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Hydroxyl radical (•OH)-mediated chemodynamic therapy (CDT) is an emerging antitumor
strategy, however, acid deficiency in the tumor microenvironment (TME) hampers its
efficacy. In this study, a new injectable hydrogel was developed as an acid-enhanced CDT
system (AES) for improving tumor therapy. The AES contains iron–gallic acid
nanoparticles (FeGA) and a-cyano-4-hydroxycinnamic acid (a-CHCA). FeGA converts
near-infrared laser into heat, which results in agarose degradation and consequent a-
CHCA release. Then, as a monocarboxylic acid transporter inhibitor, a-CHCA can raise
the acidity in TME, thus contributing to an increase in ·OH-production in FeGA-based
CDT. This approach was found effective for killing tumor cells both in vitro and in vivo,
demonstrating good therapeutic efficacy. In vivo investigations also revealed that AES had
outstanding biocompatibility and stability. This is the first study to improve FeGA-based
CDT by increasing intracellular acidity. The AES system developed here opens new
opportunities for effective tumor treatment.

Keywords: FeGA, hydrogel, a-CHCA, chemodynamic therapy and tumor therapy, intracellular acidity
INTRODUCTION

Cancer, as one of the primary diseases affecting human health, has a profound impact on human
life, and the patient’s condition becomes due to the rapid propagation and diffusion of cancer cells,
and the lower efficacy of the currently used chemotherapeutic agents (1–5). However, cancer cells
are very sensitive to reactive oxygen species (ROS), increased ROS levels can cause cell redox
imbalance, thus resulting in permanent damage to the orgate and, eventually, apoptosis (6, 7). Based
on this fact, researchers have developed a range of new treatment approaches to enhance tumor
ROS levels, such as radiotherapy (RT), photodynamic therapy (PDT), CDT, and so on (8–10).
However, the light-treated PDT is limited in the body, and long-term RT results in diverse side
effects (11–13). Furthermore, increasing evidence suggests that the CDT for foreign iron treatment
offers a significant advantage (14, 15). In TME, Fe2+ can react with enough hydrogen peroxide
(H2O2), thus producing toxic •OH. Several other kinds of iron-containing formulations such as
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tetraned iron nanoparticles, iron oxide nanoparticles, and FeGA
particles have been utilized as a catalyst for Fenton-reacted cell
death, either alone or in combination with other catalysts (16, 17).
Liu et al. used food acid and Fe2+ mixed ultra-small FeGA complex
for achieving improved CDT (18). The catalytic stability of free Fe2+

was greatly improved due to GA-mediated Fe3+, and the combined
glutathione (GSH) consumpant BSO was significantly improved as
FeGA could consume GSH. This in turn improved oxidative stress
in tumors, resulting in a considerable improvement in the treatment
effect of simultaneous chemotherapy or radiotherapy. Although a
significant anti-tumor efficacy is attained, the Fenton reaction’s
effect is highly associated with the acidity of the tumor (19). With
the decrease of pH, the reaction rate of Fe2+ with H2O2 increases.
TME frequently exhibits a weak acid environment due to aberrant
cancer cell metabolism and is unable to attain the optimal pH range
of Fanton, which has a significant effect on CDT.

Cancer cells, unlike normal cells, are more likely to “ferment”
glucose into lactic acid to produce adenosine triphosphate for
energy rather than oxidative phosphorylation of mitochondria,
even in normoxic conditions. This is the Warburg effect (20, 21).
Furthermore, some tumor tissues continue to deteriorate lactic
acid via the tricarboxylic acid (TCA) cycle to prevent long-term
accumulation of lactic acid in the cells, thus inducing cell
disorders. This is the metabolic process that tumor cells go
through (22). As a result, disrupting the tumor’s metabolic
equilibrium by affecting the cyclic impact of TCG or the lactic
acid transfer chain will eventually result in a substantial lactic
acid accumulation in the cell and leads to cell acidosis (23). This
in turn results in improved anti-tumor effects. Wan et al. used a-
CHCA, a monocarboxylic acid transport inhibitor, to destroy the
delivery process of lactic acid, alter the metabolic homeostasis,
and used it in combination with H2S to achieve a powerful
tumor-killing effect (23). This approach only targets cancer
tissues during therapy and does not produce inflammatory
reactions or other organ side effects, thus demonstrating a high
level of biological safety. However, most small-molecule drugs
are administered via intravenous injection. The drugs are
incapable of evading the immune system and cannot actively
target tumor cells (24). A considerable number of drugs are
removed through the bloodstream, and the drugs reaching the
tumor are uncontrolled. These factors greatly limit the
treatment efficacy.

Traditional drug delivery systems usually have issues such as
poor drug loading, difficult manufacturing processes, and early drug
leakage or slow release (25–27). Although many inorganic and
organic materials are also widely used in biological applications,
most of them are injected intravenously, with high material loss rate
and difficulty in reaching tumor tissues (28). Moreover, it is difficult
to achieve controlled release of these materials or require complex
modifications to improve their biological applicability, which is not
conducive to clinical applications (29, 30). The long-term toxicity
induced by the carrier persisting in the body for an extended period
is also an important aspect. Light-responsive hydrogels with
minimal invasiveness have recently gained popularity as a
controlled drug release platform (31–33). The hydrogel gradually
solidifies after being injected into tumor tissue and can be utilized as
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a military rationing depot for a longer period, this characteristic is
attributed to the rapid decrease of the temperature of the hydrogel
and the increase of the storage modulus, which leads to the
solidification of the hydrogel and its long-term residence in the
body (34, 35). After one injection, this form of local administration
can be used again and again. Furthermore, the drug release rate can
be changed by optimizing parameters such as laser strength and
laser irradiation period and extending the treatment method’s
application. For the first time, Zhu et al. used an agarose hydrogel
to deliver the AIEgen material for anti-tumor treatment. As a
photothermal agent (PTA), prussian blue (PB) nanozyme
stimulated the disintegration of the hydrogel while also acting as a
CAT enzyme to catalyze H2O2 for improving the TME (31).
Following that, a low-power white light was used. AIEgens
produced ROSs under sufficient oxygen levels for promoting
tumor ablation upon irradiation. As a result of these findings, we
are encouraged to use hydrogels to deliver a-CHCA for disrupting
the tumor’s ecological balance and boosting the efficacy of FeGA-
based CDT.

We designed an injectable hydrogel with FeGA nanoparticles
and a-CHCA for intratumoral injection of chemodynamic and
photothermal therapy (Scheme 1). The US Food and Drug
Administration (FDA) has declared agarose hydrogels to be
safe. FeGA nanoparticles and a-CHCA were placed into an
agarose hydrogel for producing the FeGA reservoir and acid
enhance system (AES). In this system, the FeGA nanoparticles
serve as a PTA due to their outstanding photothermal
performance. FeGA turns light energy into heat energy upon
irradiating the AES system with an 808 nm near-infrared (NIR)
laser, thus causing the temperature rise of the agarose hydrogel,
as a result, reversible hydrolysis and softening occur. a-CHCA
diffuses into the TME, inhibiting lactic acid efflux and
intracellular accumulation in tumor cells, resulting in tumor
acidosis. The Fenton reaction, which is driven by Fe2+, can then
produce a high amount of •OH, which can damage tumor cells.
The AES can be employed as a FeGA storage controller for
achieving the controlled release of the drug and for intratumor
injection of local tumors. This is the first study to show that
increasing intracellular acidity in situ improves FeGA-based
CDT. In conclusion, the FH nanosystem has a wide range of
clinical applications in synergetic therapy.
RESULTS AND DISCUSSION

Characterization of FeGA Nanoparticles
and AES
Figure 1A shows a transmission electron microscope image of
FeGA. The results show better dispersibility and smaller size
of FeGA, with an average of 2.36 ± 1.2 nm. The nanoparticles
of smaller than 10 nm in size are easily cleared by the kidney,
which limits its therapeutic efficacy. Therefore, the applicability of
FeGA can be greatly improved through the hydrogel delivery
system. The particle size of FeGA was measured for three
consecutive days (Figure 1C), and the size fluctuation range was
found small, reflecting the good stability of FeGA. Thus, in turn
September 2021 | Volume 11 | Article 750855
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SCHEME 1 | Schematic illustration of an injectable hydrogel for enhanced FeGA-based chemodynamic therapy by increasing intracellular acidity.
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makes it a good system in clinical application prospects. Even
though many materials have a beneficial biological impact, their
high instability restricts their future value (36). The agarose
hydrogel has been authorized by the FDA as a safe material that
does not cause any toxicity in the body and is metabolized by the
body’s natural processes following dissolution. The scanning
electron microscope (SEM) image of the agarose hydrogel is
shown in Figure 1B. The pore size of the hydrogel is larger and
the AES system was then developed by encapsulating FeGA and
a-CHCA in a hydrogel. Figure 1D demonstrates the good
photothermal heating potential of AES while the developed
hydrogel remains solid. The hydrogel gradually dissolves after 10
minutes of 808 nm laser irradiation. The drug and nanoparticles in
the gel are almost totally dissolved and are released. Infrared
thermal imaging further indicated that following irradiation, the
temperature of AES increased dramatically. Figure 1E shows the
ultraviolet-visible absorption of FeGA. FeGA has a quite high
absorption bandwidth in the 600-800 nm range, with a distinctive
peak near 600 nm. X-ray photoelectron spectroscopy (XPS) was used
to measure the Fe 2p spectrum in FeGA (Figure 1F). Zeta potential
of FeGA was detected to be -18.1 ± 6.57mV. The rheological value of
AES was evaluated at various temperatures (Figure 1G), and the
results revealed that as the temperature increases, AES rapidly
dissolves, accompanied by a gradual decrease in storage modulus.
This is in line with the hydrogel’s rheological properties.We then put
AES to the test to see if it could regulate the release of materials and
the results are described in Figure 1H. Laser irradiation can partially
disintegrate AES and liberate the a-CHCA within it. The hydrogel
becomes cool and hardens after the laser irradiation is stopped, and
the drug will remain protected. The drug is usually released
Frontiers in Oncology | www.frontiersin.org 3
completely after four laser switching cycles. This also demonstrates
that our AES system has a strong ability to control drug release,
which inhibits lactic acid efflux, strengthens the tumor’s acidic
environment, and keeps the cells in an acidic environment, which
is likely to promote FeGA-mediated CDT.

Photo-Thermal of the FeGA for PTT
One of themost essential factors for evaluating PTA is photothermal
stability. A powerful photothermal treatment can be assisted by a
good photothermal agent. To test the photothermal performance of
FeGA nanoparticles, FeGA solutions were prepared with different
concentrations (0, 25, 50, 100, 200 mg/mL). Figure 2A shows that
assuming all otherparameters remain constant, theheating impact of
the solution increases as the FeGA concentration rises. The
temperature of 100 mg/mL FeGa increased by roughly 16.6°C after
5 min of laser irradiation. For 5 minutes, the 200 mg/mL FeGA
solution was repeatedly heated with the 808 nm NIR laser
(Figures 2B, D, E), then the solution was allowed to cool to
ambient temperature. The heating curves of each cycle were
identical, and the variations in peak temperature changes were
minor, demonstrating that the FeGA nanoparticles’ photothermal
conversion capability was found to be stable and reproducible over
repeated 4 heating and cooling cycles. These findings suggest that the
FeGA nanoparticles have good photothermal stability. Furthermore,
the photo-thermal conversion efficiency (h) of the FeGA was
calculated from the data of Figures 2C, F, and was found as 42.6%,
which was higher than variousmaterials such as Au nanorods (21%)
and Ti3C2 nanosheets (30.6%) (37, 38). Above all, FeGA
nanoparticles are an excellent PTA for photothermal conversion to
anti-tumor.
September 2021 | Volume 11 | Article 750855
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In Vitro Combination Therapy
Furthermore, we assessed the ROS content of several formulations.
There is no green fluorescence in the control group, the NIR group,
or the AES group when treated alone. The AES + NIR group had
high fluorescence, whereas the FeGA+NIR group hadmuch lower
fluorescence. This could be because a-CHCA alters the tumor acid
microenvironment, andFeGA reactswith enoughH2O2 toproduce
increased ROS. ROS can cause cellular protein and DNA damage,
resulting in the death of tumor cells (39). In several experimental
groups,we continued to evaluate the lactic acid concentrationof the
TME. The results revealed that, despite the presence ofa-CHCA in
the AES group, a-CHCA was unable to affect the cells due to the
hydrogel’s encapsulation, but the AES + NIR group had increased
lactic acid concentration. a-CHCA can be released after laser
irradiation, changing the lactic acid ecological microenvironment
of tumor cells. Hence, the AES + NIR group was able to produce
good lactate accumulating effect. The acidic environment is
conducive to the subsequent FeGA-mediated Fenton reaction.
Frontiers in Oncology | www.frontiersin.org 4
FeGA was incubated with 4T1 cells at various concentrations (0,
10, 20, 30, 40mg/mL) for 24 hours. Even at high concentrations, cell
viability did not decrease significantly. The findings suggested that
FeGANPs are highly biocompatible. The cell viability of the control
group was largely unaffected by the MTT experiment, whereas the
NIR with FeGA group demonstrated a little inhibition in tumor
growth (Figure 2G). AES + NIR system exhibited the best tumor
growth inhibition rate (about 88.5%), with significant differences
compared to other experiment groups indicating that AES
mediated controlled release of a-CHCA can effectively increase
the acidity of TME, thereby enhancing the CDT effect and
inhibiting tumor growth. These findings motivate our ongoing
research to proceed with the developed formulation for anti-tumor
efficacy in vivo.

In Vivo Anti-tumor Study
As stated earlier, the good performance of AES in vitro as a PTA
and acid boosting system has prompted us to investigate the
A B C

D E

F G H

FIGURE 1 | Characterization of AES. (A) TEM image of FeGA. (B) SEM image of the hydrogel. (C) Statistical graph of the measured diameter of FeGA. (n = 3).
(D) The morphology of the prepared AES before and after 0.5 W/cm2 808 nm laser irradiation for 10 min and infrared thermal images of the prepared AES after
being irradiated. (E) FeGA absorbance spectra. (F) Fe 2p spectrum of XPS spectra of fresh GA–Fe. (G) Rheological and temperature curves (blue and red,
respectively) for the prepared AES in response to 0.5 W/cm2 808 nm laser irradiation. (H) In vitro AES release profile in the presence and absence of 808 nm laser
irradiation, with red arrows being used to indicate irradiation time points (n = 3). The results were expressed as mean ± SD.
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photothermal conversion effect of FeGA in vivo. BALB/c mice
were used to establish 4T1 subcutaneous tumor models. After
invading the tumor tissue, we measured the temperature rise of
AES under laser irradiation. The PBS group rarely heated up
after laser irradiation, as seen in Figures 3A, B, whereas the
temperature of the tumor in the AES group increased dramatically,
showing that AES has strong photothermal performance. This
finding is similar to the in vitro photothermal findings,
demonstrating that AES can provide in vivo photothermal
therapy and drug release. Tumor tissues’ heat resistance was
lowered when compared to normal cells, resulting in tumor cell-
selective apoptosis at high temperatures (42 – 47°C) (17). Following
that, we measured the amount of lactic acid in the tumor after
various treatments. The lactic acid level of the tumor increased
considerably after 4 hours of AES plus NIR treatment, as seen in
Figure 3C. However, no obvious signals of increase were observed
in the other groups, demonstrating that the released -CHCA can
effectively prevent tumor cell lactic acid efflux and intracellular
accumulation, leading to tumor acidosis (Figure 3C). The anti-
tumor efficacy of AES-mediated anti-tumor therapy was next
Frontiers in Oncology | www.frontiersin.org 5
evaluated in mice with 4T1 tumors. BALB/c mice were injected
subcutaneously with 1 × 106 4T1 cells in the right flank to assess the
main effectofAES.Themicewere treated after reaching theprimary
tumor volume to 200 mm3. Tumor-bearing mice were randomly
divided into 4 groups (5mice per group): (1) PBS; (2) NIR; (3) AES
and (4) AES + NIR. The equivalent FeGA dose was 5 mg/kg in
groups 3 and 4. For 16 days, treatment was given every 4 days. The
body mass of treated and control mice remained normal after
treatment, showing the safety of our technique (Figure 3F). This is
quite interesting because many treatments are associated with
severe systemic toxicity, which is detrimental to the material’s
future clinical application (40). The tumor volumes of the PBS
and NIR treated groups increased substantially during the 2 weeks
of treatment, as illustrated inFigure 3D. In addition, theAESgroup
had essentially no tumor-suppressive effect. The hydrogel
entrapped FeGA and CHCA are unable to kill tumors. The AES +
NIR system, which included both FeGA, had the most potent
therapeutic response as the tumor volume growth curves being
nearly reduced during therapy (Figures 3D, E). When the AES
hydrogel is exposed to laser radiation after intratumoral injection, it
A B C

D

E F G

FIGURE 2 | In vitro synergetic therapeutic effects of the AES. (A) Temperature increase for the different FeGA concentrations upon laser irradiation at 808 nm and
0.5 W/cm2 for 5min. (B) Temperature variation of a FeGA solution at 100 mg/mL under cyclic laser irradiation. (C) Calculation of the time constant for the heat
transfer using linear regression of the cooling profile. (D) Measurement of tumor cell ROS fluorescence after the indicated treatments (n = 5). (E) In vitro lactate
accumulation effect of different formulations (n = 5). (F) Dark cytotoxicity of FeGA on 4T1 cells (n = 5). (G) In vitro cytotoxicity of different formulations against 4T1
cells (n = 5). **P < 0.01, ***P < 0.005; Student’s t-test. The results were expressed as mean ± SD.
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dissolves and releases FeGA and a-CHCA in FH. a-CHCA would
raise the tumor’s lactic acid concentration. FeGA then combines
with intratumoral H2O2 to produce •OH in situ, which kills the
tumor. We tested the fluorescence intensity of ROS in different
groups in vivo, and the results also showed that AES + NIR group
showed the strongest green fluorescence, and produced a large
amount of ROS to promote tumor apoptosis. The tumor mass of
mice was also in agreement with the volume curve (Figure 3E).We
obtained slices of tumor tissue for staining. TUNEL and H&E
staining (Figures 3G, H) also confirmed the large amount of cell
necrosis in the AES combined NIR treatment group.

Histological Analysis
Furthermore, FeGA activation did not cause any loss to systems, as
shown inFigure 4. After the treatment ofmice’s vital organs (heart,
liver, spleen, lungs, and kidney), there was no inflammation, and
damage in the body, and the liver, and kidney indexes were also
normal. As many nanomaterials possess great therapeutic efficacy,
Frontiers in Oncology | www.frontiersin.org 6
they are also associated with systemic toxicity, which limits their
future clinical applications (41). In vivo data show that our novel
combination therapy not only achieves a high level of biological
safety but also increases tumor •OH content, thus enhancing the
effect of FH-enhanced therapy.
CONCLUSION

Finally, we developed an injectable light-controlled hydrogel
system, called an acid to enhance system AES, by encapsulating
FeGA nanoparticles and a CHCA in agarose hydrogel. The nano-
systemcan be combinedwith 808 nm laser irradiation for achieving
outstanding tumor treatment effects. FeGA nanoparticles can be
employed as an ideal PTA due to their superior photothermal effect
in the NIR-I region. The agarose hydrogel underwent controlled
and reversible hydrolysis and softening states under the NIR laser
power, resulting in light-triggered FeGA nanoparticles release and
A B C

D

G

H

FE

FIGURE 3 | In vivo therapy. (A) IR thermal images of tumors following an 808 nm laser irradiation (0.5 W/cm2) for 5 min in the indicated treatment groups (n = 3).
(B) Temperature increase in mice implanted with 4T1 tumors following 808 nm laser irradiation (0.5 W/cm2) for 5 min in the indicated treatment groups. (C) Lactate
accumulation effect of different in vivo treatments (n = 5). (D) Tumor volume changes over time in groups treated as indicated (n = 5). (E) Average tumor weight
values associated with the indicated treatments (n = 5). (F) Changes in body weight in response to the indicated treatments (n = 5). (G) TUNEL and (H) H&E stained
tumor sections from the indicated treatment groups (n = 5). ***P < 0.005; Student’s t-test. The results were expressed as mean ± SD.
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degradation of hydrogel. Then, a-CHCA would then cause tumor
acidosis in the region, causing an increase in the Fenton reaction.
TheAES exhibits outstanding cancer cell killing and tumor ablation
properties in both in vitro and in vivo tests, with good stability, low
toxicity, and biocompatibility. This is the first study to show that
increasing intracellular acidity in FeGA-based CDT improves its
performance. Thus, we may conclude that the AES has great anti-
cancer potential in combination therapy.
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