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ABSTRACT Whole genome duplications have played an important role in the evolution of angiosperms. These
events often occur through hybridization between closely related species, resulting in an allopolyploid with
multiple subgenomes. With the availability of affordable genotyping and a reference genome to locate markers,
breeders of allopolyploids now have the opportunity to manipulate subgenomes independently. This also
presents a unique opportunity to investigate epistatic interactions between homeologous orthologs across
subgenomes. We present a statistical framework for partitioning genetic variance to the subgenomes of an
allopolyploid, predicting breeding values for each subgenome, and determining the importance of inter-
genomic epistasis. We demonstrate using an allohexaploid wheat breeding population evaluated in Ithaca,
NY and an important wheat dataset from CIMMYT previously shown to demonstrate non-additive genetic
variance. Subgenome covariance matrices were constructed and used to calculate subgenome interaction
covariance matrices for variance component estimation and genomic prediction. We propose a method to
extract population structure from all subgenomes at once before covariances are calculated to reduce
collinearity between subgenome estimates. Variance parameter estimation was shown to be reliable for
additive subgenome effects, but was less reliable for subgenome interaction components. Predictive
ability was equivalent to current genomic prediction methods. Including only inter-genomic interactions resulted
in the same increase in accuracy as modeling all pairwise marker interactions. Thus, we provide a new tool for
breeders of allopolyploid crops to characterize the genetic architecture of existing populations, determine
breeding goals, and develop new strategies for selection of additive effects and fixation of inter-genomic epistasis.
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Gene duplication is known to be a primary driver of evolution by
providing the raw genetic material for gene diversification through sub-
and neofunctionalization (Haldane 1933; Ohno 1970). Whole genome
duplication events, in which an entire set of genes is duplicated, occurs
either through duplication of the same genome (autopolyploidy) or the
union of two closely related genomes (allopolyploidy). Both types of

polyploids can exhibit non-additive genetic variation from the presence
ofmultiple alleles (Segovia-Lerma et al., 2004; Birchler et al., 2010; Jiang
et al., 2017), although how these non-additive effects are classified
needs clarification.

Statistical deviations fromadditivity (i.e., interactions) are important
contributors to genetic variation. Homologous gene interactions, also
known as dominance, are deviations from an additive expectation due
to different allele combinations at a single locus. Non-homologous gene
interactions, commonly referred to as epistasis, are deviations from an
additive expectation due to different allele combinations at two ormore
loci (Fisher 1919). When epistasis occurs between non-homologous
loci with similar function, such as across orthologs or paralogs, these
interactions are comparable to dominance effects. If interactions occur
between homeologous orthologs on separate subgenomes of an al-
lopolyploid, should we call this epistasis or dominance?

In classical hybrid variety production, divergent sets of alleles are
intentionally isolated into heterotic groups and then brought back
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together to form a hybrid. This establishes heterozygosity (by descent) at
all loci to form a homogeneous population. The union of two divergent
suites of genes during the formation of an allopolyploid also results in a
homogeneous population, but heterozygosity is established across
homeologs rather than homologs. Diploid hybrids lose heterozygosity
through segregation in following filial generations, but heterozygosity
acrosshomeologousgenes is subsequentlypreserved throughselfing in the
allopolyploid (Mac Key 1970; Ozkan et al. 2001; Abel et al. 2005). Allelic
interactions contribute to dominance variance in the diploid hybrid,
whereas homeoallelic interactions will be present as part of the additive
by additive epistatic variance in an inbred allopolyploid population. As
such, allopolyploids may be thought of as an immortalized hybrid
(Ellstrand and Schierenbeck 2000; Feldman et al. 2012), although it is
not yet clear that these exhibit a true heterotic response as traditional
hybrids have demonstrated.

Birchler et al. (2010) note that newly synthesized allopolyploids
often outperform their sub-genome progenitors, and that the heter-
otic response appears to be exaggerated in wider inter-specific crosses.
This seems to hold true even within species, where autopolyploids
tend to exhibit higher vigor from wider crosses (Bingham et al. 1994;
Segovia-Lerma et al. 2004). Complementation of deleterious recessive
alleles (or pseudo-dominance) has long been the primary explanation
of the heterotic response (Stuber et al. 1992; Cockerham and Zeng
1996). However, Birchler et al. (2010) indicate evidence against this,
where purging deleterious alleles has increased the additive value of
inbred parents but has not reduced the heterotic response observed in
the hybrid (Duvick 1999). Complementation also seems an un-
likely driver of a heterotic response in allopolyploids, as the inbred
subgenome progenitors would supposedly need functional copies of
these genes to survive.

The availability of affordable genome-wide markers has sparked a
revolution in selection on additive variation through the use of genomic
prediction models. The additive genetic merit of an individual can be
estimated as the sum of its additivemarker effects to produce a genomic
estimated breeding value (GEBV) (Meuwissen et al. 2001). When the
number of markers is large, marker effects are typically considered
random and normally distributed such that only one parameter need
be estimated. Alternatively, the additive genetic covariance between
individuals can be estimated from the same genome-wide markers
and used to predict additive genetic values of individuals based
on relatedness (Nejati-Javaremi et al. 1997; Van Raden 2008). These
models are equivalent for prediction under the same set of assumptions
(Garrick 2007; Van Raden 2008; Strandén and Garrick 2009). Genomic
predictionmodels have since become popular for their ability to predict
the performance of genotyped individuals with no phenotypic obser-
vations. Selections on unobserved individuals allows for reduction in
the cost of phenotyping and breeding cycle time, increasing the rate of
genetic gain (Goddard and Hayes 2007; Heffner et al. 2009; Jannink
et al. 2010; Heslot et al. 2015).

The potential utility of genome-wide markers has also drawn
renewed interest in non-additive genetic variation in recent years
(Vitezica et al. 2013; Martini et al. 2016; Jiang and Reif 2015; Huang
and Mackay 2016; Jiang et al. 2017). Genomic prediction models that
use genome-wide markers can incorporate non-additive genetic com-
ponents to obtain better estimates of individual performance than
based on additivity alone (Technow et al. 2012; Vitezica et al. 2013;
Jiang and Reif 2015; Akdemir and Jannink 2015; Akdemir et al. 2017;
Wolfe et al. 2016). In outcrossing species such as maize, prediction of
dominance effects is key to harnessing heterosis in unobserved hybrids
(Technow et al. 2012). In inbred species, additive by additive epistatic
effects have been shown to significantly increase genomic prediction

accuracy (Crossa et al. 2010;Martini et al. 2016). Epistatic effects can be
added to the prediction model by extending the method of expected
epistatic covariance estimation Henderson (1985) to marker based co-
variance estimation (Jiang and Reif 2015; Martini et al. 2016).

The use of genome-wide markers has allowed for the partitioning of
genetic variance to specific units of chromatin, previously infeasible
with phenotypes alone (Visscher et al. 2007; Yang et al. 2011; Bernardo
and Thompson 2016; Gage et al. 2017). Allopolyploids have been tra-
ditionally treated as diploids because they undergo disomic inheritance
(Mac Key 1970), such that the contribution of each subgenome to the
genetic variance is ignored. By assigning markers to each subgenome,
an additive genetic covariance based on each subgenome can be calcu-
lated. Using these covariances in a genomic prediction model, the ge-
netic merit of an allopolyploid individual can be assigned to each of its
subgenomes. These subgenomic estimated breeding values (SGEBV)
can then be used to identify parents with complementary subgenome
effects for crossing.

Under HardyWeinberg equilibrium, subgenomes segregate indepen-
dently, and realized estimates of additive covariance of individuals based
on each subgenomewill be independent.However, this does not generally
hold true in breeding programs, where population structure from non-
random mating is inherent. As a consequence, the estimates of additive
covariance between individuals basedondifferent subgenomeswill not be
independent, potentially leading to confounding of effects from each
subgenome and problems partitioning variance reliably. In an attempt to
circumvent this obstacle, we present an approach for removing the
largest sources of genetic variance (i.e., population structure) using
singular value decomposition of the matrix of marker scores.

Common wheat (Triticum aestivum) is a staple allopolyploid crop
which has undergone two allopolyploid events, resulting in three ge-
nomes, denoted A, B and D. The A genome ancestor, Triticum uratu,
still exists today and was an early domesticate from the fertile crescent
important in the neolithic revolution (Dvǒák et al. 1993). The B ge-
nome ancestor (an Aegilops spp.) is believed to have since gone extinct
(Blake et al. 1999), but the tetraploid formed by these two genomes,
Triticum turgidum, is still cultivated today primarily as emmer
and durum wheat. The D genome comes from a goat grass, Aegilops
tauschii, which may have been incorporated in a single hybridization
event as recently as 10,000 years ago (Salamini et al. 2002). However,
recent evidence based on sequence divergence of the D genome from
the A and B genome has suggested a much earlier D genome incorpo-
ration around 400,000 years ago (Marcussen et al. 2014). Other evi-
dence shows that limited gene flow into the D genome may have
occurred after the polyploidization event, but appears to be from a
single lineage (Wang et al. 2013). As a result, the D genome has sig-
nificantly lower genetic variation than either the A or B genome.

We demonstrate methodology to partition subgenome additive
variance to estimate SGEBVs as well as subgenome interactions using
two allohexaploid wheat data sets, the Cornell small grains breeding
program soft winter wheat breeding population dataset presented here
(CNLM) and the W-GY wheat data from Crossa et al. (2010).

MATERIALS AND METHODS

Empirical data sets

CNLM population: The CNLM dataset consists of 8,692 phenotypic
recordsof 1,447 softwinterwheat inbred lines evaluated at four locations
near Ithaca,NYfrom2007to2016, representing26environments.These
phenotypic evaluations serve primarily as a first round of evaluation for
grain yield and other agronomic traits before relatively few are se-
lected for replicated regional trials around New York State. Lines are
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introduced and then removed after they are deemed either fit for
advanced field trials or to be discarded or recycled in the breeding
program. As such, this dataset is unbalanced in nature. Most lines were
not replicated within a given trial (i.e., year and location), but various
check varieties were used throughout these years and are typically
replicated several times within a given trial.

Data were recorded for four agronomic traits, grain yield (GY),
plant height (PH), test weight (TW) and heading date (HD). GY and
TW have no missing data, but 842 records are missing PH and
246 records are missing HD. To facilitate comparison across traits,
all phenotypeswere standardizedby subtracting themeananddividing
by the standard deviation of the phenotype vector (Table A1). Data
werenot standardizedwithin environment topreserve all relationships
within the data.

Thepopulationwasgenotypedwithgenotypingby sequencing (GBS;
Elshire et al. 2011)markers aligned to the InternationalWheat Genome
SequencingConsortium (IWGSC) RefSeq v1.0wheat genome sequence
of ‘Chinese Spring’ (IWGSC 2018). Markers were filtered for minor
allele frequency of at least 0.01 (Figure A1), no more than 30% missing
scores, and no more than 10% heterozygous calls. Missing marker
scores were imputed using categorical random forest imputation by
chromosome, and all heterozygous calls (, 2% of all calls) were sub-
sequently replaced with the population mode (i.e., homozygous major
allele). Marker scores are presented as boolean indicators of the minor
allele. Further details of the CNLM dataset can be found in Appendix 1.

W-GY population: The W-GY wheat dataset of 599 historical wheat
lines from the CIMMYTGlobalWheat Breeding program (Crossa et al.
2010) was used in this study due to its importance in genomic predic-
tion of an inbred population with non-additive variation (Crossa et al.
2010; Martini et al. 2016). The W-GY dataset consists of genotypic
values of all lines for grain yield in each of four environments. The
genetic correlations between these environments ranged from -0.19 to
0.66 and can be found inMartini et al. (2016). As performance between
these environments is not highly correlated, we refer to grain yield
performance in each environment as a trait. The dataset was used in
its entirety with one exception. Of the 1,279 available DArT markers,
only the 1,188 with known chromosomal positions as indicated by
(Crossa et al. 2010) were utilized in this study. This information was
required to know which markers belonged to which subgenome, such
that subgenome specific relationship matrices could be calculated.

Statistical framework

Subgenome additive effects: To illustrate, we beginwith a linearmixed
model depicting environments (i.e., trials) as fixed effects and genotypes
as random

yijk ¼ mþ Ei þ Gj þ eijk (1)

where m is the population mean, Ei and Gj are the fixed environmen-
tal and random genetic effects, respectively, of the jth genotype eval-
uated in the ith environment, and e is the error associated with the
kth observation. Using matrix notation, model 1 (denoted G) can be
rewritten

y ¼ 1mþ Xbþ ZgG þ e (2)

where 1 is a vector of ones,X is the design matrix of dummy variables
for each trial, and b is the vector of fixed environmental effects. Z is
the incidence matrix linking observations in the vector y to their
respective genotype effects, in the vector gG. Normality was assumed
for genotype effects and the residuals, where gG � Nð0;s2

GKGÞ and

e � N ð0;s2IÞ: The genetic covariance, KG, can be derived from
the expectation (or coefficient) of co-ancestry between individuals
from a pedigree (Henderson 1985), or by an empirical estimation
of the realized genetic relationship calculated with genome-wide
markers (Van Raden 2008). When genome-wide markers are used
to estimate KG, the genomic prediction model initially suggested by
Nejati-Javaremi et al. (1997) and Meuwissen et al. (2001) is obtained.

Given an n ·m matrix, M, of m markers scored as reference allele
counts (i.e., f0; 1; 2g) for n individuals, method I of Van Raden (2008)
finds the genetic relationship K as

K ¼ c21ðM2PÞðM2PÞT þ 0:01I (3)

where P ¼ 1n52pT; c ¼ 2pTð1m 2 pÞ and p is the vector of allele
frequencies. The small coefficient of 0.01 was added to the diagonal
to recover full rank after centering the matrix, such that KG is
invertible.

We use allohexaploid wheat to illustrate, but this method is easily
truncated to allotetraploids, or extended tohigher level allopolyploids. If
we allow the total genetic effect, Gj; to be decomposed into individual
additive effects for each subgenome, such that Gj ¼ Aj þ Bj þ Dj; the
following model (ABD) is obtained

y ¼ 1mþ Xbþ ZgA þ ZgB þ ZgD þ e (4)

In model 4, each subgenome is allowed to have its own additive
genetic variance and covariance between individuals, such that
gA � N ð0;s2

AKAÞ, gB � N ð0;s2
BKBÞ and gD � N ð0;s2

DKDÞ: The
realized additive genetic covariances for each subgenome, KA, KB and
KD, are estimated using only markers corresponding to the respective
subgenome, and calculated as described above.

Subgenome epistatic interactions: Following Henderson (1985), the
epistatic covariance of individuals can be calculated as the Hadamard
product of the component covariance matrices. Jiang and Reif (2015)
and Martini et al. (2016) provide proofs of Henderson’s method using
genome-wide markers to estimate the additive by additive covariance
matrix,H. An additional linear kernel can then be added for an additive
by additive epistatic interaction term, Ij; once the additive covariance is
estimated to obtain the following model (G·G)

y ¼ 1mþ Xbþ ZgG þ ZgI þ e (5)

where gI � N ð0;s2
gIHÞ: As shown by Jiang and Reif (2015) and

Martini et al. (2016), H is calculated from the marker data as

H ¼ K ⊙  K2 c22ðW ⊙ WÞðW ⊙ WÞT (6)

whereW ¼ M2P: Jiang and Reif (2015, Appendix A1) prove thatH
is asymptoically equivalent to K⊙K when the number of markers is
large.

The additive by additive epistatic interaction term, gI ; can also be
decomposed into across subgenome interactions and within subge-
nome epistatic interactions such that Ij ¼ ABj þ ADj þ BDj þ I2j ;
where ABj; ADj and BDj are the subgenome interaction effects and
I2j is the remaining epistatic effects due to within subgenome epistasis.
Since no markers are shared across subgenomes, subgenome interac-
tion covariances can be estimated by the Hadamard product of their
component covariance matrices (Martini et al. 2016). These interac-
tions can then be incorporated in the following model (ABD·ABD)

y ¼ 1mþ Xbþ ZgA þ ZgB þ ZgD
þ ZgAB þ ZgAD þ ZgBD þ ZgABD þ e

(7)
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where gAB � N ð0;s2
gABðKA⊙KBÞÞ; gAD � N ð0;s2

gADðKA⊙KDÞÞ;
gBD � N ð0;s2

gBDðKB⊙KDÞÞ and gABD � N ð0;s2
gABDðKA⊙KB⊙KDÞÞ:

The three way interaction is included here for biological complete-
ness, but was found to be estimated on the boundary (i.e., zero) for all
traits, and was therefore dropped from further analyses.

Accounting for population structure
Under Hardy Weinberg equilibrium, subgenomes segregate in-
dependently, such that for subgenome effects, CovðA;BÞ ¼
CovðA;DÞ ¼ CovðB;DÞ ¼ 0 and VarðGÞ ¼ VarðAÞ þ VarðBÞþ
VarðDÞ: A breeding program, however, intentionally violates this
assumption, and therefore may contain significant population
structure. Price et al. (2006) demonstrated that the first k largest
principal components (PCs) of the kinship matrix can be used to
control for population structure in genome-wide association stud-
ies, and its use has since become wide spread. Because most re-
alized estimates of additive covariance are proportional to MMT;
singular value decomposition ofM, instead ofMMT; can be used to
separate the population structure as the first few principal com-
ponents from the entire matrix of marker scores before it is divided
into its subgenome components. This is accomplished by first
extracting the first k principal components in the n · k matrix Q.
The marker matrix can then be reconstructed by setting the first k
singular values of the diagonal matrix to zero and multiplying to
produce a matrix ~M with the population structure removed from
each subgenome simultaneously (Appendix 2)

Additive covariance matrices with reduced collinearity can then be
calculated for each subgenome from ~M and incorporated into the model
as previously described.Q can then be added to themodel as a set of fixed
covariates, with slopes g, such that the model will now be of the form

y ¼ 1mþ Xbþ ZQg þ
X
l

Zgl þ e (8)

for all l genetic terms in the model. Genomic estimated breeding
values are then predicted by summing the centered population struc-
ture and genetic effects. For this study, a population structure of di-
mension k ¼ 5 was chosen for both the CNLM and W-GY datasets,
and used to compare to the k ¼ 0 models that do not correct for
population structure. The number of PCs, k ¼ 5, was chosen based
on Supplementary Figure S1, where the correlation of additive co-
variance estimates between subgenomes appeared to level off in both
populations.

Genomic prediction
To determine the predictability of genetic effects and the variability of
variance component estimates,five-fold cross-validationwasperformed
with 10 replications. For each replicate, the set of individuals was
randomly split into five groups, with 4 groups of 289 and one of 291.
For each fold, records of individuals in the fold were removed (i.e.,
masked) from the dataset. Each model was subsequently fit with the
remaining lines and used to predict the whole genome effect of the
masked lines in the fold. Predictions for all five folds were gathered and
correlated to the “true” genetic values once for each replicate. In this
way, prediction results are directly comparable between the different
models, and not subject to differences in the individuals sampled. The
whole genome values were calculated as the sum of the genotypic
additive and epistatic effects in the model as previously described.
Due to the unbalanced nature of the CNLM dataset, “true” genetic
values were calculated as in equation 2 but were considered indepen-
dent with a covariance KG ¼ I.

Software
Models were fit using restricted maximum likelihood (REML) with the
software ASReml (Gilmour 1997) implemented in R (Butler 2009). The
Tassel 5.0 GBS pipeline v2 (Glaubitz et al. 2014) along with the ‘bwa’
alignment tool (Li and Durbin 2009) were used for aligning GBS
markers to the reference genome. All additional computation, analyses
and figures were made using base R (R Core Team 2015) implemented
in the Microsoft Open R environment 3.3.2 (Microsoft 2017).

Data availability
Phenotypes for theCNLMpopulationare included in thefile ‘pheno.txt’.
Marker information and imputed marker scores for the CNLM pop-
ulation are included in files ‘snpInfo.txt’ and ‘snpMatrix.txt’, respec-
tively. Best Linear Unbiased Predictors (BLUPs) for whole and
subgenome additive effects (GEBVs and SGEBVS, respectively), as well
as non-additive whole and subgenome interaction effects can be found
in the ‘effectTable.txt’ file. Genotype and phenotype data for theW-GY
population can be found in the ‘BGLR’ package of R (de los Campos
and Pérez Rodriguez 2015), and marker chromosome information can
be found in Crossa et al. (2010). Supplemental material available at
Figshare: https://doi.org/10.25387/g3.6870110.

RESULTS

Model fit and variance components
Model fit was assessed using Akaike’s Information Criterion (AIC).
Whole genome models tended to have the lowest AIC values, with
the exception of the PH and HD traits for the epistatic ABD·ABD
models in the CNLM population. When whole genome models had
lower AIC values, the comparable subgenome models had only mar-
ginally higher AIC values (Supplementary Tables S1 and S2). Whole
genome predictions between comparable whole genome and subge-
nome models were correlated at r. 0:999 or r. 0:993 for traits
within the CNLM and W-GY populations, respectively. This indicates
that little, if any, genetic information was lost by splitting the whole
genome into biologically relevant subgenome effects. The lack of perfect
correlation is at least partially due to floating point rounding errors
during model fitting and summation of genotype effects.

Subgenome additive variance parameter estimates were positive for
all models, but subgenome interaction variance parameter estimates
were often estimated on the boundary (i.e., near zero). Variance pa-
rameters estimated on the boundary were thus considered to be exactly
zero. Shifts in variance component importance were seen when the
epistatic terms were added in the model. For example, for the TW
and E1 traits in the CNLM and W-GY populations, respectively, the
A genome component was the largest in the additive only model, but
was reduced to less than that of the B genome component in the
epistatic model. Additive variance components were generally reduced
in epistatic models compared to additive only models, but this reduc-
tion in additive variance was accompanied by non-zero subgenome
interaction components. The B genome contributed the greatest
amount of additive variance in the epistatic ABD·ABD models for
all traits except HD. While the D genome variance component was
far smaller than the A subgenome component for GY and TW in the
CNLM population, it was comparable to the A subgenome component
for all traits in the W-GY population.

The A·B component was particularly important for the W-GY
traits, E1, E3 and E4, as well as the HD and TW in the CNLM pop-
ulation. TheA·Dcomponent also featured prominently for the PHand
TW traits in the CNLM population. The B·D component appeared to
be less important, having the largest effect for PH. No epistatic terms
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were significantly greater than zero for the E2 trait in the W-GY pop-
ulation. Addition of epistatic interactions resulted in a significant likeli-
hood ratio test at p , 1026 for all traits except GY, which was
significant at p , 1022. Despite the significant addition of epistatic
terms, additive GEBVs were highly correlated with whole genome pre-
dictions from the epistatic models, at r$ 0:988 for the CNLM popu-
lation and r$ 0:869 for theW-GY population. Amodel containing the
three-way subgenome epistatic term was fit for all traits, but estimates
of the three-way interaction variance parameter were zero for all traits.

The distributions of variance component estimates from repeated
sub-sampling of the data during k-fold cross-validation were centered
near the point estimate from the full model fit. These distributions were
either as wide (� 2 standard errors from the center) or tighter than
expected based on the standard error from the full model fit (Figure 1,
Supplementary Figures S2 and S3). Standard errors were generally
larger for epistatic variance components relative to their magnitude
than additive variance components. Standard errors relative to their
respective parameter estimates tended to be larger for all terms in
models with more estimated variance parameters (Supplementary
Tables S1 and S2).

Subgenome additive effects
Subgenome estimated breeding values (SGEBVs) were moderately
correlated with the whole genome effect, but weakly correlated with
one another (Supplementary Tables S3 and S4). The individuals with
the highest SGEBV for one subgenome never had the highest SGEBV
for the other two subgenomes, and were often not in the top 95%
quantile of the population based on the other two subgenomes

(Figure 2, Supplementary Figures S4 and S5). For example, the
individuals with the highest A, B and D SGEBV for GY in the CNLM
population ranked 43rd, 39th and 60th for the whole genome effect,
respectively. In contrast, the individual with the best A SGEBV for
GY ranked 1067th, 952nd for the B and D genome, respectively. The
individual with the highest B genome breeding value for GY ranked
221th and 1393rd for the A and D genomes, respectively. The indi-
vidual with the highest D genome breeding value for GY ranked
347th and 123rd for the A and B subgenome, respectively. The indi-
vidual with the highest whole genome GEBV for GY ranked 6th, 22nd

and 519th for the A, B and D SGEBV, respectively. In several cases,
the top individual based on a SGEBV was not in the top 95% quan-
tile based on their whole genome effect, particularly in the W-GY
population.

Prediction accuracy
Including epistasis kernels significantly improved genomic prediction
accuracy for all traits except GY and E2 (Table 1). Subgenome models
had either comparable or slightly lower mean prediction accuracy than
whole genome models for all traits except HD, for which subgenome
models had superior accuracy. The variability in the prediction accu-
racy based on the individuals sampled was either the same (GY and
TW) or lower (PH and HD) for the epistatic models compared to the
additive models in the CNLM population, but was similar in theW-GY
population (Table 1). The variability in prediction accuracy was in-
creased for the subgenome models compared to the whole genome
models in the W-GY population for some traits (E2 and E3), but was
either the same or decreased in the the CNLM population.

Figure 1 Estimates and standard errors of variance components from the full model (red) compared to the sampling distribution of variance
component estimates from the cross-validation scheme (black violins). Two traits from the CNLM population, (A) PH and (B) HD, with contrasting
genetic architectures are shown. G·G (5) and ABD·ABD (7) models are shown to the left and right of the dotted line, respectively. The sum of the
additive ðPAddÞ and epitstatic ðP EpiÞ variance components is also shown for the ABD·ABD model.
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Adjustment for population structure
The first two principal components explained 17% and 19% of the
variance of M in the CNLM and W-GY populations, respectively, in-
dicating that some population structure exists in both populations
(Supplementary Figure S6). The correlation of additive genetic covari-
ance estimates between individuals based on the three subgenomes
declined as PCs were removed from M, but appeared to level out be-
tween 5 to 10 PCs (Supplementary Figure S1). Correlation of whole
genome effects between additive models, G and ABD, for k ¼ 0
and k ¼ 5 was $ 0:999 and $ 0:996 for the CNLM and W-GY pop-
ulations respectively. Whole genome effect correlations were lower
between epistatic models G·G and ABD·ABD, with coefficients
of $ 0:998 in the CNLM population and $ 0:980 in the W-GY
population.

Removing population structure with k ¼ 5 reduced most of the
SGEBV effect correlation coefficients by up to 0.06 in the CNLM pop-
ulation, but there was one instance in which one correlation coefficient
increased from 0.15 to 0.19 between A and B SGEBVs for PH (Supple-
mentary Tables S3 and S4). This was not the case for the W-GY pop-
ulation, where many of the SGEBV effect correlations increased by up
to 0.21.

Additive variance generally decreased as k was increased from
0 to 10 (Figure 3, Supplementary Figure S7). Ranks of additive variance
components relative to one another were stable for most traits, while
epistatic variance components were more sensitive to changes in k.
Significant epistatic variance component rank changes occurred for
the PH, TW and E4 traits. For PH, the A·D term was comparable in
magnitude with the additive variance components for A and D when
k ¼ 0; but declined as k increased. The reduction in A·D variance for
PH was accompanied by an increase in both the A·B and B·D terms.
Similarly, a decline inA·B variance was followed by an increase in B·D
for TW and A·D for E4 as k was increased.

Correlations of variance component estimates were calculated
from the average information matrix for models k 2 f0; 1;:::; 10g
(Supplementary Figures S8 and S9). Correlations between subgenome
additive variance estimates were generally low (0.2-0.4), while correla-
tions of subgenome interaction variance estimates were high (0.8-0.95),
and correlations between the two were moderate (0.4-0.6). Despite a
small reduction in the correlation of SGEBVs as k was increased from
0 to 5, little reduction in variance component estimate correlations was
observed as k was increased from 0. Generally, correlations of additive

variance parameter estimates were slightly reduced while correlations
between interaction variance parameter estimates increased slightly.

DISCUSSION

Model fit and variance components
While whole genome models tended to be the most parsimonious,
subgenomemodelsareworthconsiderationbecause theyprovide insight
into the biology of the allopolyploid organism. Given the stability of
variancecomponentestimationandthatnogenetic informationappears
to be lost by partitioning the whole genome into its individual sub-
genome additive effects, such a partition is informative.

The method presented here could be used for any set of independent
loci, such as estimating a variance component and breeding value for each
chromosome (Yang et al. 2011). However, this will become computa-
tionally burdensome as the number of variance components to be esti-
mated increases. If the number of variance parameters to estimate is high
and the data set is small thismay become infeasible. It is also unclear if the
estimates from larger numbers of additive kernels would be reliable.

Bernardo and Thompson (2016) assigned a breeding value for each
of the 10 maize chromosomes by fitting a single ridge regression model
to estimate marker effects. They subsequently summed marker effects
by chromosome to produce a breeding value for each chromosome.
However, this method does not allow for direct estimation of variance
components for each unit of chromatin. By fitting each unit simulta-
neously, variance attributable to sets of loci will be split, and the sum of
the variance estimates should not exceed the total genetic variance
(Yang et al. 2011). It is unclear what effect linkage disequilibrium across
chromosomes has on the variance parameters estimated.

Here we assumed that the subgenome effects are independent, but
this is clearly not the case. Generally,we can express the genetic variance
due to the three sub genomes as

Var

0
@

gA
gB
gD

1
A ¼ S5Jn⊙K (9)

where S is the subgenome covariance matrix, J is an n· n matrix of
ones for n genotypes, and K is the additive relationship matrix for
within and across subgenomes. In this report, we have assumed that S
is diagonal with Sii ¼ s2

i for the ith subgenome, and K is a block

Figure 2 Plot of whole genome additive effects (GEBV) by subgenome additive effects (SGEBV) for GY in the CNLM populations. The dotted line
indicates the 95% quantiles for whole or subgenome effects. Blue squares, triangles and diamonds indicate the line with the highest SGEBV for
each of the A, B and D subgenomes, respectively.
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diagonal with the ith diagonal block represented by the subgenome
additive covariance matrix.

S ¼
2
4
s2
A 0 0
0 s2

B 0
0 0 s2

D

3
5  and  K ¼

2
4
KA 0 0
0 KB 0
0 0 KD

3
5 (10)

An unstructured covariance matrix, S, could be estimated, with cor-
relation coefficients between subgenomes. The subgenome effects
would be allowed to have a correlation such that

S ¼
2
4

s2
A sAB sAD

sAB s2
B sBD

sAD sBD s2
D

3
5  and  K ¼

2
4

KA KAB KAD

KAB KB KBD

KAD KBD KD

3
5 (11)

However, it is unclear what the covariance structure should be be-
tween subgenomes (e.g., KAB). If consensus haplotypes from uniquely
identifiable sequences could be determined with two or more alleles
segregating in at least two subgenomes, a covariance across the sub-
genomes could be constructed. Polymorphisms that predate specia-
tion would be used to identify the consensus haplotypes, while post
speciation polymorphisms would be used to identity the subgenome
origin. Individuals would then receive a score based on the number of
consensus haplotypes they have in common between two subge-
nomes. This could prove to be a formidable challenge given the evo-
lutionary time between the subgenome ancestors. The Hadamard
product of the two additive covariance matrices is a tempting candi-
date for these off diagonal blocks, however, this would substitute a
covariance between additive effects in place of an epistatic variance. It
is unclear to these authors if epistasis variance can be thought of and
modeled as a covariance between additive effects.

Genetic architecture
The genetic architecture of grain yield (GY, E1, E2, E3, E4) in the two
populations investigatedherearemarkedly similar,despite thedivergent
genetic backgrounds of the two populations. The CNLM population is

primarily comprised of breeding lines and varieties derived from
germplasm historically grown in the North East, in contrast to the
W-GY population which has a broader pedigree.

The D genome is known to have low genetic diversity due to limited
gene flow from a single Ae. tauschii lineage after the most recent allo-
polyploidization event (Wang et al. 2013), estimated to have taken
place as recently as 10,000 years ago (Salamini et al. 2002; Marcussen
et al. 2014). The International Maize and Wheat Improvement Center
(Centro Internacional de Mejoramiento de Maíz y Trigo, CIMMYT)
has introgressed some genetic material from the D genome ancestor,
Ae. tauschii, through the use of synthetically produced hexaploid wheat
to increase the genetic diversity of the historically bottle-necked D
genome. The higher proportion of D genome variance in the W-GY
population may be due to the increased use of wild Ae. tauschii in their
breeding program, highlighting the merit of the strategy.

Many of the subgenome epistatic variance parameters were esti-
mated at zero, possibly due to a lack of power to detect them. Greater
genetic diversity, larger numbers of individuals, and higher allele
frequencies would allow for increased power to detect true interactions.
Hill et al. (2008) emphasized the effect of low allele frequencies on
epistatic interactions, proving that as allele frequencies (and therefore
joint frequencies of alleles at two loci) approach zero or one,most of the
epistatic variance becomes additive. For example, suppose two loci have
a large interaction, such that one pair of alleles is selected. Once one
locus becomes fixed, all remaining variance is due to segregation at the
other locus, and becomes strictly additive. The low joint frequency is
magnified in the three way interactions, likely causing the inability to
detect any three way epistatic interaction signal between the three
subgenomes.

This is also apparent in the reduction of additive variance compo-
nents upon the addition of epistatic terms to the model. These epistatic
components were often estimated to be rather large compared to the
additive components, but did not change the final whole genome value
drastically. This suggests that the additive terms absorb much of the
epistatic variance in the absence of the epistatic kernels.

n Table 1 Table of genomic prediction accuracies for eight traits in the CNLM (GY, PH, TW and HD) or W-GY (E1, E2, E3, E4) populations
with k ¼ 0 and k ¼ 5. k is the number of principal components removed from the marker matrix prior to calculating subgenome covariance
matrices. The first 1 to k principal components were included as fixed effects in the model fit for k > 0

CNLM k GY PH TW HD

G (2)a 0 0.601b (0.008)c 0.559 (0.007) 0.515 (0.010) 0.664 (0.009)
ABD (4) 0.600 (0.008) 0.557 (0.008) 0.514 (0.011) 0.679 (0.007)
G·G (5) 0.604 (0.008) 0.637 (0.004) 0.576 (0.010) 0.712 (0.008)
ABD·ABD (7) 0.603 (0.008) 0.638 (0.005) 0.569 (0.011) 0.720 (0.006)

G 5 0.600 (0.009) 0.558 (0.007) 0.514 (0.011) 0.663 (0.010)
ABD 0.600 (0.009) 0.556 (0.008) 0.513 (0.011) 0.678 (0.008)
G·G 0.602 (0.008) 0.624 (0.005) 0.560 (0.010) 0.701 (0.008)
ABD·ABD 0.602 (0.007) 0.618 (0.005) 0.557 (0.010) 0.708 (0.006)

W-GY k E1 E2 E3 E4

G 0 0.501 (0.010) 0.493 (0.016) 0.356 (0.008) 0.457 (0.010)
ABD 0.492 (0.012) 0.481 (0.023) 0.346 (0.010) 0.449 (0.011)
G·G 0.568 (0.010) 0.494 (0.017) 0.396 (0.013) 0.520 (0.010)
ABD·ABD 0.549 (0.011) 0.484 (0.023) 0.393 (0.015) 0.509 (0.013)

G 5 0.502 (0.010) 0.491 (0.017) 0.354 (0.007) 0.458 (0.010)
ABD 0.495 (0.011) 0.475 (0.024) 0.345 (0.010) 0.453 (0.011)
G·G 0.526 (0.010) 0.491 (0.017) 0.381 (0.007) 0.493 (0.011)
ABD·ABD 0.520 (0.012) 0.475 (0.023) 0.373 (0.013) 0.486 (0.012)
a
Equation.

b
Mean genomic prediction accuracy across ten replicates of five fold cross validation.

c
Standard deviation of prediction accuracy across ten replicates are shown in parentheses.
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The A·B epistatic terms were the most important for many of the
traits, reflecting the greater genetic variation of these two subgenomes.
Subgenome interaction terms including the D genome were notably
more important for traits known to have important loci on the D
genome. PH is partially governed by two dwarfing genes, Rht-1D and
Rht-1B on 4B and 4D, respectively. These two genes have been shown
to exhibit a less-than-additive (Eshed and Zamir 1996) epistatic inter-
action, where the double wildtype is less tall than expected based on the
additive effects of the two semi dwarfs from the double dwarf
(Santantonio et al., 2018b). The B·D term was large for PH, particu-
larly after correction for population structure. Population structure is
common for these genes, as many breeding programs primarily utilize
one or the other dwarfing gene to avoid producing double dwarfs
during crossing, which are often agronomically undesirable.

Selection on SGEBVs
Partitioning genetic variance to the subgenomes of an allopolyploid
provides a method for identifying individuals with complementary
subgenomes as potential parents for crossing. If we consider the upper
95% quantiles as candidates for parental selection, many of the top
candidates based on subgenome breeding values would not be consid-
eredcandidates basedon theirwholegenomebreedingvalue.Whenthey
would be considered, they were typically not the top candidates. The
low correlation between SGEBVs highlights the opportunity to iden-
tify individuals with complementary subgenomes for crossing.

These individuals may or may not be among the top performing
selectioncandidates, demonstrating that theoptimumsetof crosses are
not always between the top performing individuals (Akdemir and
Sánchez 2016).

While it is difficult to evaluate thepredictabilityof SGEBVsper se, the
sum of their values appears highly predictive. The low correlation of
SGEBVs also suggests that individual subgenomes may be directly
manipulated as never before. Prior to the discovery and use of genetic
markers to track genomic regions, the phenotype (or some summary
statistic thereof) was the only indicator of the genetic structure of a
genetically distinct individual. Variety releases still demonstrate this
legacy, with phenotypic descriptors that define a new variety as genet-
ically distinct from other similar varieties. One breeding strategy will be
selecting parents for crossing that have complementary SGEBVs to
increase the potential of transgressive segregation in the resulting off-
spring. We envision other breeding strategies beyond simply choosing
parents with complementary subgenomes, and see an opportunity to
weight SGEBVs according to some breeding goal.

For example, a newly formed population could undergo several
roundsof genomic selectiononlyon theDgenomeSGEBVs (i.e.,weights
of 0, 0 and 1 for the A, B and D subgenomes respectively) before
phenotypic or whole genome selection. Because the D genome contrib-
utes the least to the total genetic variance, phenotypic selection on D
genome loci is challenging. Selection will act on the largest sources of
genetic variance first, potentially leading to fixation of small effect loci

Figure 3 Subgenome additive and interaction variance parameter estimates from the ABD·ABD (7) model correcting for population structure
with k 2 f0;1;:::;10g principal components as fixed effects. Models were fit with four traits for the CNLM population.
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in the D genome by drift, while selection acts on the large effect loci on
the A and B genomes first. By selecting on D genome SGEBVs, gains
can bemade to theD genomedirectly with little to no selection on the A
and B genomes, a feat previously impossible with phenotypic selection.
Signatures of selection on the D genome under this scheme may also
help establish the accuracy of SGEBV prediction.

Subgenome interactions
GenomicpredictionofGYandE2didnotappear tobenefit fromincluding
epistatic interactionsas itdid for theothersix traits.Thismaybedue inpart
to the highly polygenic nature of grain yield, which is the culmination of
essentially all functional genetic variants subjected to stress throughout the
growth cycle. The E2 trait in the W-GY population has previously been
shown to be invariant to the addition of various epistatic terms (Crossa
et al. 2010;Martini et al. 2016), and it is unclear why this population does
not exhibit non-additive variation in this environment. It may be that
important epistatic interactions of GY in the CNLM population are too
small to detect or are involved with differing performance across years or
locations, such that they are lacking in a model that does not include
genotype by environment interactions.

Subgenome epistatic terms increased genomic prediction accuracy
comparable tomodelingall pairwise interactionsacross the subgenomes,
suggesting that the most important interacting loci are on different
subgenomes. This result is consistent with the observation that newly
formedallopolyploidsundergoconsiderable changes ingeneexpression,
known as genome shock (McClintock 1984). This shock has been
suggested to be caused by incompatibilities of genetic pathways across
the subgenomes (Comai et al. 2003). Residual subgenome incompati-
bilitymay still be affecting the germplasm pool, even thousands of years
after the last polyploidization event. Decay of negative duplicated gene
interactions may take hundreds or thousands of generations before all
interacting genes are lost or silenced (Lynch and Conery 2000, 2003).

It is unclear what proportion of this non-additive signal is due to
homeoallelic interactions. The proposed methodmodels all pairwise
interactions across subgenomes, of which homeoallelic gene inter-
actions are a small minority in number. Smaller homeoallelic
regions (Santantonio et al. 2018a) or homeoallele specific marker
sets (Santantonio et al. 2018b) have been constructed to determine the
relative importance of these interactions relative to other gene interac-
tions across the subgenomes. The usefulness of the epistatic subgenome
interactions is currently unclear and warrants further investigation.

Regardless of the source of the epistasis, we suggest that a breeding
scheme should be designed to take advantage of beneficial subgenome
interactions. If a suitable training set related to the breeding material
can be established, subgenome interactions can be predicted in new,
genotyped breeding materials. We suggest that a series of small
bi-parental populations be constructed from important contributors
to the breeding program, and be used in the development of a training
population to balance high genetic diversity and high allele frequen-
cies. This training population would be used to predict SGBEVs and
subgenome interactions in individuals formed from new crosses.
Individuals that contain favorable interactions could then be selected
such that they are fixed in early filial generations. After fixation in a
given line, phenotypic, whole genome, or subgenome selection could
be used for further line development until complete homozygosity is
reached.

Adjustment for population structure
The efficacyof theproposedmethod tohandlepopulation structuremay
needtobe improved,oradifferentapproachmayneedtobe taken.While
this method reduced the correlation of additive genetic subgenome

covariance estimates across the three genomes, variance parameter
estimate correlations were not drastically reduced. The correlation of
subgenome interaction variance parameter estimates tended to increase
slightly when accounting for higher levels of population structure,
counter to the assumption that removing this structure should result
in better estimates of subgenome interactions.

The lower correlation between epistatic models that correct and do
not correct for population structure is likely due to removingQ from the
marker matrix. Correcting for population structure also had a small,
but negative effect on genomic prediction accuracy for epistatic models.
The population structure fixed effect predictors are strictly additive and
the loss of accuracy may be due to epistasis variance associated with
these PCs (i.e., population structure epistasis). Epistatic variance related
to these PCs may be recovered by using the squares of the PC scores,
although this was not done in this study. At least for the additive
models, it appears little to no genetic information is lost using the
population structure adjustment proposed here.

Determining the best value for kwill be at the crux for implementing
this methodology for various traits and populations. The same popu-
lation may need different values of k for different traits, depending on
the covariance of the trait and population structure. Traits such as PH
or HDmay have lower covariance with population structure than traits
such as TW or GY, due to different marker effect distributions and the
history of the breeding population. Several methods might be used to
determine k empirically from the marker matrix (Patterson et al. 2006,
e.g.), however, these methods do not account for the covariance of trait
and structure. We used the first one to k PCs in this study, but there is
no reason why we must include all PCs up to some value k. There may
be certain PCs that are important for a given trait, and could be tested as
fixed effects for inclusion or exclusion.

This method may have better performance in populations with
greater degrees of population structure than in the populations pre-
sented here. Use of this method for partitioning genetic variance to
biologically important sets of chromatin and estimating epistatic inter-
actions will need further testing and validation before widespread use.

CONCLUSION
Toourknowledge,weprovide thefirst attempt toassignabreedingvalue
to each subgenome of an allopolyploid crop. With estimates of sub-
genome additive effects, parents with complementary subgenomes can
be selected for crossing. Weighted selection of subgenomes using
genomic prediction could be key to increasing the diversity of the D
genome in wheat germplasm. Direct selection on the D genome may
allow targeted introgression from Ae. tauschii while mitigating the
effects of introducing unimproved alleles. Subgenome additive genet-
ic variances appear to be estimated well, and no genetic information is
lost partitioning the genome into its subgenome components. This
demonstrates that partitioning genetic variance to the subgenomes of
an allopolyploid can provide useful information for genomics assisted
breeding efforts.

Subgenome interactions increase prediction accuracy, but it is un-
clearhowwell the epistatic variance ispartitioned to the three interaction
terms andwhat proportion of that variance is due to homeologous gene
interactions. Because the homeologous interactions make up relatively
few of the possible interactions across subgenomes, they may only
explain a small portion of the observed epistatic variance. Yet, seeing
as how homeologous genes likely operate in the same or similar
physiological pathway, the likelihood for interactions between homeol-
ogous loci is high. Further research isneeded to investigate the efficacyof
modeling subgenome interaction terms, and to what degree this is
explained by interactions between homeologous orthologs.
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Allopolyploids have traditionally been treated as diploids in breeding
programs because they undergo disomic inheritance.WithmodernDNA
marker technology and ever increasing computational power, breeders of
allopolyploids can further exploit the genetic complexity of their crops.
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APPENDIX 1 CNLM DATASET

Field plots 1.5 m by 3 m in size were planted with 100 g of seed in September or October of the year prior to the harvest year. Data were
recorded for four agronomic traits: grain yield (GY), plant height (PH), test weight (TW) and heading date (HD). Plots were harvested for
grain with a plot combine after physiological maturity and oven dried to a grain moisture of approximately 12%. Dried grain was cleaned,
weighed and measured for moisture content using a grain moisture analyzer (GAC 2100, Dickey-John). GY was standardized to a uniform
grain moisture of 12%. PH was measured as the distance from the ground to the top of the grain head at full extension. TW is used as a
measure of grain quality and was measured as the mass of a volume of grain (gL21) using the grain moisture analyzer (GAC 2100 Dickey-
John) which corrects TW for moisture content. HD is a proxy for flowering time and was defined as the number of Julian days until 50% of
the primary grain heads have extended out of the boot.

The data set initially consisted of 1,552 lines evaluated in 10,069 1.5 m by 3m plots planted in September to October of the year prior
to the harvest year. Thirty one lines from 2007 were not harvested for GY, nor were they genotyped, and were dropped from the data set.
Because GY is of primary interest for breeding, plots that were not harvested or had missing values for GY were dropped, resulting in
9,090 plots with GY measurements. This also caused two additional lines with missing GY measurements to be dropped from the
dataset.

Due to the reasonable size of the dataset, small physical area of most trials, lack of replication within environment for most lines and the
availability of genetic markers, raw plot observations were used and no attempt wasmade to correct plot level data for various spatial effects
or otherwise. Preliminary results also indicated relatively high genomic prediction accuracy, suggesting that spatial correction, such as an
AR1 · AR1 row column autocorrelation structure, would be unlikely to reduce error variance drastically. Instead, 59 plots that included
breeder comments about bad seed or significant damage to the plot, via animal or otherwise, were removed from the dataset. Observations
outside of a four standard deviation interval from the grand mean of uncorrected GY phenotypic observations were also removed to
account for any significant undocumented damage, grain spillage or other undocumented mistakes. This included two observations that
were deemed too high, and 20 observations that were deemed too low.

Observationsof11lines lackingat leastonephenotypic record inat least twoseparate trials, 60 lines thatweremissingat least50%of theirgenotypic
calls and one line that had greater than 20% heterozygous genotype calls were also removed from the dataset. This resulted in 8,692 phenotypic
observations of 1,447 lines across 26 environments, representing 96.6% of the plots with grain yield measurements. HD was not recorded for the
246observations from2007, andPHwasnot recorded for the840observations from2009.Twoadditional plotsweremissingPHmeasurements from
theKetola location,onethatwas recordedat2meters in2008whichwas likelya recordingmistake, andone in2010whichwas simplymissinga record.

While most of the genotypes were directly from the Cornell small grains breeding program, a few varieties and breeding lines from
other breeding programs that had been genotyped and evaluated were not excluded from the dataset as long as they met the previous
criteria. This included 75 lines from The Ohio State University wheat breeding program and 93 lines from the Michigan State
University wheat breeding programs that were part of the Allele Based Breeding initiative, among other lines from various breeding
programs.

Figure A1 Distribution of minor allele frequencies for 11,604 GBS markers in the CNLM population.
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Genotyping by sequencing (GBS) libraries (Elshire et al. 2011) of 1,521 CNLM were developed using the protocol described by Poland
et al. (2012) at Kansas State University, and subsequently sequenced at the Genomic Diversity Facility at Cornell University. Genotyping
calls were accomplished using standard parameters of the Tassel 5.0 GBS v2 Pipeline (Glaubitz et al. 2014) and were aligned to the
International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 wheat genome sequence of ‘Chinese Spring’ (IWGSC 2018).
Following Poland et al. (Poland et al. 2012), 64 bp sequence tags containing no more than three Single Nucleotide Polymorphisms (SNPs)
per tag were included to increase the likelihood of obtaining subgenome specific markers. Only markers with a minor allele frequency of
at least 0.01 (Figure A1), no more than 30%missing scores, and no more than 10% heterozygous calls were kept for the following analyses.
Then individuals with greater than 20% heterozygous calls and individuals with more than 50% missing genotype calls were excluded
from the dataset. The process was repeated iteratively, starting by filtering on markers until the number of markers and genotypes
converged. This resulted in 11,604 available GBS markers distributed throughout the three subgenomes (Figure A2). Of the 61 lines
removed, 60 were removed due to missing marker information and 1 was removed due to high heterozygosity in the final iteration. The
11 lines with a single observation and the two lines without grain yield observations were subsequently removed to produce genotypic
information for the 1,447 lines.

Marker scores were coded using f21; 0; 1g for homozygous major allele, heterozygous and homozygous minor allele, respectively.
Categorical marker imputation was done independently for each chromosome using random forest imputation via the R package
‘missForest’ (Stekhoven and Bühlmann 2011) which relies on the R package ‘randomForest’ (Liaw and Wiener 2002). Random forest
has been shown to be effective for genotype imputation in wheat (Rutkoski et al. 2013). To allow all individuals to be considered
completely inbred, the remaining heterozygous calls (, 2% of all marker scores) were conservatively replaced with the population
mode for that marker (i.e. the homozygous major allele, -1). Marker scores were then converted to f0; 1g coding for presence of
the minor allele.

Genetic correlations of traits were estimated in a multivariate model fit (Table A2). This was accomplished by treating genotypes as
independent, or having a realized additive covariance structure calculated from genetic markers.

Figure A2 Distribution of 11,604 GBS markers on the 21 wheat chromosomes comprised of 7 homeologs of three subgenomes, A, B and D, for
the CNLM population.

n Table A1 Means (m) and standard deviations (s) of four traits in the CNLM population

units m s

GY kg ha 5315.20 1015.76
PH cm 90.84 11.99
HD Julian days 151.64 3.87
TW g L 74.95 3.09
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APPENDIX 2 REMOVAL OF POPULATION STRUCTURE FROM M

Let M be the n·m matrix of m marker scores for n genotypes. Markers can be sorted into their respective genome, such that

M ¼ ½MA MB MD � (12)

M can be factored using singular value decomposition as follows:

M ¼ UDVT (13)

where U, and V are unitary matrices of left and right singular vectors, and D is a diagonal matrix of singular values.
The first k principal components of the marker matrix can be extracted by selecting the first k columns ofU and the first k rows and columns of

D and multiplying.

Let Q ¼ Un·kDk·k (14)

In a manner similar to Eckart and Young (Eckart and Young 1936), an approximation, ~M, of the marker matrix, M with the first q principal
components removed can be reconstructed by setting the first k singular values in D to zero (denoted ~D).

~M ¼ U~DVT ¼ ½ ~MA ~MB ~MD � (15)

n Table A2 Estimated genetic correlation of traits with additive (below diagonal) and independent genetic relationships (above diagonal).
Genetic standard deviations of scaled traits estimated with a realized additive covariance between individuals and assuming independence
are shown in parentheses on the diagonal, respectively

GY PH TW HD

GY (0.29, 0.36) 20.39 20.24 0.16
PH 20.44 (0.72, 0.65) 0.31 0.05
HD 20.05 0.11 (0.44, 0.44) 20.28
TW 20.04 0.3 20.22 (0.5, 0.49)
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