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Abstract

Connectivity-based parcellation (CBP) methods are used to define homogenous and bio-

logically meaningful parcels or nodes—the foundations of brain network fingerprinting—

by grouping voxels with similar patterns of brain connectivity. However, we still lack a

gold standard method and the use of CBPs to study the aging brain remains scarce. Our

study proposes a novel CBP method from diffusion MRI data and shows its potential to

produce a more accurate characterization of the longitudinal alterations in brain network

topology occurring in aging. For this, we constructed whole-brain connectivity maps

from diffusion MRI data of two datasets: an aging cohort evaluated at two timepoints

(mean interval time: 52.8 ± 7.24 months) and a normative adult cohort—MGH-HCP.

State-of-the-art clustering techniques were used to identify the best performing tech-

nique. Furthermore, we developed a new metric (connectivity homogeneity fingerprint

[CHF]) to evaluate the success of the final CBP in improving regional/global structural

connectivity homogeneity. Our results show that our method successfully generates

highly homogeneous parcels, as described by the significantly larger CHF score of the

resulting parcellation, when compared to the original. Additionally, we demonstrated that

the developed parcellation provides a robust anatomical framework to assess longitudi-

nal changes in the aging brain. Our results reveal that aging is characterized by a reorga-

nization of the brain's structural network involving the decrease of intra-hemispheric,

increase of inter-hemispheric connectivity, and topological rearrangement. Overall, this

study proposes a new methodology to perform accurate and robust evaluations of CBP

of the human brain.
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1 | INTRODUCTION

Human brain organization is ruled by two main functional principles:

integration and segregation. Functional integration is characterized by

long-range connections and functional segregation through local dif-

ferentiation (Tononi, Sporns, & Edelman, 1994). Each functionally spe-

cialized brain region might be described by a different set of

connections, so the two concepts of functional integration and segre-

gation are not mutually exclusive, but instead they are closely

entangled (Eickhoff, Thirion, Varoquaux, & Bzdok, 2015; Eickhoff,

Yeo, & Genon, 2018). This view inspired the development of a new

family of methods in neuroimaging research known as connectivity-

based parcellation (CBP; Eickhoff et al., 2015). CBP exploits the het-

erogeneity of connections within a brain region and divides it

according to its voxels' connectivity profiles (Eickhoff et al., 2015;

Reuter et al., 2020). After estimating the connectivity profiles

(i.e., connection strengths between a seed voxel and a set of target

voxels) of each voxel inside a region, voxels with similar connectivity

profiles are grouped together. This is usually performed using cluster-

ing algorithms (e.g., k-means clustering, hierarchical clustering, spectral

clustering) and results in subregions which represent homogeneous

units with regard to the measured connectivity. Connectivity between

voxels can be defined as functional connectivity which is estimated

from resting-state functional magnetic resonance imaging (rs-fMRI),

structural connectivity which is derived from diffusion weighted imag-

ing (DWI), or task-dependent functional connectivity which is com-

puted from meta-analytic connectivity modeling (MACM).

Network analysis tools allow the characterization of brain's struc-

tural and functional organization through quantifiable topological

properties, based on the concept that the brain is a complex network

of interconnected regions (Bullmore & Sporns, 2009). In this sense,

the brain network is modeled as a graph composed of nodes and

edges. While edges, defined as either functional or structural connec-

tivity, were already subject of many studies in recent years, nodes are

most of the time defined arbitrarily (Tittgemeyer, Rigoux, &

Knosche, 2018). The most common approach is to use a pre-existing

parcellation that divides the brain into different regions based in local

properties, such as cytoarchitecture (Brodmann, 1985), myelo-

architecture (Vogt & Vogt, 1919), or receptor-architecture (Zilles

et al., 2002). Early efforts to define brain nodes using these local

criteria usually required post-mortem tissues or invasive studies and

were extremely time consuming (Gao et al., 2018). As an alternative,

local properties can be estimated using measurements derived from

MRI, such as myelin density maps, but these will only reflect an indi-

rect measure since these properties are not directly observable

through MRI (Eickhoff et al., 2018). Furthermore, and although these

parcellations define nodes with a biological meaning, they might not

adequately reflect brain organization and inter-individual variability, as

connectivity also plays a role in brain differentiation (Arslan

et al., 2018; Eickhoff et al., 2015). In contrast, nodes generated with

CBP present high homogeneity and functional coherence and distinct

connectivity patterns between them, making them suitable for net-

work analysis (Arslan et al., 2018).

First studies performing CBP segmented only a single region of

the brain. Examples include the thalamus (Behrens et al., 2003), medial

frontal cortex (Johansen-Berg et al., 2004), and Broca's area

(Anwander, Tittgemeyer, von Cramon, Friederici, & Knosche, 2007).

With the advent of new computational tools, whole-brain approaches

are becoming popular, yielding a great heterogeneity of methods

(Eickhoff et al., 2018). However, to date, a robust and standard

method to perform whole-brain CBP is still missing. Moreover, the

application of CBP methods to study the aging brain is very scarce

and limited to specific brain regions (Fritz et al., 2019). Herein we pro-

pose a new method to create a CBP of the human brain using diffu-

sion MRI data. For this, we implemented and tested different state-

of-the-art clustering techniques and selected the best performing

according to different criteria (Silhouette scores and consistency of

clusters' sizes). Additionally, we developed a new metric (connectivity

homogeneity fingerprint [CHF]) to evaluate the final CBP and prove

its possibly advantage over the original parcellation. This metric

reflects if the voxels inside a region establish more homogeneous con-

nections (i.e., if they are connected to the same parts of the brain) or

more heterogeneous connections (i.e., if they are connected to differ-

ent parts of the brain) and thus it demonstrates if the main goal of

CBP was accomplished. We hypothesized that the generated CBP

would present higher values of CHF in comparison to the original par-

tition. Moreover, with the developed CBP, we characterized longitudi-

nal changes in topological features of white matter structural

connectivity networks during normal aging. To the best of our knowl-

edge, this is the first study applying CBP methods to study age-related

longitudinal changes in the whole brain and we hypothesized that our

method would be suitable to explore white matter structural connec-

tivity changes during aging.

2 | METHODS

2.1 | Ethics statement

The present study was conducted in accordance with the principles

expressed in the Declaration of Helsinki and was approved by the

national ethical committee (Comiss~ao Nacional de Proteç~ao de Dados)

and by the local ethics review boards (Hospital de Braga, Braga; Cen-

tro Hospitalar do Alto Ave, Guimar~aes and Unidade Local de Saúde do

Alto Minho, Viana do Castelo/Ponte de Lima). The study goals and

procedures were explained to the participants and all gave informed

written consent.

2.2 | Participants

The participants included in this study are part of a larger sample rec-

ruited for the SWITCHBOX Consortium project (www.switchbox-

online.eu/), and are representative of the general Portuguese popula-

tion with respect to age, gender, and education (Costa, Santos, Cunha,

Palha, & Sousa, 2013; Santos et al., 2013, 2014). Primary exclusion
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criteria were inability to understand the informed consent, participant

choice to withdraw from the study, incapacity and/or inability to

attend MRI sessions, dementia and/or diagnosed neuropsychiatric,

and/or neurodegenerative disorder (from medical records). Mini Men-

tal State Examination (MMSE) scores below the adjusted thresholds

for cognitive impairment were also used as exclusion criteria. The

adjusted thresholds were the following: MMSE score <17 if individual

with ≤4 years of formal school education and/or ≥72 years of age,

and MMSE score <23 otherwise (follows the MMSE validation study

for the Portuguese population; Guerreiro et al., 1994). These exclu-

sion criteria were applied at both evaluations. Subjects were evalu-

ated at two timepoints, with a mean interval time between first and

last assessments of 52.8 months (SD = 7.24). At each evaluation, par-

ticipants underwent an imaging session and a battery of

neurocognitive/neuropsychological tests.

In the first assessment, 100 subjects were contacted for MRI

screening. In the last assessment, 55 subjects accepted to participate

and underwent MRI acquisition protocol, but one did not finish the

diffusion acquisition. From these, one subject did not finish the diffu-

sion acquisition and four subjects had brain lesions/pathology. A total

of 51 individuals with data from both the first and last evaluations

met all the inclusion criteria for this study.

Furthermore, in order to evaluate the robustness of the developed

CBP method, we included a dataset from the Human Connectome Pro-

ject (HCP). Specifically, 32 healthy adult participants of the Massachu-

setts General Hospital-Human Connectome Project (MGH-HCP)

diffusion dataset were used (Fan et al., 2016). This dataset was acquired

with the Siemens 3T Connectom scanner that has the capacity to pro-

duce a magnetic field gradient of up to 300 mT/m strength, which pro-

vides diffusion MRI data with high angular and spatial resolution and

with ultra-high b values up to 10,000 s/mm2 (Fan et al., 2016).

2.3 | MRI data acquisition

All MRI assessments of the SWITCHBOX dataset were performed at

Hospital de Braga (Braga, Portugal) on a clinical approved Siemens Mag-

netom Avanto 1.5T MRI scanner (Siemens Medical Solutions, Erlangen,

Germany) with a 12-channel receive-only head-coil. The imaging proto-

col included several different acquisitions. For the present study, two

types of acquisition were considered: diffusion weighted imaging (DWI)

and structural scans. For the DWI acquisition, a spin-echo echo-planar

imaging (SE-EPI) sequence was acquired with the following parameters:

TR = 8,800 ms, TE = 99 ms, FoV = 240 � 240 mm, acquisition

matrix = 120 � 120, sixty-one 2-mm axial slices with no gap, thirty non-

collinear gradient direction with b = 1,000 s mm�2, one b = 0 s mm�2,

and one repetition. For the structural acquisition, a T1-weighted magne-

tization prepared rapid gradient echo sequence was acquired with the

following parameters: 176 sagittal slices, TR/TE = 2730/3.48 ms,

FA = 7�, slice thickness = 1 mm, slice gap = 0 mm, voxel

size = 1 � 1 mm2, FoV = 256 mm.

All acquisitions were visually inspected by a certified neuroradiolo-

gist, before any pre-processing step, in order to ensure that none of the

individuals had brain lesions and/or critical head motion or artifacts that

could affect the quality of the data and reliability of our findings.

A summary of the scanning protocol for the MGH-HCP data is

available at: https://humanconnectome.org/study/hcp-young-adult/

document/mgh-adult-diffusion-data-acquisition-details. This protocol

included both structural and diffusion scans.

2.4 | MRI data pre-processing

2.4.1 | Diffusion data

DWI data of the SWITCHBOX dataset was pre-processed using

FMRIB Diffusion Toolbox (FDT) provided with the FMRIB Software

Library (FSL v5.0; https://fsl.fmrib.ox.ac.uk/fsl/). Pre-processing

included: correction for motion and eddy current distortions; rotation

of gradient vectors accordingly to the affine transformations used to

register each volume; extraction and skull stripping of the first b0 vol-

ume that created a mask which was then applied to remove non-brain

structures of the remaining volumes; local modeling of diffusion

parameters using bedpostx algorithm that runs Markov Chain Monte

Carlo sampling to build up probability distributions of the diffusion

parameters at each voxel and allows modeling of crossing fibers

(Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007).

Details of the preprocessing procedure applied to the MGH-HCP

dataset are given in (Fan et al., 2014).

2.4.2 | Structural data

Structural data of both datasets was processed using the standard semi-

automatic workflow implemented in FreeSurfer toolkit version 6.0

(http://surfer.nmr.mgh.harvard.edu/). In summary, the entire pipeline

involves 31 processing steps which include the spatial normalization to

Talairach standard space, skull stripping, intensity normalization, tessella-

tion of gray matter (GM)-white matter (WM) boundary, and cortical, sub-

cortical, and WM segmentation. This pipeline has been validated against

manual segmentations (Fischl et al., 2002) and is considered reliable

across sessions, scanner platforms, updates, and field strengths (Jovicich

et al., 2009). It has suffered several improvements throughout the years

and details of the procedures are described in several publications

(Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010; Fischl

et al., 2002). For the present study, the cortical segmentation according

to the Desikan–Killiany–Tourville (DKT40) template (A. Klein et al., 2017)

and the subcortical segmentation according to the Buckner (Buckner40)

template (Fischl et al., 2002) were considered.

2.5 | Voxel-wise structural connectivity network
construction

Probabilistic tractography was used to estimate connections

between brain voxels. The 76 regions of the DKT40 and Buckner40
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templates obtained with FreeSurfer were used as seed masks. These

masks were first converted to the volumetric space of FSL using in-

house scripts, and then normalized to each subject native diffusion

space by applying the affine transformation from diffusion space to

structural space. Then, probabilistic tractography was run using

probtrackx2 algorithm from FDT toolbox. 5,000 streamlines were

sampled from each voxel in the seed mask. This allowed us to obtain

the structural connectivity (SC) profiles of each voxel, by counting

F IGURE 1 Overview of the workflow employed for the CBP method. Yellow boxes represent the initial input, blue boxes represent
intermediate outputs, and green boxes the final output
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the number of streamlines that reached any voxel belonging to any

seed mask. Tractography of the SWITCHBOX dataset was per-

formed only for data of the first assessment.

2.6 | Connectivity-based parcellation

After running probabilistic tractography, each region was subdivided

based on its voxels' connectivity patterns and the results of all sub-

jects were merged in a group-wise parcellation. The multiple steps

performed are described below and an outline of the method can be

seen in Figure 1.

2.6.1 | Pre-processing structural connectivity
matrix

The output of probabilistic tractography was a sparse voxel-wise

SC matrix for each region, which contains the connectivity values

between each voxel of the seed mask and the voxels in all 76 masks

(including the mask used as seed). These matrices were pre-

processed before applying the clustering algorithm to group voxels

with similar connectivity patterns. First, we performed sparse to

dense format conversion, which resulted in a matrix per region

with each row representing a voxel of the seed mask and each col-

umn the voxels of all 76 masks. Second, a threshold of 1% of the

strongest connection was applied to each matrix to remove spuri-

ous connections resulting from the probabilistic nature of

tractography. After this, the columns of each matrix containing

only null elements were removed, given that these represent brain

voxels with no connections to seed mask voxels, and thus do not

add valuable information for the clustering step. Finally, the con-

nectivity values of each matrix were normalized by applying the

Box-Cox transformation. Different options for normalization of

connectivity values were tested, namely log, cubic, and Box–Cox

transform, and the latter was selected since it gave the best

approximation of a normal distribution, taking into account skew-

ness and kurtosis values, and the histograms with the distribution

of values (Figure S1; Table S1).

2.6.2 | Assess cluster tendency

Prior to applying clustering algorithms to voxel-wise connectivity

matrices, we assessed the cluster tendency of each region to confirm

the existence of clusters. To do this, we calculated the Hopkins statis-

tic for each region. This metric is based on the null hypothesis H0 that

the data are uniformly distributed and thus has no cluster tendency

(Banerjee & Dave, 2004; Hopkins & Skellam, 1954; Pierna &

Massart, 2000). In this article, we used a Python implementation of

this test (https://pyclustertend.readthedocs.io), where values below

0.5 indicate that there is cluster tendency, while values above 0.5 indi-

cate the presence of uniformly distributed data. This threshold for

statistical significance was defined based on the formula to calculate

the Hopkins statistic, which is the following:

H¼

Pn

i¼1
yi

Pn

i¼1
xiþ

Pn

i¼1
yi

,

where
Pn

i¼1
yi represents the distance between each artificial point to

the nearest real data point and
Pn

i¼1
xi represents the distance from each

real point to each nearest neighbor. So, if the data is uniformly distrib-

uted, then
Pn

i¼1
yi and

Pn

i¼1
xi would be close to each other and H would

be about 0.5. Yet, if clusters are present in the data, the distances for

artificial points (
Pn

i¼1
yi) would be substantially larger than for the real

ones (
Pn

i¼1
xi) and so the values of H will increase. In this study, we used

an implementation of the Hopkins statistic that computed 1-H, thus in

our case when clusters are present, the values of H will decrease.

We also computed the Hopkins statistic for the voxel-wise con-

nectivity matrices of the generated parcellation used in the longitudi-

nal analysis to confirm that after clustering the regions do not display

cluster tendency.

2.6.3 | Choice of clustering algorithm

Several different clustering algorithms can be used to group voxels

according to their connectivity profiles. Here, we applied two of the

most common used clustering algorithms in CBP: k-means and hierar-

chical clustering. After clustering was performed, we evaluated the

performance of the two algorithms on our dataset to identify the best

method for our CBP pipeline. This was done by calculating the silhou-

ette coefficient of the clustering results for each method and selecting

the one that scored highest. Silhouette coefficient is an internal clus-

ter validation metric that is used when the ground truth labels are not

known, and its value is higher when the clusters are dense and well

separated (Rousseeuw, 1987). Furthermore, since the total number of

voxels in all brain regions can go up to 200,000 and we are consider-

ing connectivity between voxels, our data are high-dimensional which

can undermine the performance of the clustering algorithm. This is

known as the curse of dimensionality as termed by Richard Bellman

(Bellman, Corporation, & Collection, 1957) and dimensionality reduc-

tion techniques can help overcome this issue. As such, we used the

silhouette coefficient to evaluate the performance of the two cluster-

ing algorithms in conjunction with a dimensionality reduction applied

prior to the clustering. Two methods were used, namely principal

component analysis (PCA) and self-organizing maps (SOM). PCA is a

linear technique which reduces a large set of variables to a smaller set,

known as principal components (PC), while preserving as much of the

data's variance as possible (Bishop, 2006). Here, we selected the PCs

that preserved 95% of the variance. SOMs are unsupervised learning

neural networks that are trained to produce a low-dimensional repre-

sentation of the data while preserving the topology of the input space

and were inspired by the topographical organization of the sensory
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cortex of the mammalian brain (Kohonen, 1982, 1990). This method

has already been applied to perform CBP of functional data (Mishra,

Rogers, Chen, & Gore, 2014).

2.6.4 | Determination of optimal clustering solution

After choosing the clustering algorithm, we applied it to each subject

and each region for a range of different number of clusters, k¼ 2 :6½ �.
We established the maximum allowed number of clusters to 6, since

increasing the number of clusters (e.g., k= 10) would lead to very

small clusters, with a mean size around 10% of the original region size,

which in some cases means the clusters will have sizes of around 4–5

voxels (Figure S2). Regions with a very small number of voxels encom-

pass little information and thus may not bring additional value to the

parcellation, in addition to limiting statistical testing. Since the k= 6

solution was already linked to a group of fairly small clusters (e.g., left

caudate in Figure S2), we decided to set the maximum to 6 clusters.

For each k value, we estimated multiple internal cluster validation

metrics. Specifically, we computed the Silhouette, Davies–Bouldin,

Calinski–Harabasz, and Elbow metrics, which are often used when the

ground truth labels are unknown. As the Hopkins statistic, the elbow

criterion also allows to test the hypothesis that no clusters are present

in the data (i.e., k = 1), so we computed this metric for the range

k¼ 1 :6½ �, which allowed us to verify the existence of clusters and pre-

vent to force a cluster structure on the data. The distortion metric

was computed for this criterion, which is the average of the squared

distances from the cluster centers of the respective clusters. To iden-

tify the elbow, we used a python implementation of an algorithm

designed to objectively identify the elbow point (https://pypi.org/

project/kneed/; Satopaa, Albrecht, Irwin, & Raghavan, 2011).

To circumvent the random initialization associated with clustering

algorithms, we run 10 iterations of this procedure for each subject

and region. For each run, we selected the best k according to each

metric and computed the mode of all these k (i.e., we choose the most

frequent k in the 10 iterations run for each metric), which resulted in

a k for each subject and region for the four metrics. Following this, we

computed the mode of the k per region, over all subjects, to obtain a

single k value per region and metric. Finally, we computed the cluster-

ing solution for each subject and region according to the selected k of

each region and metric. By combining all the clustered regions of a

subject, we obtained the individual clustered parcellations. Since we

selected different k values based on each of four metrics, this step

resulted in four individual parcellation solutions per subject.

2.6.5 | Register individual parcellations to standard
space

After obtaining the individual clustered parcellations, they were nor-

malized to the Montreal Neurological Institute (MNI) space so that we

could combine them to generate the group-level parcellation. The nor-

malization to the MNI space was performed using Advanced

Normalization Tools (ANTs) software package, available at http://

stnava.github.io/ANTs/. First, the transformation from native struc-

tural space to MNI space was computed, which was composed by an

affine and a non-linear transform. Then, once again an affine and non-

linear transform were concatenated to create the transformation from

diffusion to structural native spaces. Finally, the two transformations

(diffusion to structural, structural to MNI) were sequentially applied to

normalize the subjects' individual clustered parcellations to the MNI

space.

2.6.6 | Create group-wise clustered parcellation

Group-wise parcellation was obtained by combining all individuals'

clustered parcellations through a consensus clustering algorithm. This

algorithm is used to aggregate multiple partitions of the same dataset

(either coming from different clustering algorithms, different runs of

the same algorithm, different samples of data) into a single partition

(Vega-Pons & Ruiz-Shulcloper, 2011). We used the package Cluster

Ensembles available at: https://pypi.org/project/Cluster_Ensembles/.

This package combines three approximation algorithms to solve the

problem of maximizing the average similarity between partitions and

the one with the best performance is selected (Giecold, Marco, Garcia,

Trippa, & Yuan, 2016; Strehl & Ghosh, 2002).

First, we created a group reference parcellation, since our initial

parcellation (DKT40 and Buckner40) was obtained for each individual

as a result of FreeSurfer's segmentation. For this, we transformed

each individual parcellation from structural native space to the MNI

space using ANTs, as described before. Then, for each voxel, we

attributed a label that was the mode of all subjects. Finally, we applied

a threshold of 20% of the total number of subjects in order to remove

voxels that were only present in few subjects. We chose this thresh-

old because it had a good coverage of GM and did not include too

much WM (Figure S3). After obtaining the group reference

parcellation, we masked each individual clustered parcellation using

this reference and then applied consensus clustering to each region.

In the end, we combined all regions to create a group clustered

parcellation of the whole brain.

2.6.7 | Clusters postprocessing

Since the clustering algorithm can generate spatially disjoint clusters,

we forced these to be spatially contiguous by relabeling connected

components. Thus, each connected component in a region was

assigned to a different cluster. This means that for some regions the

final number of clusters was higher than the chosen k.

Finally, clusters with a size under 300 voxels (SWITCHBOX) and

200 voxels (MGH-HCP) were removed by merging them with its

neighborhood. These sizes were chosen after evaluating the clusters'

sizes of the group parcellation registered to each individual's native

diffusion space. Since subjects' diffusion space had lower resolution

(2 � 2 � 2 mm) when compared to the resolution of the group
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parcellation (1 � 1 � 1 mm), the clusters' sizes registered in the native

diffusion space had less voxels. We opted for selecting the threshold

level leading to a minimum cluster size higher than 5 voxels in the sub-

jects' diffusion space (Figure S4).

2.7 | Connectivity homogeneity fingerprint

We developed a metric to evaluate parcellation homogeneity and thus

compare the accuracy of different parcellations in terms of regional

connectivity fingerprint homogeneity—connectivity homogeneity fin-

gerprint (CHF). This metric reflects homogeneity level of the structural

connectivity fingerprint of all voxels in a region (i.e., the magnitude of

overlap between the structural connectivity fingerprint of all voxels

contained a region). Higher values mean that a region contains a larger

pool of voxels with homogeneous connectivity profiles to the rest of

the brain. It is calculated using the voxel-wise SC matrix of each

region with the following steps: (a) the matrix is binarized; (b) the

mean of each column is computed, which results in a vector with the

average of seed voxels that connects to each target voxel, thus we

remove the effect of seed size in the CHF metric; (c) a 1% threshold is

applied to remove spurious connections; (d) the CHF is equal to the

average of the vector and so the target's size has no effect on the

metric.

2.7.1 | Comparison to null model

Given that metrics of homogeneity are likely to depend on cluster size

and the total number of clusters delineated, we compared the CHF of

the final parcellation with a null model. With this comparison, we are

able to verify if the generated clusters are more homogeneous than

would be expected from randomly placed clusters of the same shape

and size. We used a similar approach to the one proposed by Gordon

and colleagues (Gordon et al., 2016). In summary, we registered the

final parcellation to the surface space and then rotated each hemi-

sphere a random amount around each axis (x, y, and z). This ensures

that the relocated clusters maintain the relative positions to each

other and their original number of vertices. Clusters that were rotated

into the medial wall were discarded from the analysis. Then, we regis-

tered the rotated versions of the parcellation back to the volume

space and calculated the CHF. We repeated this procedure 100 times

for the SWITCHBOX dataset. To avoid potential limitations associated

to the conversion to the surface space, the CHF calculation was lim-

ited to voxels comprised in the cortical mesh of the final parcellation,

which eliminated voxels of subcortical areas. Moreover, although the

rotated versions of the parcellation in surface space had equal sizes

for the same region, this was not observed in the volume space, due

to the conversions between these two spaces. Thus, there is a slightly

variation in regional size between each version of the rotated

parcellation. Statistical comparison between the final parcellation and

the rotated parcellations was performed by computing a Z-score, as

described in (Gordon et al., 2016):

z¼CHForiginal� 1
n

Pn
i¼1CHFrotatedi

σCHFrotated
:

2.7.2 | Evaluation of parcellations

Since the main goal of CBP is to group voxels with similar connectivity

patterns, we evaluated the CHF of the original and the final

parcellation to verify if our CBP method resulted in a parcellation with

higher CHF. To do this, we performed probabilistic tractography with

the obtained group parcellation. First, the group parcellation was reg-

istered to each individual's diffusion space with ANTs, by applying

sequentially the transformation from MNI space to native structural

space (composed by an affine and a non-linear transform) and the

transformation from structural to diffusion native spaces (composed

by an affine and a non-linear transform). Gray matter and white mat-

ter masks, estimated with FreeSurfer for each individual, were applied

to the group parcellation to exclude voxels outside these regions

(e.g., voxels belonging to cerebrospinal fluid [CSF]). Then, probabilistic

tractography was run using the group parcellation clusters as seed

masks (5,000 streamlines were sampled from each voxel in the seed

mask). This allowed to obtain the voxel-wise SC matrix for each clus-

ter (i.e., SC between each voxel of the cluster and the voxels of all

clusters in the parcellation) and then we calculated the CHF of each

cluster for all subjects. The CHF of the original parcellation was com-

puted with the voxel-wise SC matrices that were used as the input of

CBP. Statistical comparison of the CHF between each developed

parcellation and the original parcellation was performed using inde-

pendent samples t tests and p values were corrected for multiple com-

parisons, using the false discovery rate method.

2.8 | Selection of group parcellation

After evaluating the CHF of the group parcellations estimated with

each cluster validity metric (i.e., Silhouette, Davies–Bouldin, Calinski–

Harabasz, Elbow), we selected one group parcellation to assess longi-

tudinal changes in the topological properties of white matter struc-

tural connectivity networks. To do this, we repeated some of the

steps described in the previous section for the second timepoint

dataset of the SWITCHBOX cohort, with the selected partition (regis-

tration of group parcellation to individual's diffusion space, probabilis-

tic tractography, and calculation of CHF).

2.9 | Network construction

We created the SC network matrices, for each subject and timepoint,

by performing probabilistic tractography using the clusters of the

selected group parcellation as seed masks. This resulted in an SC

matrix, for each subject, representing the number of streamlines leav-

ing each seed mask and reaching any of the other regions. This matrix

was normalized by dividing each line by the waytotal value (i.e., the
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total number of generated tracts not rejected by inclusion/exclusion

mask criteria). We further divided the matrix by its maximum value, in

order to have connectivity values between [0, 1]. Since tractography

is dependent on seeding location, the connectivity probability from

i to j is not necessarily equal to that from j to i. Still, these two proba-

bilities are highly correlated across the brain for all participants. Thus,

we defined the undirected connectivity probability as the average of

these two probabilities, Pij and Pji, which originated an undirected con-

nectivity matrix. Next, a consistency-based threshold was applied,

which retains the most consistent connections across subjects with

the aim of reducing the false-positive in group-average connectivity

matrices (Roberts, Perry, Roberts, Mitchell, & Breakspear, 2017). We

applied this threshold at a 30% density, the same value used in the

original work describing the technique (Roberts et al., 2017). Subse-

quently, we tested different strategies to account for connectivity

between clusters of the same region: (a) set intra-cluster connectivity

to 0 and normalize regional connectivity values by the maximum;

(b) set intra-cluster connectivity to 1 and normalize regional connec-

tivity values by the maximum (excluding the intra-cluster connectiv-

ity); and (c) use the original intra-cluster connectivity values. Figure S5

shows the example for one subject of the connections surviving each

of these strategies. We opted to use the original intra-cluster connec-

tivity values as the other two strategies seem to include more connec-

tions which could lead to the inclusion of false-positive connections.

Finally, a threshold set to 1% of the strongest connection was applied

to each SC matrix, in order to remove spurious connections that were

consistent across participants and thus were not removed with the

consistency threshold. This 1% threshold has been proven to remove

edges with poor to moderate reproducibility, while maintaining edges

with moderate to good reproducibility (Tsai, 2018). Thus, it is suitable

to threshold structural connectivity matrices for network analysis.

2.10 | Graph theoretical analysis

Brain networks can be described in terms of its topological organiza-

tion, using graph theory measures. Brain Connectivity Toolbox

(https://sites.google.com/site/bctnet/) was used to extract these met-

rics. The structural connectivity networks built with the selected

group parcellation were used. The following topological features were

evaluated for both timepoints: modularity and hubs (global, provincial,

and connector). The description of these metrics is detailed in Appen-

dix S1.

2.11 | Fingerprints of modular connectivity

We also analyzed, for each timepoint, the network fingerprints of

inter-modular (global and connector-hub-driven) and intra-modular

connectivity. The same method of analysis as described in

Fernandes et al. (2019)), was applied in this study. In summary,

modular connectivity strength was defined as the degree (total

number of connections) of all nodes constituting a module. To

quantify this connectivity at both timepoints, a reference scheme

of community structure was chosen based on the mean score of

community-structure goodness-of-fit. Subsequently, matrices of

inter-modular and intra-modular connectivity were created for

both timepoints.

2.12 | Statistical analysis

Statistical comparison of the SC matrices between first and last

assessments, at the edge level, was performed by applying a paired

sample t test with SC as the dependent variable and time of evalua-

tion as independent variable. The obtained SC networks are com-

prised of 170 nodes, yielding a total number of possible edges of

14,365 (170�169/2). Testing the hypothesis of interest at the edge

level, therefore poses a multiple comparisons problem. In order to

increase the statistical power of the analysis, we used the network-

based statistics (NBS) procedure implemented in the NBS toolbox

(https://sites.google.com/site/bctnet/comparison/nbs). This is a

non-parametric statistical method that allows the identification of

significantly different sub-networks, while controlling for the

family-wise error rate (FWER; Zalesky, Fornito, & Bullmore, 2010).

First, it independently tests the hypotheses at every connection in

the network and threshold the ones exceeding a user defined pri-

mary threshold, then it identifies sub-networks constituted by

interconnected edges that survived the primary threshold. The sig-

nificance of these sub-networks is then calculated by comparing

their sizes to the distribution of the size of sub-networks obtained

through random permutations of the original hypothesis. It is

important to note that the primary threshold only affects the sensi-

tivity of the method and thus, FWER is assured independently of

this threshold. In this study, the primary threshold was set to

F = 7.0, which was the maximum threshold that detected a unique

significant connected component having more than two connec-

tions (Figure S6). Longitudinal changes in structural connectivity

detected with NBS are represented by significantly connected com-

ponents at a corrected level of p < .05 FWE corrected.

3 | RESULTS

3.1 | Sample characterization

Table 1 shows the demographic characterization of the participants

from the SWITCHBOX dataset included in this study. In summary,

mean age at baseline was 63.5 years (range, 51–82 years) and mean

interval between evaluations was 52.8 months (range, 45–73 months).

Interval time was not strongly associated with age at baseline

(r = �.12, p = .41). The sample was balanced for sex (51% females,

49% males) and they did not differ with respect to interval time

(t 30ð Þ¼0:14,p¼ :89). Mean education level was 5.98 years (range,

0–17years). The MGH-HCP dataset used in this study included

32 healthy adults (age range 20–59 years, 56% males).
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3.2 | Cluster tendency

For both parcellations (original—DKT40; generated—Silhouette), all

regions exhibited cluster tendency (Figures S7 and S8). Although we

observed an increase in the Hopkins statistic, the final clusters, inde-

pendently of regional size, still display cluster tendency according to

this statistic. This might happen because the Hopkins statistic is a

method to determine the type of distribution of the data (random,

aggregate, and regular), while to assess cluster tendency the goal is to

verify if our data is generated from a multimodal distribution (i.e., if

our data contain multiple clusters, the pairwise distances distribution

will have a group of small distances corresponding to within-cluster

distances, and a group of large distances corresponding to between-

cluster distances; Adolfsson, Ackerman, & Brownstein, 2019). For this

reason, the Hopkins statistic may fail to assess cluster tendency. Thus,

we decided not to consider this metric to assess cluster tendency and

only used the elbow criterion.

3.3 | Clustering algorithm

The analysis of the silhouette scores of different clustering algorithms

revealed that the best solution was the k-means algorithm in conjunc-

tion with SOM for dimensionality reduction. Figure 2 represents the

silhouette coefficient scores for different number of clusters for one

brain region using this solution (for the other solutions, see

Figures S9–S13). The k-means + SOM solution in addition to result in

higher silhouette scores also originated clusters more balanced in

terms of size.

3.4 | Optimal clustering solution

Table 2 presents the optimal number of clusters for each brain region

according to each cluster validity metric (Silhouette, Davies–Bouldin,

Calinski–Harabasz, and Elbow). In the SWITCHBOX cohort, for the

Silhouette coefficient, most of regions were partitioned in two

TABLE 1 Basic demographic characterization of the study's
cohort

Mean � SD (range)

N (females/males) 51 (26/25)

Age at baseline (years) 63.5 � 7.41 (51–82)

Age at follow-up (years) 68.0 � 7.25 (55–86)

Interval (months) 52.8 � 7.24 (45–73)

Education (years) 5.98 � 3.97 (0–17)

F IGURE 2 Example of silhouette scores of one brain region for k-means clustering in conjunction with SOM data dimensionality reduction
technique. Different clustering solutions (2–6 clusters) were tested. The black dashed line represents the mean silhouette score across all data
samples. This approach (SOM + k-means clustering) presents the highest values of silhouette coefficient and with more balanced cluster sizes
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clusters, with the exception of right entorhinal cortex, left and right

caudate, right amygdala, and left and right accumbens area which

were subdivided in six clusters. Davies–Bouldin score also subdivided

almost all brain regions in two clusters, with the exception of right

transverse temporal, left and right accumbens area that were sub-

divided in six clusters, and right amygdala which was partitioned in

TABLE 2 Optimal number of clusters for each brain region according to each clustering validity metric

Silhouette Davies–Bouldin Calinski–Harabasz Elbow

ROI name nleft nright nleft nright nleft nright nleft nright

SW HCP SW HCP SW HCP SW HCP SW HCP SW HCP SW HCP SW HCP

Caudal anterior cingulate 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Caudal middle frontal 2 6 2 6 2 2 2 4 6 6 6 6 2 2 2 2

Cuneus 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Entorhinal 2 2 6 2 2 2 2 2 6 6 6 6 3 3 2 2

Fusiform 2 6 2 6 2 2 2 2 6 6 6 6 2 2 2 2

Inferior parietal 2 6 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Inferior temporal 2 6 2 6 2 2 2 2 6 6 6 6 2 2 2 2

Isthmus cingulate 2 2 2 2 2 2 2 2 6 6 6 6 3 2 2 2

Lateral occipital 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Lateral orbitofrontal 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Lingual 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Medial orbitofrontal 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Middle temporal 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Parahippocampal 2 2 2 2 2 2 2 2 6 6 6 6 2 3 2 2

Paracentral 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Pars opercularis 2 6 2 6 2 2 2 2 6 6 6 6 2 2 2 2

Pars orbitalis 2 6 2 6 2 3 2 2 6 6 6 6 2 3 2 2

Pars triangularis 2 6 2 6 2 2 2 3 6 6 6 6 2 2 2 2

Pericalcarine 2 2 2 2 2 2 2 2 6 6 6 6 2 3 2 2

Postcentral 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Posterior cingulate 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Precentral 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Precuneus 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Rostral anterior cingulate 2 6 2 6 2 2 2 4 6 6 6 6 2 2 2 3

Rostral middle frontal 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Superior frontal 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Superior parietal 2 6 2 6 2 2 2 2 6 6 6 6 2 2 2 2

Superior temporal 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Supramarginal 2 2 2 6 2 2 2 2 6 6 6 6 2 2 2 2

Transverse temporal 2 2 2 6 2 4 6 4 6 6 6 6 2 3 3 3

Insula 2 2 2 6 2 2 2 2 6 6 6 6 2 2 2 2

Thalamus proper 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Caudate 6 2 6 2 2 2 2 2 6 6 6 6 2 2 2 2

Putamen 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Pallidum 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Hippocampus 2 2 2 2 2 2 2 2 6 6 6 6 2 2 2 2

Amygdala 2 3 6 3 2 3 3 3 6 6 6 6 3 2 3 2

Accumbens area 6 3 6 2 6 3 6 2 6 6 6 6 3 2 3 2

Abbreviations: HCP, MGH-HCP dataset; nleft, number of clusters for the left region; nright, number of clusters for the right region; SW, SWITCHBOX

dataset.
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three clusters. According to the Calinski–Harabasz coefficient, all

brain regions were split in six clusters. Finally, the Elbow score sub-

divided most of the regions in two clusters, with the exception of left

entorhinal, left isthmus cingulate, right transverse temporal, bilateral

amygdala, and bilateral accumbens area which were partitioned in

three clusters. In the MGH-HCP cohort, Silhouette, Davies–Bouldin,

and Elbow coefficients subdivided the majority of regions in two clus-

ters, while Calinski–Harabasz score subdivided all regions in six

clusters.

The final group clustered parcellations according to each metric

are represented in Figure S14. Silhouette coefficient generated a

group partition with 170 clusters (SWITCHBOX) and 241 clusters

(MGH-HCP), Davies–Bouldin, a group parcellation with 163 clusters

(SWITCHBOX) and 176 clusters (MGH-HCP), Calinski–Harabasz pro-

duced a group partition with 472 clusters (SWITCHBOX) and 444 clus-

ters (MGH-HCP), and Elbow metric generated a group parcellation

with 165 clusters (SWITCHBOX) and 167 clusters (MGH-HCP).

3.5 | Connectivity homogeneity fingerprint

The CHF of each parcellation was higher than the mean of 100 rotated

parcellations for the majority of regions (Figure 3). Only a few regions in

the Silhouette, Calinski–Harabasz, and Elbow presented higher CHF for

the null model parcellations, and these correspond to very small regions,

which increases the probability, when we rotate the parcellation, to that

cluster be rotated to a region with high homogeneity. Regarding Z-

scores, the Silhouette parcellation had 5.98 (i.e., was 5.98 SD away from

the mean CHF of the null model parcellations), the Davies–Bouldin had

6.04, the Calinski–Harabasz had 9.96, and the Elbow had 6.24.

The four group parcellations present higher values of CHF in

comparison to the initial parcellation (DKT40 + Buckner40; Figure 4).

For the SWITCHBOX cohort, the parcellations produced from Silhou-

ette, Davies–Bouldin, and Elbow coefficients exhibit similar values of

CHF (Silhouette—M = 0.074, SD = 0.005; Davies–Bouldin—

M¼0:070,SD¼0:004; Elbow—M = 0.073, SD = 0.004); the one origi-

nating from Calinski–Harabasz has the highest value (M = 0.10,

SD = 0.006). For the MGH-HCP dataset, Silhouette and Calinski–

Harabasz had similar CHF values (Silhouette—M¼0:11,SD¼0:006;

Calinski–Harabasz—M = 0.12, SD = 0.006), while Davies–Bouldin and

Elbow partitions had lower and equal values (Davies–Bouldin—

M = 0.09, SD = 0.006; Elbow—M = 0.09, SD = 0.006). The initial par-

tition displays the lowest value for both datasets (SWITCHBOX:

M¼0:031,SD¼0:003; MGH-HCP: M¼0:040,SD¼0:003). Statistical

comparison of CHF values revealed that the four parcellations had

statistically significant higher CHF values in comparison to the original

parcellation (SWITCHBOX: Silhouette – t 76:3ð Þ ¼57:6,p< :001,d¼11:4;

Davies–Bouldin – t 79:4ð Þ ¼54:0,p< :001,d¼10:7; Calinski–Harabasz –

t 66:7ð Þ ¼78:7,p< :001,d¼15:6; Elbow – t 80ð Þ ¼58:8,p< :001,d¼11:6;

MGH-HCP: Silhouette – t 49:2ð Þ ¼63:7,p< :001,d¼15:9; Davies–

Bouldin – t 47:9ð Þ ¼41:4,p< :001,d¼10:3; Calinski–Harabasz – t 47:8ð Þ
¼68:8,p<0:001,d¼17:2; Elbow – t 49:7ð Þ ¼45:2,p< :001,d¼11:3).

Figure 5 shows the CHF values, for each cluster of the group

parcellations and the original region of the initial parcellation. We

observe that the CHF of the individual clusters is higher than the orig-

inal region for all parcellations and for all regions.

We selected the estimated group parcellation based on the Sil-

houette score to assess longitudinal changes in white matter struc-

tural connectivity of the SWITCHBOX cohort. The Calinski–

Harabasz parcellation has a very high number of clusters, which

F IGURE 3 Mean connectivity homogeneity fingerprint (CHF) scores for each group parcellation and for the 100 rotated parcellations, in the
SWITCHBOX dataset. Red line represents CHF of each group parcellation (Silhouette, Davies–Bouldin, Calinski–Harabasz, and Elbow), blue line
represents the average CHF of the 100 rotated parcellations, and gray dots represent CHF of each rotated parcellation. For all the four
parcellations, the CHF is higher than for the mean of the rotated null parcellations
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F IGURE 4 Mean connectivity homogeneity fingerprint (CHF) scores of the different group parcellations for all subjects. The four solutions
resulted in parcellations with higher CHF in comparison to the original partition. Calinski–Harabasz parcellation had the highest homogeneity
values but also the highest number of clusters

F IGURE 5 Mean connectivity homogeneity fingerprint (CHF) scores of the regions of the original partition and the individual clusters of the
four group parcellations. Red line represents CHF of the original parcellation (DKT40) and blue dots represent CHF of each individual cluster of
the group parcellations (Silhouette, Davies–Bouldin, Calinski–Harabasz, and Elbow). Individual clusters belonging to the same region of the
original partition present the same value in the x-axis. For all the group parcellations, the CHF of the individual clusters is higher than the CHF of
the original region
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may in part explain its high value of CHF, but this increased granu-

larity may not be beneficial and can make subsequent analyses

computationally expensive. Furthermore, the Davies–Bouldin parti-

tion had some regions that were clustered in a pattern that may not

be biologically plausible (checkerboard pattern, Figure S15) and Sil-

houette parcellation had slightly higher mean CHF values in com-

parison the Elbow partition. Thus, we selected the Silhouette

parcellation which does not present these limitations and still has

higher CHF in comparison to the initial parcellation. Details of the

label and coordinates of the regions belonging to this parcellation

are given in Table S2.

In addition, in the second timepoint, the values of CHF for the Sil-

houette parcellation are very similar when compared to the first time-

point (M¼0:077,SD¼0:006, Figure 6).

3.6 | Longitudinal changes in brain structural
connectivity

Using the Silhouette parcellation, we found significant changes in

structural connectivity between timepoints in a brain sub-network

(p < .001), comprising 122 connections, from which 52 correspond to

decreases and 70 to increases in structural connectivity (Figure 7).

When analyzing the individual connections of this sub-network, we

concluded that the connections with longitudinal decreases in con-

nectivity are represented by 19 intra-left, 24 intra-right, and 9 inter-

hemispheric connections. The connections with longitudinal increases

in connectivity are composed by 16 intra-left, 22 intra-right, and

32 inter-hemispheric connections. The summary of the connections is

present in Table 3.

3.7 | Longitudinal analysis of topological
properties

3.7.1 | Modularity

The optimal modularity structure had eight modules at both

timepoints, and the two configurations had a similarity of 0.55. The

arrangement of the modules has some differences between

timepoints (Figure 8). Particularly, Module 1 at Timepoint 2 includes

some occipital regions that are not included in the first timepoint,

Module 4 changes from left to right hemisphere, Module 5 comprises

frontal regions at Timepoint 2 that are not present at Timepoint

1, Module 6 loses occipital regions between timepoints, Module

7 shifts from frontal to occipital regions, and Module 8 also loses

some frontal regions. Details of the regions belonging to each module

are given in Table S3. Regarding the connector hubs' connectivity pro-

files, we observe differences between evaluations, with a higher num-

ber of connections in the posterior regions of the brain at Timepoint

2 (Figure 8).

F IGURE 6 Mean CHF values for the two timepoints and the
initial parcellation. At both timepoints, the homogeneity is higher in
comparison to the original partition

F IGURE 7 Significant changes in structural connectivity between timepoints. (a) Binarized version of the connected component of
significantly altered structural connectivity. (b) Weighted version of (a), with edge thickness representing the amplitude of differences. Blue
represents decreases in connectivity strength between timepoints and red represents increases. Connections with decreases are mostly intra-
hemispheric, while most of the increases are composed of intra-hemispheric connections
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TABLE 3 Description of the connections comprising the connected component of significant structural connectivity differences between
timepoints (p < .001)

Area 1 Area 2

Difference Intra-left Intra-right
Inter-
hemisphericN Name N Name

Increases

68 Left thalamus proper 2 99 Right caudate 4 0.035 0 0 1

71 Left caudate 3 102 Right thalamus proper 1 0.033 0 0 1

85 Right amygdala 2 160 Right entorhinal 1 0.029 0 1 0

102 Right thalamus proper 1 140 Right paracentral 2 0.027 0 1 0

70 Left caudate 2 101 Right caudate 6 0.026 0 0 1

85 Right amygdala 2 89 Right amygdala 6 0.024 0 1 0

70 Left caudate 2 99 Right caudate 4 0.023 0 0 1

34 Left pars orbitalis 1 73 Left caudate 5 0.022 1 0 0

70 Left caudate 2 96 Right caudate 1 0.022 0 0 1

71 Left caudate 3 103 Right thalamus proper 2 0.018 0 0 1

37 Left pars triangularis 2 73 Left caudate 5 0.018 1 0 0

115 Right superior frontal 2 123 Right precentral 1 0.017 0 1 0

20 Left lateral orbitofrontal 2 26 Left middle temporal 2 0.016 1 0 0

73 Left caudate 5 96 Right caudate 1 0.016 0 0 1

67 Left thalamus proper 1 99 Right caudate 4 0.015 0 0 1

15 Left isthmus cingulate 1 153 Right isthmus cingulate 2 0.015 0 0 1

49 Left rostral anterior cingulate 1 72 Left caudate 4 0.015 1 0 0

92 Right pallidum 1 140 Right paracentral 2 0.013 0 1 0

68 Left thalamus proper 2 96 Right caudate 1 0.013 0 0 1

69 Left caudate 1 102 Right thalamus proper 1 0.013 0 0 1

95 Right putamen 2 130 Right postcentral 3 0.013 0 1 0

73 Left caudate 5 102 Right thalamus proper 1 0.012 0 0 1

142 Right parahippocampal 2 154 Right inferior temporal 1 0.011 0 1 0

102 Right thalamus proper 1 139 Right paracentral 1 0.011 0 1 0

67 Left thalamus proper 1 101 Right caudate 6 0.011 0 0 1

94 Right putamen 1 120 Right rostral anterior cingulate 2 0.011 0 1 0

94 Right putamen 1 111 Right superior temporal 2 0.011 0 1 0

90 Right hippocampus 1 96 Right caudate 1 0.010 0 1 0

44 Left posterior cingulate 2 140 Right paracentral 2 0.010 0 0 1

115 Right superior frontal 2 124 Right precentral 2 0.009 0 1 0

67 Left thalamus proper 1 96 Right caudate 1 0.009 0 0 1

92 Right pallidum 1 121 Right precuneus 1 0.009 0 1 0

83 Right accumbens area 1 105 Right insula 2 0.009 0 1 0

97 Right caudate 2 99 Right caudate 4 0.009 0 1 0

15 Left isthmus cingulate 1 122 Right precuneus 2 0.008 0 0 1

30 Left paracentral 1 122 Right precuneus 2 0.008 0 0 1

70 Left caudate 2 97 Right caudate 2 0.007 0 0 1

71 Left caudate 3 115 Right superior frontal 2 0.007 0 0 1

34 Left pars orbitalis 1 68 Left thalamus proper 2 0.007 1 0 0

54 Left superior frontal 1 71 Left caudate 3 0.007 1 0 0

31 Left paracentral 2 121 Right precuneus 1 0.007 0 0 1

70 Left caudate 2 140 Right paracentral 2 0.006 0 0 1

161 Right entorhinal 2 164 Right entorhinal 5 0.006 0 1 0
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TABLE 3 (Continued)

Area 1 Area 2

Difference Intra-left Intra-right
Inter-
hemisphericN Name N Name

3 Left caudal middle frontal 1 32 Left pars opercularis 1 0.006 1 0 0

15 Left isthmus cingulate 1 165 Right cuneus 1 0.006 0 0 1

7 Left entorhinal 1 78 Left hippocampus 1 0.006 1 0 0

31 Left paracentral 2 122 Right precuneus 2 0.006 0 0 1

69 Left caudate 1 140 Right paracentral 2 0.006 0 0 1

74 Left putamen 1 101 Right caudate 6 0.005 0 0 1

35 Left pars orbitalis 2 73 Left caudate 5 0.005 1 0 0

73 Left caudate 5 103 Right thalamus proper 2 0.005 0 0 1

29 Left parahippocampal 2 38 Left pericalcarine 1 0.005 1 0 0

74 Left putamen 1 115 Right superior frontal 2 0.005 0 0 1

4 Left caudal middle frontal 2 37 Left pars triangularis 2 0.005 1 0 0

40 Left postcentral 1 140 Right paracentral 2 0.005 0 0 1

101 Right caudate 6 149 Right lateral orbitofrontal 2 0.005 0 1 0

67 Left thalamus proper 1 97 Right caudate 2 0.004 0 0 1

76 Left pallidum 1 116 Right superior frontal 3 0.004 0 0 1

26 Left middle temporal 2 39 Left pericalcarine 2 0.004 1 0 0

102 Right thalamus proper 1 136 Right pars orbitalis 2 0.004 0 1 0

151 Right lateral occipital 2 166 Right cuneus 2 0.004 0 1 0

101 Right caudate 6 134 Right pars triangularis 2 0.004 0 1 0

31 Left paracentral 2 67 Left thalamus proper 1 0.004 1 0 0

19 Left lateral orbitofrontal 1 26 Left middle temporal 2 0.003 1 0 0

131 Right pericalcarine 1 158 Right fusiform 1 0.003 0 1 0

95 Right putamen 2 115 Right superior frontal 2 0.003 0 1 0

21 Left lingual 1 28 Left Parahippocampal 1 0.003 1 0 0

77 Left pallidum 2 98 Right caudate 3 0.002 0 0 1

73 Left caudate 5 78 Left hippocampus 1 0.002 1 0 0

1 Left caudal anterior cingulate 1 126 Right posterior cingulate 1 0.002 0 0 1

Decreases

67 Left thalamus proper 1 77 Left pallidum 2 �0.002 1 0 0

88 Right amygdala 5 155 Right inferior parietal 1 �0.002 0 1 0

63 Left transverse temporal 1 75 Left putamen 2 �0.003 1 0 0

16 Left isthmus cingulate 2 165 Right cuneus 1 �0.003 0 0 1

88 Right amygdala 5 98 Right caudate 3 �0.003 0 1 0

54 Left superior frontal 1 94 Right putamen 1 �0.003 0 0 1

84 Right amygdala 1 102 Right thalamus proper 1 �0.003 0 1 0

134 Right pars Triangularis 2 167 Right caudal middle frontal 1 �0.003 0 1 0

98 Right caudate 3 114 Right superior frontal 1 �0.003 0 1 0

83 Right Accumbens area 1 92 Right pallidum 1 �0.004 0 1 0

54 Left superior frontal 1 99 Right caudate 4 �0.004 0 0 1

38 Left Pericalcarine 1 153 Right isthmus cingulate 2 �0.004 0 0 1

154 Right inferior temporal 1 161 Right entorhinal 2 �0.004 0 1 0

89 Right amygdala 6 155 Right inferior parietal 1 �0.004 0 1 0

159 Right fusiform 2 160 Right entorhinal 1 �0.004 0 1 0

35 Left pars orbitalis 2 53 Left rostral middle frontal 3 �0.004 1 0 0

45 Left precentral 1 75 Left putamen 2 �0.004 1 0 0

(Continues)
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3.7.2 | Hubs

Global hubs were defined as regions with high normalized nodal effi-

ciency. In the first timepoint, 19 regions were identified as hubs, while

at Timepoint 2, two additional regions were classified as hubs, namely

left lateral occipital 1 (nomenclature of anatomical parcels is done

according to: [hemisphere region subdivision]) and left transverse

temporal 1 (Table 4; Figure 9).

Regarding provincial hubs, which play a key role in intra-modular

communication, 18 hubs were detected at the first timepoint and

19 at the last timepoint (Table 5). Left cuneus 2, left precuneus 2, left

putamen 1, right caudate 1, right caudate 2, right precuneus 2, and

right precentral 1 were only detected at Timepoint 1, while left fusi-

form 1, left fusiform 2, left middle temporal 1, left posterior cingulate

2, left caudate 5, left putamen 2, right putamen 1, and right posterior

cingulate 2 were only detected at Timepoint 2. The rest of the regions

were common to both timepoints (Figure 9).

In the case of connector hubs, which have a central role in inter-

modular communication, 9 hubs were detected at Timepoint 1 and

12 at Timepoint 2 (Table 5).

TABLE 3 (Continued)

Area 1 Area 2

Difference Intra-left Intra-right
Inter-
hemisphericN Name N Name

126 Right posterior cingulate 1 152 Right isthmus cingulate 1 �0.004 0 1 0

89 Right amygdala 6 120 Right rostral anterior cingulate 2 �0.004 0 1 0

3 Left caudal middle frontal 1 45 Left precentral 1 �0.005 1 0 0

30 Left paracentral 1 70 Left caudate 2 �0.005 1 0 0

83 Right accumbens area 1 119 Right rostral anterior cingulate 1 �0.005 0 1 0

146 Right medial orbitofrontal 2 161 Right entorhinal 2 �0.005 0 1 0

58 Left superior temporal 1 72 Left caudate 4 �0.006 1 0 0

71 Left caudate 3 74 Left putamen 1 �0.006 1 0 0

49 Left rostral anterior cingulate 1 77 Left pallidum 2 �0.007 1 0 0

56 Left superior parietal 1 130 Right postcentral 3 �0.007 0 0 1

98 Right caudate 3 120 Right rostral anterior cingulate 2 �0.007 0 1 0

86 Right amygdala 3 146 Right medial orbitofrontal 2 �0.008 0 1 0

53 Left rostral middle frontal 3 76 Left pallidum 1 �0.008 1 0 0

142 Right parahippocampal 2 161 Right entorhinal 2 �0.008 0 1 0

84 Right amygdala 1 154 Right inferior temporal 1 �0.008 0 1 0

26 Left middle temporal 2 78 Left hippocampus 1 �0.009 1 0 0

85 Right amygdala 2 92 Right pallidum 1 �0.009 0 1 0

8 Left entorhinal 2 20 Left lateral orbitofrontal 2 �0.009 1 0 0

1 Left caudal anterior cingulate 1 15 Left isthmus cingulate 1 �0.009 1 0 0

46 Left precentral 2 115 Right superior frontal 2 �0.009 0 0 1

39 Left pericalcarine 2 131 Right pericalcarine 1 �0.011 0 0 1

37 Left pars triangularis 2 67 Left thalamus proper 1 �0.012 1 0 0

120 Right rostral anterior cingulate 2 148 Right lateral orbitofrontal 1 �0.013 0 1 0

111 Right superior temporal 2 129 Right postcentral 2 �0.013 0 1 0

26 Left middle temporal 2 81 Left amygdala 2 �0.014 1 0 0

67 Left thalamus proper 1 75 Left putamen 2 �0.014 1 0 0

132 Right pericalcarine 2 153 Right isthmus cingulate 2 �0.014 0 1 0

37 Left pars triangularis 2 70 Left caudate 2 �0.014 1 0 0

53 Left rostral middle frontal 3 70 Left caudate 2 �0.015 1 0 0

21 Left lingual 1 131 Right pericalcarine 1 �0.017 0 0 1

45 Left precentral 1 115 Right superior frontal 2 �0.018 0 0 1

86 Right amygdala 3 148 Right lateral orbitofrontal 1 �0.029 0 1 0

158 Right fusiform 1 163 Right entorhinal 4 �0.041 0 1 0

122 Right precuneus 2 166 Right cuneus 2 �0.052 0 1 0

30 Left paracentral 1 43 Left posterior cingulate 1 �0.057 1 0 0
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Left putamen 2, right putamen 1 and right insula 2 were only

detected at timepoint 1, while left precuneus 2, right putamen 2, right

precuneus 2, right precentral 1, right middle temporal 1, and right lat-

eral occipital 2 was only detected at Timepoint 2 (Figure 9).

Interestingly, left putamen 2 and right putamen 2 lost their con-

nector hub status between timepoints but they were identified as pro-

vincial hubs at Timepoint 2. In the opposite direction, left precuneus

2, right precuneus 2, and right precentral 1 lost its provincial hub sta-

tus and were identified as a connector hub at Timepoint 2. Further-

more, left caudate 1, right amygdala 1, right caudate 1, and right

caudate 6 were identified as global and provincial hubs at both

timepoints.

3.7.3 | Fingerprints of modular connectivity

The reference scheme chosen to analyze fingerprints of modular con-

nectivity was the community structure of Timepoint 2. Connector-

hub-driven inter-modular connectivity had significant alterations

between timepoints (Figure 10). Overall, there was an increase of

around 33% in modular connectivity strength in the second timepoint.

Specifically, we found increased connectivity from Module 7 (right

hemisphere; temporal, parietal, and occipital regions) to Modules

1 (left hemisphere; entorhinal, hippocampus, amygdala, para-

hippocampal, temporal, and occipital regions), 5 (right hemisphere;

accumbens area, pallidum, putamen, caudate, insula, cingulate, and

frontal regions), and 8 (right hemisphere; amygdala, hippocampus,

parahippocampal, entorhinal, fusiform, and temporal regions). Also,

Module 6 (bilateral cingulate cortex regions, bilateral paracentral,

bilateral precuneus, and right postcentral) had no connectivity with

any other module at Timepoint 1, but at Timepoint 2, there was con-

nectivity between Module 6 and the other modules. Connectivity

between Module 2 (left hemisphere; caudate, putamen, pallidum,

accumbens area, thalamus, insula, rostral anterior cingulate, and fron-

tal regions) and Modules 1 and 3 (left hemisphere; inferior and supe-

rior parietal, postcentral, precentral, and supramarginal) decreased

between timepoints. Of notice, at Timepoint 1, Module 2 had two

connector hubs (left superior frontal 2 and left putamen 2), Module

6 had none and Module 7 had one (right superior temporal 2), while at

Timepoint 2, Module 2 had one connector hub (left superior frontal

2), Module 6 had two (left precuneus 2 and right precuneus 2), and

Module 7 had three (right superior temporal 2, right middle temporal

F IGURE 8 Modularity
structure (a) and connector-hub
connectivity (b) at Timepoint
1 (top row) and Timepoint
2 (bottom row). Filled circles
represent connector hubs and
unfilled circles represent
provincial hubs. The same
number of modules was found at

both timepoints but there were
evident differences in modular
arrangements (a) and in the
undirected structural
connectivity profile for the
connector hubs (b). These
differences are probably due to
the higher number of connector
hubs at the last timepoint. Giving
the role of connector hubs in
inter-modular communication,
the increase in their number
between timepoints reflects an
increase in integration of brain
structural networks in aging
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1, and right lateral occipital 2). Modules 4 and 8 had no connector

hubs at both timepoints. No differences were found for intra-modular

and inter-modular connectivity.

4 | DISCUSSION

In this study, we developed a new CBP method, based on diffusion

MRI data. We evaluated different clustering algorithms in conjunction

with different dimensionality reduction techniques and chose the best

performing method. K-means clustering combined with SOM was the

selected method due to its higher silhouette coefficient and resulting

clusters with more evenly distributed sizes. Previous studies have

used k-means clustering, making it the most popular clustering algo-

rithm amongst CBP works, so its appropriateness for CBP has already

been validated (Abivardi & Bach, 2017; Anwander et al., 2007; Bach,

Behrens, Garrido, Weiskopf, & Dolan, 2011; J. C. Klein et al., 2007;

Reuter et al., 2020). We also demonstrated that SOMs are a suitable

method for dimensionality reduction that can be applied prior to clus-

tering. To date, this technique has only been used in one study per-

forming CBP of functional data (Mishra et al., 2014). Here we show

evidence that pre-clustering dimensionality reduction with SOM pre-

sents a valid and recommended solution for CBP methods which

preserves the topographic organization of the input data

(Kohonen, 1982, 1990).

Moreover, we developed a new metric to evaluate the estimated

CBP, specifically, to verify if the goal of grouping voxels with similar

connectivity profiles was successfully accomplished—connectivity

homogeneity fingerprint. This novel metric takes into account the

connections of each voxel inside a region, with higher values rep-

resenting a region with more homogeneous signatures of structural

connectivity across all of its voxels (i.e., most of the region's voxels

are connected to the same brain regions). So far, many techniques to

evaluate the quality of a parcellation have been proposed. Yet, choos-

ing the most suitable evaluation method is a challenging task due to

the lack of a ground truth. The existing methods either evaluate the

reproducibility (i.e., the alignment between different parcellations

from different subjects or different acquisitions of the same subject),

quality of clustering solutions (i.e., the similarity of voxels grouped in

the same cluster), agreement with cytoarchitecture, task fMRI activa-

tion and myelination or impact on network analysis (Arslan

et al., 2018). One of the metrics developed to evaluate the quality of

clustering solutions is the functional homogeneity: the average

Pearson's correlation coefficient between the connectivity finger-

prints of each pair of voxels inside a cluster (Chong et al., 2017; Kong

et al., 2019; Schaefer et al., 2018). The metric we propose here (CHF)

does not consider the connectivity weights directly which can lead to

lower homogeneity values, even if a pair of voxels is connected to the

same brain regions but with different connectivity strengths. Thus,

the CHF reflects a more adequate measure of regional homogeneity,

which evaluates the strength or consistency level of a region's con-

nectivity fingerprint to the rest of the brain, thus representing a more

complete and robust approach to evaluating a parcellation. Further-

more, the previous existing homogeneity measure was designed spe-

cifically for functional data, thus limiting its extension to structural

data. Additionally, our metric also takes into account the size of the

seed region, by estimating the proportion of seed voxels that are con-

nected to each target, thus the CHF will not be biased by the region

size. Our results from CHF analysis validate the CBP method devel-

oped here, since all the parcellations exhibit higher homogeneity

values in comparison to random parcellations and to the original parti-

tion. In the comparison with the null model, a few regions exhibited

higher homogeneity for the random parcellations. These correspond

to small clusters and so the probability that they are being rotated into

regions with high connectivity homogeneity is higher and we assume

this is the cause for the higher CHF for the null model in these clus-

ters. However, future work should confirm that this is the case, other-

wise these regions could be merged with others in the final

parcellation. Furthermore, in addition to apply our CBP method to an

aging cohort, we also applied it to an HCP dataset with ultra-high b-

value diffusion MRI. The results were highly convergent between the

two cohorts, which demonstrates the robustness of our method.

Moreover, when one of the generated parcellations was applied to

the data of a different timepoint (for the same cohort), the homogene-

ity values were very similar to the baseline, which demonstrates its

appropriateness for longitudinal analysis.

TABLE 4 Global hubs of the brain for the two timepoints

Global hubs

M1 M2

Left rostral middle frontal 1 Left rostral middle frontal 1

Left rostral middle frontal 2 Left rostral middle frontal 2

Right amygdala 2 Right lateral occipital 1

Right lateral occipital 1 Left caudate 1

Left caudate 1 Right inferior parietal 2

Right caudate 1 Right amygdala 2

Right middle temporal 2 Right middle temporal 2

Right inferior parietal 2 Left caudal middle frontal 1

Right caudate 6 Left middle temporal 2

Left caudal middle frontal 1 Right caudate 5

Left supramarginal 2 Right caudal middle frontal 1

Right rostral middle frontal 2 Right caudate 1

Right caudal middle frontal 1 Right rostral middle frontal 2

Right caudate 5 Right amygdala 1

Left middle temporal 2 Left supramarginal 2

Right amygdala 3 Right amygdala 3

Right amygdala 1 Right caudate 6

Left middle temporal 3 Left transverse temporal 1

Right fusiform 1 Left lateral occipital 1

Left middle temporal 3

Right fusiform 1

Note: Hubs are sorted by nodal efficiency.
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Regarding longitudinal changes in structural connectivity, our

results revealed a significant sub-network with both decreases and

increases in WM structural connectivity along time. Increases in con-

nectivity were mainly composed by inter-hemispheric connections,

while decreases occurred mostly in intra-hemispheric connections.

These results are in accordance with the “last-in, first-out” hypothesis,
which states that regions developing later are more prone to age-

related decline (Raz, 2000). This theory has been supported by DTI

studies investigating white matter microstructural properties, which

report steepest declines for association fibers (i.e., fibers connecting

regions of the same hemisphere) in comparison to commissural fibers

(i.e., fibers crossing hemispheres).

The longitudinal analysis of topological features of brain WM

structural networks also revealed some alterations. Concerning nodal

efficiency and the topological roles of nodes (provincial and connec-

tor), there was an increase in the number of hubs (global, provincial,

and connector) from the first to last timepoint. Interestingly, left cau-

date 1, right amygdala 1, and right caudate 6 were consistently identi-

fied as both global and provincial hubs in all timepoints. The caudate

nuclei are involved in different cognitive dimensions, such as, motor

and action planning, decision making, motivation, and reward

processing (Bick et al., 2019; Cera, Esposito, Cieri, & Tartaro, 2019;

Grahn, Parkinson, & Owen, 2008; Wilson et al., 2018). Previous stud-

ies found significant atrophy of the caudate along aging (Hoffstaedter

et al., 2015; Raz et al., 2003). Interestingly, we identified as hubs three

clusters in the right caudate and only one in the left caudate and there

is one study reporting a longitudinal rightward lateralization of the

caudate volume in older adults (Esteves et al., 2019). The amygdala

has been associated with emotion processing of both fearful and

rewarding stimuli. It is also known to modulate memory and attention

for emotional stimuli and to be involved in positive affect and motiva-

tion (Gallagher & Chiba, 1996; Janak & Tye, 2015; Mather, 2016; Sah,

Faber, Lopez de Armentia, & Power, 2003; Salzman & Fusi, 2010).

Past studies report relative preservation of both structure and func-

tion of the amygdala in normal aging (Good et al., 2001;

Mather, 2016; Nashiro, Sakaki, & Mather, 2012). Alongside with this,

emotional processing also appears to be spared in aging (Nashiro

et al., 2012). Our results align with these findings, since the amygdala

maintains its importance in the brain structural network along time,

both in terms of nodal efficiency and intra-modular communication.

F IGURE 9 Hubs (global, provincial, and connector) identified in the two timepoints. Blue represents hubs only identified at Timepoint
1, green represents hubs only identified at Timepoint 2, and red represents hubs identified at both timepoints. We observe an increase in all type
of hubs (global, provincial, and connector) between timepoints. Furthermore, some hubs change their role between timepoints (from provincial to
connector—left precuneus 2, right precuneus 2, and right precentral 1; and from connector to provincial—left putamen 2 and right putamen 1)
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TABLE 5 Provincial and connector hubs for the two timepoints

Provincial hubs Connector hubs

M1 M2 M1 M2

Right precuneus 2 Right putamen 1 Left superior frontal 2 Right superior frontal 3

Right precentral 1 Right inferior parietal 1 Right superior temporal 2 Left superior frontal 2

Right caudate 6 Right posterior cingulate 2 Right superior frontal 3 Left supramarginal 1

Left precuneus 2 Right caudate 6 Left superior temporal 2 Left superior temporal 2

Left rostral middle frontal 3 Left rostral middle frontal 3 Left putamen 2 Right precuneus 2

Right hippocampus 2 Right hippocampus 2 Left superior parietal 2 Left superior parietal 2

Right inferior parietal 1 Right amygdala 1 Right putamen 1 Right superior temporal 2

Right amygdala 5 Left posterior cingulate 2 Right insula 2 Right lateral occipital 2

Right amygdala 1 Right amygdala 5 Left supramarginal 1 Right precentral 1

Left hippocampus 2 Left putamen 2 Right middle temporal 1

Left cuneus 2 Left hippocampus 2 Right putamen 2

Right amygdala 4 Right amygdala 4 Left precuneus 2

Left putamen 1 Left fusiform 2

Left inferior temporal 2 Left caudate 1

Left caudate 1 Left inferior temporal 2

Right caudate 1 Left caudate 2

Left caudate 2 Left caudate 5

Right caudate 2 Left fusiform 1

Left middle temporal 1

Note: Hubs are sorted by modularity degree z-score.

F IGURE 10 Fingerprints of modular connectivity at Timepoint 1 (top row) and Timepoint 2 (bottom row). Left column represents the inter-
modular connectivity, middle column the intra-module connectivity, and right column the connector-hub driven inter-modular connectivity.
Modular connectivity strength is quantified as the total number of connections (degree) of all nodes forming a module. Community structure of
Timepoint 2 was selected as the reference scheme, since it had higher group goodness-of-fit. We observe different patterns only in connector-
hub driven inter-modular connectivity. Overall, there was an increase of around 33% in this connectivity between timepoints, which is probably
due to the increase in the number of connector hub. This results again suggests an increase in integration of brain SC during aging
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Two clusters (left putamen 2 and right putamen 1) lost their role

as connector hubs and were identified as provincial hubs. This means

that the participation coefficient of these clusters was lower and thus

they established more connections with regions belonging to the

same module than with regions outside their own module and lost

their importance in integrating different regions of the brain. The

putamina are involved in different cognitive functions, such as rein-

forcement learning and motor control, language and processing of

sensory, and motor aspects of pain (Haber, 2016; Starr et al., 2011;

Vinas-Guasch & Wu, 2017). Studies investigating age effects on this

region described significant atrophy (Fjell & Walhovd, 2010; Jancke,

Merillat, Liem, & Hanggi, 2015; Raz et al., 2003) and also microstruc-

tural damage (Cherubini, Peran, Caltagirone, Sabatini, &

Spalletta, 2009) of these subcortical nuclei, which might explain why

the putamen lost its connector hub role in the brain structural net-

work. On the opposite direction, right precuneus 2 and right

precentral 1 changed from provincial to connector hubs. Precuneus

plays an important role in multiple higher-order cognitive functions,

such as visuo-spatial imagery, episodic memory retrieval, self-

processing, and consciousness (Cavanna & Trimble, 2006). Some aging

studies report a relative preservation of precuneus' cortical thickness

in comparison to other regions (Fjell et al., 2009; Lee et al., 2018). In

line with our findings, Gong et al. (2009) found that the precuneus

was consistently identified as a hub independent of age in white mat-

ter structural networks. Precentral gyrus is known to be involved in

motor performance (Picard & Strick, 2003; Porro et al., 1996;

Ribas, 2010; Yousry et al., 1997) but some studies also report a role of

this region in emotion processing (de Gelder, Snyder, Greve, Gerard, &

Hadjikhani, 2004; Hajcak et al., 2007; Hardee et al., 2017; Mazzola

et al., 2013; Saarimaki et al., 2016). Although aging studies report sig-

nificant atrophy of this region (Salat et al., 2004; Thambisetty

et al., 2010), one recent fMRI study using graph theory analysis

described increased degree centrality (i.e., a measure of the impor-

tance of the node in the network) of precentral gyrus in both cogni-

tively normal older adults and subjects with mild cognitive impairment

(MCI) despite existing volume declines (Behfar et al., 2020). Further-

more, Behfar and colleagues showed that the increased degree cen-

trality was correlated with better scores of cognitive performance in

the MCI group, which might represent a compensatory mechanism.

Our results align with these findings, since the precentral gyrus

increased its importance in the network along time, by moving from

having a role only in intra-modular communication to have the func-

tion of establishing communication with different modules of the

brain and thus being important for functional integration.

Concerning modularity structure, the same number of modules

was identified at the two timepoints but some differences in the mod-

ules' configuration were found. In terms of fingerprints of modular

connectivity, there was a longitudinal increase in connector-hub

driven inter-modular connectivity, which could be driven by the

increase in the number of detected connector hubs at Timepoint

2. This result suggests an increase of brain structural networks' inte-

gration during aging. Some past fMRI studies report increased integra-

tion along aging (Cao et al., 2014; He, Wang, Zhuang, & Qiu, 2020).

However, a recent study exploring white matter structural connectiv-

ity report decreased integration with normal aging (Puxeddu

et al., 2020). Our result could be attributed to the higher resolution of

our parcellation, which may have allowed the identification of addi-

tional connector hubs, that at lower resolutions would not be

identified.

This study has some limitations, namely the use of a 1.5-T MRI

scanner. While we recognize that this limitation may inevitably influ-

ence to some extent our results (changes in network connectivity,

hubs, and modularity structure), we believe that its effects are mini-

mized by the fact that we compared two evaluations/timepoints shar-

ing the same neuroimaging acquisition and preprocessing protocol

(same scanner, acquisition parameters, and data processing pipeline).

Another limitation concerns the criterion to set the maximum number

of clusters. While we demonstrated its suitability for the datasets

included in this study, future work must investigate and potentially

further optimize this criterion in order to assure its robustness when

applied to different datasets.

In summary, we present a new method to create a CBP of the

human brain based on white matter structural connectivity data which

has accomplished the main goal of grouping voxels with similar con-

nectivity profiles. Additionally, we propose a new metric (connectivity

homogeneity fingerprint) to evaluate the quality of a parcellation by

computing the consistency level of regional connectivity fingerprints,

with potential for application to other types of neuroimaging data.

Furthermore, we applied the derived parcellation to explore longitudi-

nal changes in structural networks of an aging cohort and found signa-

tures of brain's reorganization along aging. Particularly, we found

decreases in intra-hemispheric connectivity and increases in inter-

hemispheric connectivity, which supports the “last-in, first-out”
hypothesis and a rearrangement in the topological roles of the nodes

in the network. We also found evidence of increased integration,

which was not observed in previous studies, but it can be explained

by the higher resolution of our parcellation which allowed the identifi-

cation of more connector hubs. Taken together, our study proposes a

novel and robust solution for performing and evaluating CBP of the

human brain. With potential for application to any whole-brain DTI-

based cohort, here we show its potential appropriateness by charac-

terizing the longitudinal changes of the structural connectome in

aging, which were highly consistent with the existing literature. As

future work, a comparison between the results obtained in the analy-

sis of age-related longitudinal changes of the structural networks

using the CBP method and using the original parcellation (DKT40 and

Buckner 40) could help understand if the developed CBP unraveled

new findings regarding the aging brain and thus prove some of its

advantages over conventional methods.
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