE between esti-
mated ATEs and ground-truth ATEs. The in-sample
ϵATE is computed by combining the 500 training and
172 cross-validation examples and the out-of-sample
value is computed on 75 held out examples. We observe
that the performance of BCAUS is comparable to other
neural-network-based methods and can complement
these approaches. We provide code in the Supplemen-
tary Information section to reproduce BCAUS results on
this data.

Fig. 2 Results of BCAUS on IHDP dataset. Model trained on one realization. a Number of balanced covariates (standardized difference, Δ between
arms < 0.1, Eq. 5) as training progresses for different values of hyperparameter ν. When ν = 0, the network is trained with LBCE alone. b Loss
curves for LBCE (green) and LBIAS (violet) for network trained with ν = 1. c Standardized differences for all 25 covariates in IHDP dataset for
network trained with ν = 1. Green trace is raw unadjusted data and violet trace shows data adjusted by Inverse Propensity Weights (IPW). Dashed
line represents threshold at 0.1. Inset shows normalized histograms of the distribution of propensity scores i.e. output of BCAUS, for control
(green) and treatment (violet) groups
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Diabetes dataset results
The diabetes dataset consists of data drawn from health
insurance claims of 140,000 patients with Type-2 dia-
betes mellitus (T2DM) that was collected over a 5-year
time period between 1st January 2015 and 31st Decem-
ber 2019. Individuals are included in the dataset if they
have a medical claim indicating T2DM (ICD code E11),
a history of high levels of glycated hemoglobin (HbA1c >
= 9%), and prescription claims for anti-hyperglycemic
medications. The data tracks the effect of anti-diabetic
drugs on HbA1c values and can be used to estimate the
comparative effectiveness of individual drugs or combi-
nations of drugs in real-world settings. The data consists
of the following 21 covariates: age, gender, 15 variables
indicating the presence or absence of comorbid condi-
tions defined by the Charlson Comorbidity Index [32],
and 4 variables describing the racial makeup and income
levels in the patient’s zip code tabulation area (ZCTA).
Data on the last four come from US census information
[33]. Of these 21 covariates, age, and the four ZCTA var-
iables are continuous while the rest are binary. In
addition, a treatment variable denotes which anti-
diabetic drug or combination was used to treat the indi-
vidual. The outcome variable is the change in HbA1c
value from baseline in a 6–12 month period following
treatment. Drugs are identified by their therapeutic class
names alone (e.g. GLP-1 Agonists, SGLT2 Inhibitors,
etc.). In many instances, patients shift treatment regi-
mens during the 5-year time frame. As a result, in the

filtered dataset 289, 000 treatment assignments are
observed. Only those treatments where the size of the
cohort is greater than 30 are retained. There are 134
unique drug combinations that meet this criterion.
We trained BCAUS on the diabetes dataset setting

Insulin (the most common treatment in the dataset) as
control and comparing all other drug combinations
against this control. We did not explicitly model for
time-varying effect but instead considered each
treatment-assignment as belonging to a different subject
in the study. We used neural networks with two hidden
layers of 42 neurons for the BCAUS model. The max-
imum number of epochs was set to 1000, but an early-
stopping procedure was implemented where training ter-
minated if all 21 covariates remained balanced for more
than 10 epochs. The hyperparameter ν was set for each
control-treatment pair using stratified k-fold cross-
validation, where the network was trained on k-1 folds
and the number of balanced covariates (the primary
metric to be optimized) were counted for the k-th fold.
The number of folds was set to 3. Once an optimal value
of ν was obtained, the number of balanced covariates
was counted on the entire dataset combing all folds.
In real-word settings such as this, it is not uncommon

to observe extreme differences between treatment and
control cohort sizes. In our example, the Insulin-treated
control group had a cohort size of 44,600, while the me-
dian cohort size of the 133 treatment groups was 163.
From a machine learning perspective, such class imbal-
ances in binary classification tasks are usually treated by
sub-sampling or by loss weighting. In experiments de-
scribed below, we do not use either of these techniques.
Training with the joint loss of Eq. 1 is observed to ad-
equately correct for class imbalance. As an example of a
treatment cohort with large class imbalance, we consider
treatment by a combination therapy of Insulin + Metfor-
min + GLP-1 Agonist + SGLT2 Inhibitor + Sulfonyurea.
In this case there were only 125 examples in the treat-
ment cohort, representing a treatment-to-control cohort
size ratio of approximately 1:350. As shown in Fig. 3(a)
BCAUS was able to remove covariate imbalance present
in the unadjusted raw data. The inset of Fig. 3(a) shows
normalized histograms of the distribution of propensity
scores. To measure the performance of BCAUS on all
133 arms, we count the number of covariates which have
low bias (Δ < 0.1) for each arm in the raw data prior to
BCAUS training and adjustment. A histogram is shown
in Fig. 3(b). We see that in none of the 133 arms are all
21 covariates balanced. The median number of balanced
covariates is 9. In Fig. 3(c), we show the same histogram
but after BCAUS training and adjustment. In a majority
of cases (124 of 133) all 21 covariates are balanced. For a
small number of intervention arms (8 of 133) BCAUS is
able to balance ≥ 18 covariates but not all 21. These

Table 1 Comparing BCAUS against other deep-learning-based
causal inference algorithms

Method In-sample ϵATE Out-of-sample ϵATE

BNN 0.37 ± .03 0.42 ±.03

BLR 0.72 ±.04 0.93 ±.05

TARNet 0.26 ±.01 0.28 ±.01

CFR MMD 0.30 ±.01 0.31 ±.01

CFR WASS 0.25 ± .01 0.27 ±.01

GANITE 0.43 ± .05 0.49 ± .05

Dragonnet 0.14 ± .01 0.21 ± .01

CEVAE 0.34 ±.01 0.46 ±.02

BART 0.47 ±.02 0.66 ±.03

BCAUS IPTW 0.30 ± .01 0.60 ±.02

BCAUS DR 0.13 ±.00 0.29 ±.01

We include BART for comparison even though it is not neural network
based. ϵATE (lower is better) is the mean absolute error between estimated
ATE and ground-truth ATE. BNN Balancing Neural Network [21], BLR Balancing
Linear Regression [21], TARNet Treatment-Agnostic Representation Network
[22], CFR Counterfactual Regression [22], GANITE Generative Adversarial Nets
for inference of Individualized Treatment Effects [24], Dragonnet [19], CEVAE
Causal Effect Variational Autoencoder [23], BART Bayesian Additive Regression
Trees [16]. In-sample value is computed on 672 examples (training + cross-
validation) and the out-of-sample value is computed on 75 examples in the
hold-out set. The standard error across 1000 realizations is reported as the
uncertainty. Performance of BCAUS is comparable to other models
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intervention arms tended to have very few covariates
balanced prior to training and adjustment (left tail of
distribution in Fig. 3(b)). For one intervention arm
which had only 2 covariates balanced in the raw un-
adjusted data, BCAUS was able to balance only 12
covariates.
We measured covariate imbalance for all 133 interven-

tion arms before and after IPW adjustment comparing
BCAUS against two baseline models: (i) logistic regres-
sion and (ii) a neural network classifier trained only to
predict treatment assignment. We chose logistic regres-
sion as a baseline because it is often used for propensity
modeling in observational studies, while the neural net-
work was chosen to emphasize that a non-linear model
does not automatically guarantee covariate balance. To
make the comparison fair, we used the same model
architecture (number of layers, neurons etc.) for the
baseline neural network model as BCAUS. Note that this
can also be achieved simply by setting the hyperpara-
meter ν to zero. Both baseline models were used “out-
of-the-box” in that no attempt was made to iteratively
tweak them if covariate balance was not achieved. Re-
sults of this comparison are shown in Fig. 4. Each box
plot shows the distribution of standardized differences Δ
(between treatment and control arms) for a particular
covariate for all 133 intervention arms. The red dashed

line shows the 0.1 threshold level. The left panel shows
the unadjusted data and we observe that large imbal-
ances exist in the covariates. When weighted by IPWs
from the logistic regression model or the neural network
model, covariate imbalance is reduced as shown in
panels (b) and (c) respectively. However, a much more
dramatic reduction in imbalance is seen in the BCAUS
model as shown in panel (d). This demonstrates that
BCAUS is effective at balancing covariates in real world
datasets with an extremely large number of intervention
arms and outperforms common baselines.
We computed ATEs using propensity scores from

BCAUS using IPTW for all intervention arms with 21
balanced covariates and compared it against ATE values
from BART trained using the default specifications rec-
ommended by Chipman et al. [15]. Figure 5 plots
BCAUS ATE values against BART ATE values for the
133 intervention arms. We observe good agreement be-
tween the two methods with a mean absolute error be-
tween the two estimates of 0.04. While the results of the
two models are comparable, it is not possible to say
which one is more accurate because the ground truth
ATEs for this real-world dataset are unknown. Since
BART is regression based and not propensity-score-
based, we do not compare BCAUS and BART in terms
of their ability to achieve covariate balance. We note

Fig. 3 Results of BCAUS on Diabetes dataset. a Standardized differences for all 21 covariates in Diabetes dataset for one arm: Treatment = Insulin
+ Metformin + GLP-1 Agonist + SGLT2 Inhibitor + Sulfonyurea; Control = Insulin. Cohort sizes are 125 and 44,600 respectively, implying a class-
imbalance ratio ~ 1:350. Green trace is raw unadjusted data and violet trace shows data adjusted by IPW. Dashed line represents threshold at 0.1.
Inset shows normalized histograms of the distribution of propensity scores i.e. output of BCAUS, for control (green) and treatment (violet) groups.
ZCTA = Zip-Code Tabulation Area. b Histogram of number of balanced covariates (standardized difference, Δ < 0.1 between control and
treatment) in each intervention arm prior to BCAUS training and IPW adjustment. Shown here for 133 intervention arms. c Same as (b), but after
BCAUS training and adjustment. For a majority of intervention arms (124 of 133) all covariates are balanced

Belthangady et al. BMC Medical Research Methodology          (2021) 21:190 Page 7 of 10



here that since BART relies on Monte Carlo sampling,
we found it to be substantially slower than BCAUS with
a run time of approximately 29 h compared to 50 min
for BCAUS.

Discussion
The estimation of causal effects is essential in nearly
every field as correct estimation empowers us to
optimize decision making based on evidence. Large ob-
servational datasets that are becoming increasingly com-
mon in healthcare and medicine may have a multitude
of intervention arms and require causal inference tech-
niques that scale appropriately. While causal inference
workflows that are automated are critical, it is also desir-
able that these methods be fast and compatible with
more conventional workflows so that their results can be
trusted. Many recently proposed deep-learning-based
methods are highly automated and fast. BCAUS comple-
ments these algorithms and at the same time utilizes
methods and diagnostics that are commonly used for
observational studies in medicine.
On the semi-synthetic IHDP benchmark where

ground-truth is known, BCAUS was able to correctly es-
timate the ATE to within an error that was comparable
to other deep-learning-based methods. Of the models

Fig. 4 Comparison between BCAUS and baseline logistic regression and neural network propensity score models on the diabetes dataset. For
every covariate, box plots show distributions of standardized differences, Δ between control and treatment cohorts for 133 intervention arms.
Whiskers are at 5 and 95 percentiles. Red dashed lines show the threshold at 0.1 below which covariates are considered balanced. a Raw
unadjusted data without IPW weighting. b Covariates weighted with IPWs from baseline logistic regression (LR) model. c Covariates weighted
with IPWs from baseline neural network (NN) model. d Covariates weighted with IPWs from BCAUS

Fig. 5 Comparison between BCAUS and BART ATE estimates on the
diabetes dataset. Since ground truth for the diabetes dataset is
unknown, we compare BCAUS estimates versus BART estimates. ATE
estimated using BCAUS-IPTW plotted against ATE estimates from
BART (green dots) for 133 intervention arms. Units are percentage
changes in glycated hemoglobin i.e. HbA1c. Straight line represents
y = x. Mean absolute error between the two estimates is 0.04
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considered for comparison in Table 1 BNN, BLR, CFR
and TARNet use neural networks to learn representa-
tions of the baseline covariates and train regression
models on these learned representations. A comparison
of the performance of these models with BART and
other non-neural-network-based methods has been
reported by Shalit et al. [22]. GANITE and CAVAE use
generative adversarial networks and variational autoen-
coders respectively to learn the probability distributions
of the covariates and outcomes and to estimate individ-
ual treatment effects. These methods do not generate
propensity scores and cannot be used in conjunction
with IPTW or DR methods. The Dragonnet method, on
the other hand, models both treatment assignment as
well as outcomes and is very similar to BCAUS DR.
While Draggonet uses a neural network for outcome
modeling, BCAUS DR, as demonstrated here, used a
simple linear regressor for this task. The difference in
performance between the two methods may be attrib-
uted to the more flexible modeling scheme used in Dra-
gonnet. We also observed a difference in performance
between BCAUS IPTW and BCAUS DR that suggests
that despite balancing all covariates there was some re-
sidual misspecification in the propensity-score model
that was corrected in the DR framework by the regres-
sion model. Setting a tighter balancing threshold (lower
than 0.1) and training the network for longer may help
reduce the difference between the two estimates.
On the real-world diabetes dataset involving significant

covariate imbalance as well as class imbalance across
hundreds of simultaneous intervention arms, BCAUS
demonstrated better performance at reducing imbalance
than either logistic regression or neural network propen-
sity models. The ground-truth ATEs are unknown for
this dataset, but BCAUS estimates using IPTW were
comparable to BART estimates. In our runs we found
BCAUS to be ~ 30 times faster than BART at analyzing
the 133 intervention arms in the diabetes dataset.
While BCAUS was able to generate correctly specified

propensity models for a majority of intervention arms in
the diabetes dataset, in a small number of cases all co-
variates could not be balanced. The loss term LBIAS at-
tempts to match the first moments of IPW adjusted
covariates. Supplementing this loss with terms which
match higher moments [14] may ameliorate this issue.
The effectiveness of the bias loss at correcting class im-
balance also needs further investigation. This loss term
assigns equal importance to imbalance in each covariate.
If it is important to reduce imbalance in certain covari-
ates more than in others, the mean squared error may
be replaced by a weighted mean of squared errors where
weights are assigned by the modeler in proportion to the
relative importance of each covariate. While not ex-
plored in the present manuscript, BCAUS may also be

used for time-varying confounding. In this case the pro-
pensity score output by BCAUS can be used to compute
inverse propensity weights that may then be used to
solve for the appropriate estimating equations of the
marginal structural model under consideration. We will
report on these extensions of BCAUS in future
publications.

Conclusion
BCAUS can generate correctly specified propensity
models for curated benchmark datasets as well as far-
from-ideal, real-world datasets. However, to get accurate
estimates of the causal effect, it is essential that all po-
tential confounders are identified for each arm of the
study using subject-matter expertise and only confound-
ing covariates are used for propensity score modeling.
When used in conjunction with well-established causal-
inference techniques it can match the performance of
recently proposed neural network methods. It scales well
to cases where there are numerous intervention arms,
where class imbalance is severe, and where traditional
techniques of iterating between model tuning and covar-
iate balance testing are impractical. It is our expectation
that BCAUS will automate and speed up current causal
inference modeling approaches in medicine and enable
the design of massive multi-arm studies that were previ-
ously infeasible.
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