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Abstract: Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated
allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific
IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE
production through allergen exposure, and continuous IgE production occurring even in the absence
of allergen stimulus that maintains IgE levels. This assumption is supported by two observations.
First, allergen exposure induces transient increases of systemic IgE production. Second, reduction
in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis
is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of
allergen exposure. Though IgE production has been observed in the peripheral blood and locally
in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE
production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be
fully characterized. Capturing IgE-producing cells is challenging not only because current staining
technologies are inadequate, but also because the cells are rare, they are difficult to discriminate
from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface.
However, due to the central role in mediating both the early and late phases of allergy, free IgE,
IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss
current knowledge and unanswered questions regarding IgE production in allergic patients as well
as possible therapeutic approaches targeting IgE.
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1. Introduction

Immunoglobulin E (IgE) associated allergic diseases in their various forms affect approximately
30% of the world population. Symptoms may range from relatively mild, such as rhinoconjunctivitis,
to potentially life-threatening, such as asthma or anaphylaxis. Development of allergic disease is
associated both with environmental and individual genetic factors [1]. The latter includes a genetic
predisposition towards allergen-specific immune responses and factors promoting Th2 responses as
well as IgE production [1–3]. IgE is a key player in development and maintenance of allergic disease.
Symptoms of the early phase of allergic inflammation are driven by mediators released from basophils
and mast cells upon allergen-induced crosslinking of IgE bound to its high affinity surface receptor
(FcεRI) [4,5]. Furthermore, IgE also contributes to the enhancement of the late phase response. IgE
is present on the surface of antigen presenting cells (APCs) bound to FcεRI or the low affinity IgE
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receptor CD23. Allergen-IgE complexes are internalized by these receptor on APCs and presented via
major histocompatibility complex II (MHCII), thus augmenting allergen-specific T cell responses [6–9].
IgE may also bind to soluble IgE receptors and IgE-binding proteins, e.g., soluble CD23 or epsilon
binding protein [10].

Among all immunoglobulin subclasses, IgE stands out with respect to function, half-life, and
low serum concentration. With a serum concentration of 5 × 10−5 mg/mL [11] it represents only
0.0005% of total free serum Igs in non-atopic adults [12]. Its half-life of 2 days within the serum is
rather short compared to the half-life of, for example, IgG1, lasting 21 days [11]. In contrast to many
other subclasses, IgE does not activate complement but exerts its role through binding to its cognate
receptors [11]. It has been shown that long-lasting removal of IgE from the circulation is difficult to
achieve. After extracorporeal immunoadsorption, IgE levels return to baseline within a week after
treatment, even in the absence of exogenous allergen stimulus [13]. This shows that despite its low
abundance, IgE is continuously produced to maintain constant IgE levels in blood.

The central role of IgE in mediating allergic diseases makes it an important and attractive
target for development of novel therapeutic approaches [14–16]. So far, only the anti-IgE antibody
omalizumab has been marketed and successfully reduces the burden of severe and otherwise
uncontrollable asthma [17–19]. Several new approaches such as depleting IgE through extracorporal
IgE immunoabsorption [13,20] as well as specifically targeting effector [21,22] or IgE+ B cells [23] are
being explored and will be discussed in this review.

2. IgE Production

The pathway of B cell differentiation with respect to the nature and location of potential IgE+

memory cells as well as long-lived IgE producing plasma cells in allergy is still not completely
understood. Investigation of human IgE responses are impeded by the fact that IgE-producing cells and
B cells are rare in human tissues that are easy to access, such as blood, nasal mucosa, or tonsils [24–27].
Therefore, most of our current knowledge on the mechanisms underlying IgE production is based
on data from murine models. Advances in this field have been made in the past decade due to the
generation of fluorescent protein reporter IgE mice [28]. Experiments in these mice led to the perception
that IgE expressing B cells only transiently contribute to the germinal center reaction and are rather
biased towards a plasma cell fate [29,30].

2.1. Murine Models to Investigate IgE-Production and Allergic Disease

Murine models are very valuable for our understanding of general mechanisms of allergy in
humans as well as for testing novel therapeutic approaches, but it is necessary to bear several differences
in mind (Table 1). The cytokine milieu required for induction of class switch to IgE differs between mice
and humans. While IL-4 alone directs class switching to IgE and IgG1 in mice [31], both IL-4 and IL-13
contribute to IgE synthesis in humans [32]. In addition, mice do not mount IgG4 subclass responses
like allergic patients. With regard to allergen epitope specific Ig responses, the two species differ.
Recent studies have indicated that the allergen-specific IgE responses in mice develop by switching
from IgG1 to IgE [29]. In this respect, it has been shown that IgG raised in mice towards the major
grass pollen allergens Phl p 1, 2, 5, or dog albumin were able to block IgE binding, which indicates that,
at least for these selected allergens, IgG and IgE of sensitized mice recognize the same epitope [33].
However, direct class switching from IgM to IgE has also been observed in mice [34]. In contrast, IgE
and IgG in humans have been shown to recognize distinct epitopes of the allergen [35,36]. This is also
supported by the fact that only IgE but no other immunoglobulin subclass is boosted upon seasonal
allergen exposure [37,38].
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Table 1. Comparison of allergy in humans and murine models.

Mice Humans

Genetic background Inbred Outbred

Percentage lymphocytes of total
leukocytes 75–90% [39] 30–50% [40]

IgG subclasses IgG1, IgG2, and IgG3 IgG1, IgG2, IgG3, and IgG4

IgE receptors on eosinophils No FcεRI [41] FcεRI [42]

Access to tissue for analysis All tissues available Limited access—mainly blood

Asthma development Induced by sensitization,
sometimes Th1-like

Induced by natural allergen
exposure, mostly Th2-like

Allergy Induced by sensitization [43–45] Spontaneous by natural allergen
exposure

IgE epitopes of respiratory allergens Mainly sequential Mainly conformational

T cell epitopes of respiratory allergens Dominating T cell epitopes High diversity

Cytokines required for IgE class switch IL-4 [31] IL-4, IL-13 [32]

Mechanisms of class-switch to IgE Mainly sequential [33] Evidence for sequential [46–52]
and non-sequential [53]

Rise in Ig subtype in response to
allergen challenge IgE, IgG1 IgE, IgG4

With respect to the composition of the immune system, there are further differences to consider.
While lymphocytes are the predominant mononuclear cells present in the peripheral blood of mice
(representing 75–90% of total leukocytes [39]), neutrophils (50–70%) are predominant in humans with
lymphocytes comprising only 30–50% of all leukocytes [40].

Another caveat is that mouse models mimicking allergic rhinitis, a key feature of human
disease, are rare and are hampered by technical difficulties such as measuring isolated nasal
obstruction. Additionally, the nasal anatomy of mice differs from human anatomy [54,55]. In allergic
asthma, murine models have provided important insights into immunologic mechanisms. However,
several shortcomings are clearly visible: Mice are inbred and live in specific pathogen-free facilities,
whereas humans bear individual genetic backgrounds and are continuously exposed to a myriad of
environmental agents, many of them known to influence and modulate airway inflammation [56,57].
Human airways are, for instance, richer in submucosal glands and show a greater variety of airway
structure [56]. In terms of pathophysiological mechanisms, there are marked differences in eosinophil
degranulation and infiltration as well as in the effects of mast cell degranulation on bronchoconstriction
between mice and humans [57]. In fact, murine models of asthma sometimes resemble features of
Type IV hypersensitivity rather than Type I allergy [3,58,59]. To summarize, there are some important
differences between murine and human allergic responses that need to be taken into account when
interpreting murine data.

2.2. Human IgE Production

In humans, allergen-specific IgE memory persists over years or even decades, even in the absence
of antigenic stimulation [60]. At the same time, seasonal allergen exposure can induce a rapid increase
of allergen-specific IgE levels and boosts IgE levels [37,61]. These findings indicate that there may
be two different processes governing IgE production: one that continuously replenishes the IgE
pool—perhaps long-lived plasma cells [62,63]—and another that is inducible upon allergen contact. In
fact, there are various studies in favor of this hypothesis. Firstly, the observation that the reduction in
IgE levels after depletion of IgE from human blood using immune apheresis is only temporary and
returns to pre-treatment levels within a week in the absence of antigenic stimulus [13,20] (Figure 1,
Bottom) indicates the presence of continuous IgE production. The mechanism how this IgE production
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is maintained is not fully understood. It is conceivable that repeated boosts of allergen-specific IgE
production are required to keep this IgE production ongoing (Figure 1, Top). Activation could either
be achieved by repeated allergen-contact (e.g., seasonal exposure) or in the absence of this also by
polyclonal activation (e.g., microbial stimulation, bystander T-help) as has been described for the
maintenance of antigen-specific IgG memory [64]. If repeated activation sustains IgE levels and the
specificities of IgE, a lack of antigenic exposure should lead to a slow decline in IgE production (Figure 1,
Middle). This could be investigated in the context of allergy by relocation of an allergic patient to an
allergen-free area for seasonal allergens or dietary restriction for food derived allergens. In support of
this, it has been observed that lack of antigen exposure in the context of egg or cow-milk allergy leads
to a decline in allergen-specific IgE levels [65–67].

Figure 1. Potential mechanisms for maintenance of continuous IgE production. (Top) Repeated allergen
exposure maintains IgE production. (Middle) Lack of allergenic stimulation leads to a slow steady
decline in IgE production. (Bottom) Depletion of IgE, e.g., using IgE immune adsorption, leads only to
a temporary decline of IgE levels, which subsequently return to baseline levels.

Aside from continuous IgE production there appears to be a second mechanism where IgE
production is boosted upon allergen contact as seasonal allergen exposure via the respiratory mucosa has
been shown to induce a strong increase of allergen-specific IgE levels [37,61]. A rise in allergen-specific
T cell proliferation has also been observed during the season [68], but within individual patients B and T
cell responses are poorly associated [69]. In humans the origin of IgE-switched B cells is not yet entirely
clear [52] with studies both in favor of direct and sequential class switching. The observation that
upon seasonal allergen exposure only established allergen-specific memory is boosted [37] supports
the hypothesis of direct class switching and suggests the existence of IgE+ memory B cells that can
be stimulated upon allergen contact. Furthermore, no de novo sensitizations [70] or changes in
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allergen-specific IgM, IgG, or IgA production [37,38] have been described upon allergen challenge
in humans.

However, there is also evidence indicating that sequential class switching occurs in humans [46–52].
In this respect, the presence of sγ switch circles was observed in supernatant of nasal mucosa
explants [47]. Furthermore, IgH repertoire analysis in blood in allergic patients showed that IgE
cells may also derive from secondary isotype switching of mutated IgG1 expressing cells [46,52]. In
this line, treatment with the human monoclonal antibody dupilumab, which blocks IL-4 and IL-13,
reduced total IgE levels in clinical trials, thus also indicating that de novo class switching may occur in
humans [71–74]. However, when interpreting sequencing data several aspects need to be considered
carefully. Firstly, next generation sequencing only analyzes heavy and not light chain sequences.
Furthermore, so far it is not possible to investigate the allergen-specificity through the use of this
technique. Although IgE+ memory cells have been observed in the blood of allergic subjects [46],
their switch origin and their contribution to IgE production has not been elucidated. Additionally,
the relative contribution of direct versus sequential class switching to the IgE pool is not yet fully
understood either.

In summary, continuous IgE production, most likely by long-lived plasma cells as well as by
memory cells rapidly responding to allergen by IgE production, seem to contribute to the maintenance
of allergen-specific IgE levels in allergic patients despite the short half-life of IgE.

3. Tracing IgE Producing Cells

Another open question is where the major sites of IgE production are in humans. The majority of
studies investigating mechanisms of human IgE production have used peripheral blood mononuclear
cells (PBMCs) [24,75–77] or tonsil derived B cells [78,79]. Though in vitro cultures using isolated PBMCs
have provided important insights on the role of specific T cell help and IL-4 in IgE production [77,80–83],
these studies are not helpful for understanding allergen-specific IgE production because IL-4 stimulation
induces class-switching in any IgM+ B cells but does not influence allergen-specific IgE production [77].
Since the demonstration that one can isolate allergen-specific IgE Fabs from the peripheral blood of
allergic patients by combinatorial cloning [84], it is clear that cells producing allergen-specific IgE
occur in the blood of allergic patients, but the nature of these cells needs to be characterized in more
detail [25]. In order to claim that one has identified a major site of IgE production in allergic patients,
one would need to demonstrate that the IgE-producing cells in blood are derived from this site and/or
that the majority of IgE is synthesized at this particular site [25,85].

3.1. Identification of IgE Producing Cells by IgE Staining Techniques

The assumption that IgE-producing cells are mainly localized in the bone marrow and other
human lymphoid compartments is difficult to prove because these tissues are quite difficult to access
in humans. It seems to be more convenient to work with human peripheral blood; however, the
amount of IgE-producing cells in human blood is minimal and there are numerous cell types that carry
IgE on their surface but do not produce it. In this section, we summarize current approaches for the
identification of IgE-producing cells.

3.1.1. ELISpot

One possible method for detecting IgE-producing cells in the blood is the ELISpot assay. This
method is more effective for plasmablasts than for the determination of memory B cells, as the latter do
not secrete antibodies. In order to obtain antibody-secreting cells from B cells, stimulation with CD40L
and IL-4 or allergen is usually performed [86,87]. However, as pointed out, this stimulation does not
amplify existing allergen-specific IgE production but leads to de novo class switching of IgM+ BCR
bearing cells of unknown specificity into IgE producing cells [77,86,87].
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3.1.2. Flow Cytometry

The most commonly used method for detecting and isolating putative IgE-producing
B-lymphocytes is flow cytometry, which is based on the determination of surface markers of target cells.
There are several approaches for IgE+ B lymphocyte detection. For the step-by-step determination of
the total subpopulation of IgE+ B lymphocytes from the PBMC pool, first, non-relevant cells (e.g., T
cells, monocytes) are excluded by cells expressing the following markers: CD3, CD14, CD16, CD235a,
and CD123. Consequently, IgE+ B lymphocytes are identified by positive staining for CD19 as well
IgE. However, this approach does not exclusively identify IgE+ memory cells as IgE can be present on
the B cell surface not only in the form of the IgE B cell receptor (BCR) but also bound to its low affinity
receptor CD23 [88]. This fact needs to be considered carefully, as it may lead to overestimation of the
number of IgE+ B cells.

In addition to the above-stated panel, antibodies to CD23 can be added, which should help to
exclude false-positive events from the gate of IgE+ cells. However, by excluding all CD23+ lymphocytes,
one may potentially remove the subset of IgE-producing cells that express CD23 at the same time.

Compared to the previous approach a more successful strategy may be enrichment of B
lymphocytes by using magnetic separation or RosetteSep prior to antibody staining [89,90]. This has
two main advantages: Firstly, the number of cells required for measurement is strongly decreased.
Secondly, antibodies targeting further B cell-related surface markers may be implemented as no markers
for exclusion of irrelevant cells are necessary.

Antigen-specific labeling of B lymphocytes is in general a successful method for isolating B cells
responding to a particular antigen [91]. A crucial determinant in this approach is the production
of antigen with a high level of fluorescence. A high level of fluorescence can be achieved using
tetrameric technology, by which a complex is preformed from fluorescently labeled avidin bound to
four biotinylated antigen molecules [92].

Taking into consideration the low percentage of target cells compared to background levels, it
may be preferable to use several antigen conjugates labeled with different fluorescent labels in order to
show reproducible target cell isolation.

For a more reliable isolation of IgE+ B lymphocytes, this strategy can be combined with additional
staining for other surface Igs (IgM, IgD, IgG, IgA) [93,94]. Jiménez-Saiz et al. [86] applied this strategy
for the isolation of IgE+ memory cells from human blood. They stained B cells enriched from PBMCs
by magnetic separation with anti-IgM, anti-IgD, anti-IgG, anti-IgA, and anti-IgE antibodies. Cells
were analyzed and IgE+ subpopulations were isolated by using flow cytometry. The purity of the
IgE+ subpopulation was then confirmed by single cell sequencing and revealed that only 0.0019% of
total B cells were putative IgE+ memory B cells [86] and that these cells were rarer than previously
reported [46,89]. This very low percentage is rather challenging since it is even less than the frequency
of residual tumor populations, which is observed in minimal residual disease [95].

Furthermore, circulating IgE+ B lymphocytes can be divided into plasmablasts and
memory cells based on antibodies against CD27, CD38, and CD138 [25]. Using
this approach, Heeringa et al. identified the following IgE+ subsets from donor
blood samples: IgE+CD27− memory B cells (CD19+CD21+CD38dimIgD-IgM-IgE+CD27-),
IgE+CD27+ memory B cells (CD19+CD21+CD38dimIgD-IgM-IgE+CD27+), and IgE+ plasmablasts
(CD19+CD38highCD27+IgM-IgD-IgE+) [89]. Alternatively, plasmablasts can also be identified using
cellular affinity matrix technology in negatively enriched B cells [24].

To summarize, the major obstacles in any attempt to characterize IgE-producing plasma cells and
potentially IgE memory B cells in the blood of allergic patients are the small numbers of allergen-specific
lymphocytes [24,86] and the difficulty in clearly identifying them by flow cytometry [28].

In an attempt to overcome this obstacle, we have recently developed an approach where cells were
stained for CD19 in combination with a fluorescently labelled monoclonal anti-IgE antibody, which
discriminates membrane-bound IgE from receptor-bound IgE in the blood of birch pollen allergic
patients (Figure 2).
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Figure 2. Isolation of IgE+ B lymphocytes from PBMC of donors with different type of allergy. (A) Gating
strategy for detection of IgE+ B lymphocyte. B lymphocyte subset were gated as CD3-CD14-CD16-
(FSC area/CD3, CD14, CD16), single cells (FSC area/FSC height), CD19+, and then detection of IgE+

B cells was based on surface IgE expression. (B) Example of different percentage of IgE+ B cells in
donor samples with different types of allergy. The highest percentage of IgE+ cells were detected in a
donor sample with seasonal allergy shortly after the pollen season (6th June) and they disappeared a
month later (4th July). As a control, we used blood samples from healthy donors, as well as donors
with year-round allergies.

To detect IgE-producing B lymphocytes of patients with seasonal birch pollen allergy, we
isolated PBMCs and stained them with a cocktail of antibodies CD19-PE, CD3-FITC, CD14-FITC,
CD16-FITC, and anti-IgE-APC. Figure 2 shows that IgE-producing B-lymphocytes accounted for 0.23%
of subpopulations of CD19+ cells after the birch pollen season (Figure 2, 6th June) and after one more
month (Figure 2, 4th July) this subpopulation disappeared. This would suggest that IgE-producing
cells appear in the peripheral blood after allergen exposure. In fact, they seem to be present in allergic
patients with a perennial allergy (Figure 2, Year-around allergy) and are absent in a healthy non-allergic
donor blood (Figure 2, Healthy donor).

3.2. Sites of IgE Production

Though both IgE-producing plasma cells and IgE+ memory cells have been observed in the blood
of allergic patients [24,46,86,89], they are scarce and produce only around 0.2% of the IgE present
in the serum [25]. Thus, the majority of IgE producing cells and IgE memory are thought to reside
elsewhere [85]. Human B memory cells, for example, in response to vaccinations, have been shown to
reside not only in the bone marrow but also in other different lymphatic organs such as the spleen and
tonsils [91,96–98]. Likewise, IgE production has been suggested to occur locally at several different sites
throughout the body (Figure 3). For example, at the nasal mucosa, the site of first contact for airborne
allergens, increased numbers of IgE-positive B and plasma cells have been observed [99]. The presence
of local IgE synthesis by the detection of ε germline and ε circle transcripts have been shown in nasal
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mucosa biopsies from allergic patients after ex vivo challenge with the respective allergen [47,100–102].
In addition, there are various other lymphatic tissues of the upper respiratory tract such as adenoids
and tonsils that are potential sites of antigen encounter after uptake of the antigen by the nasal mucosa.
These lymphatic tissues have also been shown to harbor IgE+ cells [102,103] and the production of
IgE has been shown [78,79,104,105]. Similarly, IgE transcripts and antibodies have been detected in
the sputum and lungs of allergic and asthmatic patients [106–108]. However, it should be noted that
blood-derived cells (which includes IgE producing cells) also contribute to the cellular population of
these lymphatic and respiratory tissues, and therefore it is difficult to say if these tissues really are
predominant sites for IgE production.

Figure 3. Potential sites of IgE production.

As sites known to house large number of memory cells, both the spleen and bone marrow are
potential sites of interest [91,97,109–111]. However, the contribution of the spleen in maintaining even
the IgG repertoire and memory is still discussed. Although vaccinia virus-specific memory B cells are
present in the spleen of patient’s even decades after smallpox has been eradicated [112], splenectomized
individuals mount comparable anti-tetanus toxoid IgG levels upon revaccination to normal healthy
patients [91]. Even less is known about the presence of IgE production in the spleen. Only one report
observed the presence of IgE production in the spleen of an asthmatic patient who tragically died from
an asthma attack [113]. With regard to the presence of IgE production in bone marrow there are several
observations from patients receiving allogenic donations, which show the transmission of allergy after
bone marrow transplantation [114–120]. However, results are somewhat ambiguous. Some reports
observe matching sensitization profiles between donors and recipients [114–117] whilst others show
that recipients may not acquire all the allergies of the donor [118,120] or may even acquire additional
de novo sensitizations [119].

The presence of IgE production has so far been shown at various lymphatic sites; however, the
relative contribution of each of these areas to the continuous and de novo production in allergic
responses remains unanswered. One may speculate that lymphatic tissues at the sites of allergen
exposure (e.g., nasal mucosa, gut mucosa) contain IgE+ memory cells, which can be activated,
whereas plasma cells in bone marrow may be responsible for the continuous long-lived IgE production.
Nevertheless, further investigations are needed to identify the sites of IgE production in allergic patients.
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4. Role of IgE in Mediating Immediate Allergic Symptoms and T Cell-Mediated
Allergic Inflammation

IgE plays an important role in propagating allergic responses both in the early and late phases
of allergic immune responses. In the early phase, IgE is central for mast and basophil degranulation
upon allergen contact; however, the timely interplay between increases in IgE levels in the blood
upon allergen challenge and potential rises in effector cell sensitivity are not yet fully understood.
In the late phase, IgE-bearing B cells contribute to increased allergen-specific T cell response via
internalization and presentation of IgE-allergen complexes via CD23 in a process called IgE-facilitated
allergen presentation.

4.1. Connecting IgE Production to Clinical Effect—How Circulating IgE Influences Mast Cell and
Basophil Sensitivity

The major players propagating the early symptoms experienced by allergic individuals in
immediate hypersensitivity reactions are basophils and mast cells. Both of these cells utilize IgE to
mediate their allergic responses, and thus understanding the kinetics of how circulating IgE influences
the reactivity profile of these cells is crucial to treating the disease. Basophils and mast cells are similar
in that they are both granulocytes, both are derived from hematopoietic stem cells, and both contain
pre-formed intracellular granules that are rapidly exocytosed from the cell membrane upon FcεRI
cross linking in response to IgE allergen recognition [121]. Despite their similarities there are some key
differences to consider. Firstly, mast cells are long-lived tissue-resident cells, surviving for months.
Basophils on the other hand circulate in the blood and survive only for a few days. Basophils terminally
differentiate in the bone marrow whereas mast cells do so in the tissues. Additionally, basophils do not
usually proliferate after maturation whereas mast cells can in order to self-renew [122].

Due to the high affinity of FcεRI for IgE, receptor bound IgE—in contrast to free IgE—has a
relatively long half-life of 2–3 weeks [123]. Additionally, circulating IgE has been shown to have
a positive effect on the stability and expression of FcεRI expression on mast cells and basophils by
preventing receptor internalization and degradation [124]. These two mechanisms of slow off rate and
increased FcεRI expression and stability mean that once IgE is bound to its receptor it remains bound
most likely for the lifespan of the host cell. Thus, it would be reasonable to presume that the specificity
of IgE in the circulation will reflect the reactivity profile of mast cells and basophils. This has indeed
been shown to be the case in that specific serum IgE levels correlate quite well with skin prick test
results in adults [125,126].

Nasal allergen exposure in pre-sensitized individuals leads to a rise in allergen specific IgE with
peak serum levels occurring 4–6 weeks after exposure [37,127,128]. Taking into consideration the
differences in life span of basophils and mast cells it would be logical to assume that basophils would
be the first to reflect this change in the IgE repertoire followed later by mast cells (Figure 4). So far
there is no study directly addressing this question; however, conclusions can be drawn from allergen
challenge or therapeutic studies removing IgE from the circulation. Upon intranasal allergen challenge,
no change in basophil sensitivity was observed within the observation period of 3 weeks after peak
allergen-specific IgE increase [128]. However, in an extracorporeal IgE-specific immuneapheresis
study by Lupinek et al., a reduction in basophil sensitivity was observed 8 weeks after start of the
treatment [13]. Similarly, basophil sensitivity continuously dropped after neutralization of IgE with
the anti-IgE antibody omalizumab [129–132]. IgE surface levels on basophils were undetectable 4
weeks after omalizumab treatment but rose significantly 8 weeks after cessation of treatment [133].
Thus, these data indicate that there is a time window of at least 4–8 weeks for changes in IgE levels
to be reflected in changes of basophil sensitivity. With regards to changes in skin prick tests (SPT),
which act as a surrogate of mast cell sensitivity, the seasonal increase in SPT sensitivity observed
several weeks after the start of the study in birch allergic control patients was absent in patients
undergoing IgE immunoapheresis [13]. Furthermore, a reduction in SPT reactivity was also observed
in omalizumab-treated patients within 3 months of treatment [131,134]. This indicates that it takes
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longer for mast cells than basophils to adapt to changes in IgE levels, as expected, due to their longer
life-span. However, a detailed study addressing the timely interplay has not been performed yet and
would be needed for a better understanding of how the kinetics of the IgE response transform into
clinical sensitivity.

Figure 4. Timely interplay of rises in IgE levels and mast cell and basophil sensitivity. Upon allergen
exposure there is a rise in allergen-specific IgE levels (green line) followed by an increase in basophil
and mast cell sensitivity (blue line).

4.2. Importance of IgE-Facilitatated Allergen Presentation Mediated by CD23 and Rules Guiding this Process

The activation of allergen-specific T cells by APCs plays an important role in the development of
an allergic reaction, especially in mediating late phase reactions [135]. In fact, T cell activation increases
the levels of Th2 cytokines such as IL-4, IL-13, and IL-5, which are important for eosinophil recruitment
into the target tissues of allergic inflammation and leads to subsequent tissue damage and remodeling.
The uptake of IgE-allergen complexes by CD23 was firstly described nearly 30 years ago [136] and
the process was termed IgE-facilitated allergen presentation (IgE-FAP). CD23 is mainly expressed
on the surface of resting naïve IgD+ B cells [88]. Upon binding of IgE-allergen complexes to CD23,
these complexes are endocytosed and processed, leading to the loading of allergen-derived peptides
on MHC II, which can be recognized by specific T cells [137]. Alternatively, CD23 bearing primary
B cells may also transfer IgE-allergen complexes to dendritic cells for processing of the allergen and
presentation of allergen-derived peptides to T cells [138,139]. CD23 may also play an important role
in the transcytosis of IgE and IgE-antigen complexes across human intestinal [140] and respiratory
epithelial cells [141], as well as in transporting IgE-antigen complexes to B cell follicles in mice [142].
IgE-FAP is a very efficient process of inducing T cell activation, as 100–1000 fold lower amounts of
allergen complexed with specific IgE than allergen alone were needed to trigger T cell activation
in vitro [6,143]. Moreover, allergen-specific T cell activation by CD23-mediated FAP is accompanied
by the release of pro-inflammatory cytokines [6]. The blocking of CD23 with a specific anti-CD23
antibody, lumiliximab, in allergen-stimulated PBMCs reduced allergen-specific T cell activation by
50%, highlighting the role of IgE-FAP in allergen presentation [144]. Its importance is underlined by
the fact that IgG blocking antibodies, which are induced upon immunotherapy, inhibit IgE-FAP, thus
reducing specific T cell proliferation and the release of pro-inflammatory cytokines [145–150]. Besides
its role in mediating IgE-FAP, CD23 is also known to regulate serum IgE levels in murine models by
capturing IgE by CD23-expressing cells [151,152].

It is therefore important to understand the modes of how IgE-allergen complexes bind to CD23 [153]
and the factors controlling the extent of CD23-mediated IgE-FAP (Figure 5). Allergen-specific IgE
levels and the complexity of the IgE repertoire, with regards to their clonality and affinity for an
allergen, determine the formation of IgE-allergen complexes, and therefore affect the activation of
allergen-specific T cells [154]. Recently, CD23 density on B cells has been described to correlate with
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IgE levels in the serum and is associated with the extent of allergen-specific T cell activation [88].
Additionally, other factors might be involved in controlling IgE-FAP such as the extent of CD23
crosslinking. Further studies analyzing the afore mentioned components of CD23 would help to shed
light on the different elements affecting IgE-FAP.

Figure 5. Factors affecting the extent of CD23-mediated facilitated allergen presentation (FAP)
and subsequent T cell activation. Binding of IgE-allergen-complexes to CD23 present on B cells
(bottom section, red cell) leads to endocytosis of these complexes followed by processing and loading
of allergen-derived peptides on MHCII, which can be recognized by specific T cells (blue cells).
This process, called IgE FAP, enhances activation and proliferation of T cells. Factors involved in
controlling IgE-FAP include allergen-specific IgE levels, IgE repertoire/clonality, CD23 density, the
extent of IgE crosslinking, and allergen-specific blocking IgG antibodies.

5. Targeting of IgE and IgE+ Cells

As IgE is central to mediating symptoms of allergic diseases, it represents an important and
attractive target for developing novel therapeutics (Appendix A Table A1). There are currently
two different approaches: targeting of the antibody itself or interfering with the activation of IgE
receptor-bearing effector cells. The second is the elimination of IgE-producing cells to inhibit IgE
production at its origin.

5.1. Targeting IgE and Interference with Activation of Effector Cells

The heavy chain of IgE is composed of four constant Cε domains. The binding site for IgE to
its high and low affinity receptors has been mapped to the Cε3 domain [155,156]. Thus, the first
generation of therapeutic anti-IgE antibodies were designed to bind selectively to this domain to
reduce free IgE levels and to inhibit binding of IgE to its receptor thereby leading to strong reduction in
activation of mast and basophils upon allergen contact [157–159]. Administration of omalizumab, the
first licensed humanized monoclonal IgG1 antibody directed towards IgE, has been shown to reduce
free IgE levels by 99% within 2 h of administration, and reduces human basophil responsiveness
within 3 months [129,160]. It may also inhibit IgE synthesis in B cells in vitro [161]. It is successfully
used for treatment of severe asthma as well as urticaria [17,162]. Recently, a biosimilar antibody to
omalizumab was developed by Shanghai Biomabs Pharmaceutical Co., Ltd. [163] and is currently
being tested in 400 asthmatic patients in a multicenter phase III trial (NCT03468790), which is expected
to be finished by December 2019. Ligelizumab (QGE031) is also targeting the Cε3 region but with
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a 50-fold greater affinity than omalizumab in vitro. However, in a clinical study, asthmatic patients
receiving ligelizumab performed only slightly better than omalizumab-treated patients [164]. Phase
III clinical trials with ligelizumab in chronic spontaneous urticaria are still ongoing (NCT03580369,
NCT03580356). MEDI4121 is another humanized IgG1 antibody for neutralization of free IgE domain
and binds selectively the Cε3 and Cε4 region of IgE [165]. It bears a 106-fold greater affinity for IgE as
compared to omalizumab. Consequently, administration in a pharmacokinetic study of MEDI4121
in humans led to a rapid decrease of IgE [166]. However, MEDI4121 is eliminated quickly in vivo
resulting in the quick recovery of free IgE levels back to baseline. Thus, despite having a higher
affinity, the antibody would need to be administered at short intervals to maintain IgE suppression
and currently no further studies have been performed. In addition, macromolecular inhibitors, so
called designed ankyrin repeat proteins (DARPins), have been developed that do not interact with
free IgE but actively promote the dissociation of receptor-bound IgE from FcεRI [167]. DARPins have
been shown to efficiently prevent passive cutaneous sensitization in mice [168]. Recently, the research
group of Alexander Eggel has developed a bispecific DARPin co-ligating the inhibitory FcγRIIB with
FcεRI bound IgE on effector cells. This specific targeting strategy resulted in reduced allergen-induced
effector cell degranulation as well as inhibition of systemic anaphylaxis in vivo [169]. The approach
of inducing auto-antibodies to human IgE receptor-binding sites by peptide vaccination has only
been tried in rodent models [170,171] and so far has not been brought forward to clinical testing. As
an alternative approach, especially in patients who are not suited for omalizumab therapy due to
excessive IgE levels, IgE may also be removed from the blood using extracorporal immunoapheresis.
Here, two studies showed that immunoadorption using anti-IgE antibodies reduced peripheral IgE
levels by around 90% in patients with IgE levels up to 10,000 kU/L [13,20]. Immunoadsorption led
to improvement of clinical symptoms both in atopic dermatitis and in allergic asthma. Thus, it may
additionally be a valuable pre-treatment for patients with very high IgE levels to enable them to start
omalizumab therapy.

Another strategy aims at reducing the number of effector cells. In mouse models it has been
shown that amelioration of allergic disease can be achieved by targeting mast cells and basophils
with anti-FcεRIa Fab coated micelles loaded with celastrol [21]. The latter is a quinone methide
triterpene derived from Tripterygium wilfordii and capable of potentiating TNF-induced apoptosis [172].
CTLA4Fcε, a Th2 modulatory component, has so far only been tested in vitro [22]. CTLA4Fcε is
a recombinant fusion protein of the ectodomain of the immunoregulatory molecules cytotoxic T
lymphocyte antigen 4 (CTLA-4) with a fragment of IgE heavy chain constant region and thus binds
to IgE receptors as well as CD80 and CD86. Due to these properties it is thought to reduce both IgE
production via soluble CD23 as well as lymphocyte proliferation.

5.2. Therapeutic Targeting of IgE-Producing Cells

Several approaches have been made to eliminate IgE-producing cells. For example, quilizumab
is directed towards the M1 domain of the membrane-bound IgE B cell receptor and was shown to
reduce IgE levels as well as numbers of IgE-producing plasma cells in a murine model [173]. Despite
a reduction of serum IgE in humans by 25–40% [23,174], a large clinical trial with more than 500
patients suffering from allergic asthma uncontrolled by standard therapy showed no reduction of
asthma exacerbations within the 36 weeks of treatment [23]. However, the IgE levels, especially in the
treatment group receiving the highest dose of quilizumab, showed a continuous decline during the
48 weeks of safety follow up. Similar results were obtained in a study where chronic spontaneous
urticaria was treated with quilizumab [175]. Taking into account the longevity of plasma cells that
cannot be destroyed by this approach due to the absence of a B cell receptor, it is conceivable that the
treatment effect may have been underestimated due to the relative shortness of the treatment and
observation period. Alternatively, a bispecific IgE-CD3 antibody has been developed with the aim of
destroying IgE-bearing B cells by directing the cytotoxic activity of T cells to them [176]. It is directed
towards epitopes of IgE, which are inaccessible when IgE is bound to its Fc receptors [177]. Initial
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in vitro experiments have shown that this non-anaphylactogenic antibody is capable of inducing lysis
of IgE+ membrane B cells by cytotoxic T cells [176]; however, whether it will also be successful in
treatment of allergic patients has not been studied. Other approaches aim at targeting or co-targeting
of Fcγ receptors for the elimination of IgE+ B cells. In this respect, mutations of the above mentioned
anti-IgE antibody MEDI4121 initially developed for binding to free serum IgE have been selected
with improved binding to FcγRIIIa, a receptor involved in antibody-dependent cellular toxicity [178].
Another Fcγ receptor, namely FcγRIIb, is also involved in down regulation of BCR signaling and is
thus targeted by XmAb8915, an antibody that co-engages FcγRIIb and the IgE B cell receptor [179]. It
was shown to successfully reduce IgE production by PBMCs in vitro and to specifically reduce IgE
production in SCID mice engrafted with human PBMCs. In a very recent approach, off-springs of
mice vaccinated with anti-IgE during pregnancy showed suppressed IgE levels in response to antigen
challenge [180]. This suggests that treatment with anti-IgE antibody during pregnancy could prevent
allergic sensitization.

6. Conclusions

Though IgE is the least abundant class of immunoglobulins with an extremely short half-life it
plays a central role in allergic disease. Allergen-specific IgE production in allergic patients seems to
consist of two modes: a continuous mode, which maintains IgE levels even in the absence of an allergen
stimulus, and a reactionary mode, where increases of IgE production occur after exogenous allergen
stimulus. Neither the precise sites nor the nature of the IgE-producing cells involved in these two
modes of IgE production in allergic patients are known. Another as yet unanswered matter is the timely
interplay between rises in IgE production occurring in response to allergen exposure and the loading
of effector cells capable of binding IgE via their high and low affinity receptors. Due to fundamental
differences between allergic patients and experimental animal models for allergy, research in patients
will be required to address the open research questions regarding IgE-producing cells, mechanisms, and
sites of IgE production, as well as the loading of IgE to effectors cells, which is responsible for allergic
inflammation. Clinical experience with therapeutic strategies depleting IgE and preventing IgE binding
to its receptors indicates that the inactivation IgE-mediated effector cell activation is not harmful.
The elimination of IgE-producing cells may therefore represent a safe therapeutic strategy, which may
lead to a cure of allergy but will require the identification and characterization of IgE-producing cells
in allergic patients.
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Appendix A

Table A1. (A) Therapeutic approaches targeting effector IgE+ and IgE producing cells. Randomised Control Trial (RCT), Adverse Event (AE). (B) Therapeutic
approaches targeting effector IgE+ and IgE producing cells. Randomised Control Trial (RCT), Adverse Event (AE).

A Approach Biological Effect Study Design Disease
Target Subjects Length of

Observation Outcome Current
Phase References

Strategies
targeting IgE

Immuno
adsorption

Removal of circulating IgE or
total Ig through
Plasmapheresis

RCT Allergic
Asthma N = 15 16 weeks

↓Total IgE
↓ basophil
activation

Pre-Clinical [13]

RCT Atopic
Dermatitis N = 50 8 weeks Less AE in IgE

group vs pan Ig Pre-Clinical [20]

Omalizumab
Monoclonal antibody against
Fc portion of IgE—prevents

receptor binding
RCT Allergic

Asthma N = 317 20 weeks ↓IgE
↓Steroid use Marketed [17]

CMAB007 Biosimilar to Omalizumab
developed by China RCT Allergic

Asthma N = 400 24 weeks Not yet completed Phase III
NCT03468790 [163]

DARPins
Ankyrin repeat domains that
affect stability and function

of target protein
In vitro study Allergy Isolated

basophils N/A
Removal of IgE

from basophils + ↓
basophil activation

Pre-Clinical [168]

MEDI4212
Monoclonal antibody against
Fc portion of IgE—prevents

receptor binding
RCT Allergy/Atopy N = 86 12 weeks

Greater ↓total IgE
vs Omalizumab
worse half life

Phase I
NCT01544348 [166]

MEDI4212
Variant

Monoclonal antibody against
Fc portion of IgE and Fc

potion of monoclonal
antibody binds to inhibitory
receptor FcγRIIIa on B-cells

In vitro study Allergy Cell lines and
human B cells N/A Elimination of IgE

expressing B cells Pre-Clinical [178]

IgE Peptide
Vaccine

Induction of autoantibodies
against Fc region of IgE In vitro study Allergy FcεRI–ELISA N/A

Autoantibodies
block IgE binding

to FcεRI
Pre-Clinical [171]

QGE031
(Ligelizumab)

Monoclonal antibody against
Fc portion of IgE—prevents

receptor binding
RCT Allergic

Asthma N = 37 10 weeks QGE031 >
Omalizumab

Phase II
NCT01703312 [164]



Cells 2019, 8, 994 15 of 25

Table A1. Cont.

B Approaches Biological Effect Study Design Disease
Target Subjects Length of

Observation Outcome Current Trail
Phase References

Strategies
targeting IgE
production or
effector cells

Quilizumab

Monoclonal antibody
targeting M1-prime segment

of membrane bound IgE
expressed on IgE switched B
cells leading to cell depletion

RCT Allergic
Asthma N = 578

36 weeks with
48 week safety

follow-up

Acceptable safety
and reduced serum
IgE but no clinically
meaningful benefit
in clinical outcome

parameters

Phase II
NCT01582503 [23]

DARPins
Ankyrin repeat domains that
affect stability and function

of target protein
In vitro study Allergy Human

basophils N/A
Targets FcγIIB and
inhibits basophil

degranulation
Pre-Clinical [169]

Bsc-IgE/CD3
Construct

Monoclonal antibody
binding to cells with

membrane bound IgE and
targets T-cell cytotoxic
activity towards them

In vitro study Allergy
Cells isolated
from allergic

human donors
N/A

Bsc-IgE/CD3
effective at

eliminating IgE+ B
cells without

inducing
degranulation of

mast cells

Pre-Clinical [176]

Anti-FcεRI
Fab-conjugated
celastrol-loaded

micelles

Fusion with cell membrane
and induction of apoptosis of

FcεRI expressing cells
In vitro study Allergy Mast cell line N/A

Efficient induction
of apoptosis of mast
cells and reduction

of allergic
inflammation in

mouse model

Pre-Clinical [21]

CTLA4Fcε
Fusion Protein

Binds FcεRI and CD23,
prevents CD23 cleavage, and

blocks CD80/CD86
costimulation

In vitro study Allergy
Cell line and

human PBMC
samples

N/A
Reduces sCD23 and

lymphocyte
proliferation

Pre-Clinical [22]

Maternal
Anti-IgE

Vaccination

IgG anti IgE antibodies
transferred from mother to
fetus and prevent onset of

allergy by targeting IgE
memory B cells

In vivo mouse
study Allergy N/A 9 weeks after

birth
Reduced IgE levels
in mouse offspring Pre-Clinical [180]
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