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Abstract
Objective
We employed Mendelian randomization to explore the effects of genetic predisposition to type
2 diabetes (T2D), hyperglycemia, insulin resistance, and pancreatic β-cell dysfunction on risk of
stroke subtypes and related cerebrovascular phenotypes.

Methods
We selected instruments for genetic predisposition to T2D (74,124 cases, 824,006 controls),
HbA1c levels (n = 421,923), fasting glucose levels (n = 133,010), insulin resistance (n = 108,557),
and β-cell dysfunction (n = 16,378) based on published genome-wide association studies. Applying
2-sample Mendelian randomization, we examined associations with ischemic stroke (60,341 cases,
454,450 controls), intracerebral hemorrhage (1,545 cases, 1,481 controls), and ischemic stroke
subtypes (large artery, cardioembolic, small vessel stroke), as well as with related phenotypes
(carotid atherosclerosis, imaging markers of cerebral white matter integrity, and brain atrophy).

Results
Genetic predisposition to T2D and higher HbA1c levels were associated with higher risk of any
ischemic stroke, large artery stroke, and small vessel stroke. Similar associations were also noted
for carotid atherosclerotic plaque, fractional anisotropy, a white matter disease marker, and
markers of brain atrophy. We further found associations of genetic predisposition to insulin
resistance with large artery and small vessel stroke, whereas predisposition to β-cell dysfunction
was associated with small vessel stroke, intracerebral hemorrhage, lower gray matter volume,
and total brain volume.

Conclusions
This study supports causal effects of T2D and hyperglycemia on large artery and small vessel
stroke. We show associations of genetically predicted insulin resistance and β-cell dysfunction
with large artery and small vessel stroke that might have implications for antidiabetic treatments
targeting these mechanisms.

Classification of Evidence
This study provides Class II evidence that genetic predisposition to T2D and higher HbA1c
levels are associated with a higher risk of large artery and small vessel ischemic stroke.
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Cerebrovascular disease is a major public health issue, ranking
as the second leading cause of mortality and adult disability
worldwide.1,2 Type 2 diabetes (T2D) is an established risk
factor for cerebrovascular disease.3,4 In cohort studies, T2D
shows associations with higher risk for both ischemic and
hemorrhagic stroke independently of other risk factors.5 Also,
several studies found associations of measures of hypergly-
cemia (glycated hemoglobin [HbA1c] and fasting glucose
levels) with risk of stroke, both in patients with and without
diabetes.5 However, large-scale randomized controlled trials
(RCTs) testing intensive glucose-lowering in patients with
T2D show no significant reductions in risk of stroke, possibly
due to insufficient power.6–8 Moreover, the effects of T2D or
hyperglycemia on etiologic stroke subtypes (large artery
stroke, cardioembolic stroke, small vessel stroke, intracerebral
hemorrhage) remain elusive.

Currently available antidiabetic medications act by either di-
rectly lowering glucose levels or by targeting 2 major mech-
anisms that contribute to hyperglycemia: insulin resistance or
pancreatic β-cell dysfunction.9 Observational data suggest
that markers of insulin resistance, β-cell dysfunction, and
hyperglycemia influence the risk of cardiovascular disease
independently of each other.10,11 However, data on stroke and
its etiologic subtypes are lacking. Moreover, there is a risk of
confounding and reverse causation in observational studies.
Developing targeted strategies for stroke prevention in pa-
tients at risk of or with T2Dwould require disentangling these
relationships.

Mendelian randomizationmay help to clarify these associations.
Mendelian randomization uses genetic variants as instruments
for traits of interest and is not prone to confounding and reverse
causation.12 As such,Mendelian randomization has been proven
a powerful methodology for inferring causality.13,14 The avail-
ability of large-scale genome-wide association studies (GWAS)
with detailed phenotyping of cases further enables the explo-
ration of etiologic stroke subtypes that are typically not con-
sidered in observational studies.

We leveraged large-scale data from GWAS and performed
Mendelian randomization analyses, with the following aims:
(1) to examine the effects of genetic predisposition to T2D on
risk of ischemic stroke, ischemic stroke subtypes, and in-
tracerebral hemorrhage; (2) to explore the effects of geneti-
cally predicted measures of hyperglycemia (HbA1c and
fasting glucose levels) on these phenotypes; (3) to examine

the associations of genetic predisposition to insulin resistance
and β-cell dysfunction with major stroke etiologies; and (4) to
explore associations between diabetic traits and related vas-
cular phenotypes including carotid atherosclerosis, neuro-
imaging markers of white mater integrity, and brain atrophy.

Methods
Study Design and Data Sources
This is a 2-sample Mendelian randomization study following
STROBE-MR guidelines (Strengthening the Reporting
ofMendelian Randomization Studies).15 The study is based
on publicly available summary statistics from GWAS con-
sortia. Data sources are detailed in table 1. Mendelian ran-
domization uses genetic variants associated with exposures of
interest and then explores the associations between the ge-
netic predisposition to this exposure or the genetically pre-
dicted levels of the exposure phenotype with disease
outcomes. As the genetic predisposition to a trait of interest is
not affected by potential confounders, this approach is con-
sidered to be less prone to confounding, as compared with
traditional observational analyses.

Our study design is depicted in figure e-1 and a detailed de-
scription of the phenotypes explored as exposures is provided in
supplemental table e-1 (doi.org/10.5061/dryad.9s4mw6mdh).
We explored associations of genetic predisposition to T2D,
measures of hyperglycemia (HbA1c and fasting glucose levels),
as well as markers of insulin resistance and β-cell dysfunction
with cerebrovascular disease phenotypes including stroke sub-
types, carotid atherosclerosis, white matter (WM) integrity, and
brain atrophy. Information on genetic variants used as instru-
ments are presented in supplemental tables e-2 to e-7 (doi.org/
10.5061/dryad.9s4mw6mdh).

Genetic Instrument Selection

Type 2 Diabetes
We selected genetic instruments from the latest GWAS meta-
analysis for T2D based on 74,124 cases and 824,006 controls
of European ancestry from 32 studies included in the DIA-
GRAM consortium.16 The analyses were adjusted for age, sex,
and population structure. There were 403 distinct genetic
variants showing significant associations with T2D in this
meta-analysis. We clumped these variants for linkage dis-
equilibrium (LD) based on a distance window of 10,000 kB
and an r2 < 0.01 and used the remaining 289 variants as

Glossary
CI = confidence interval; GWAS = genome-wide association studies; ICH = intracerebral hemorrhage; ISGC = International
Stroke Genetics Consortium; IVW = inverse-variance weighted; LD = linkage disequilibrium; OR = odds ratio; RCT =
randomized controlled trial; SNP = single nucleotide polymorphism; STROBE-MR = Strengthening the Reporting of
Mendelian Randomization Studies; T2D = type 2 diabetes; TOAST = Trial of Org 10172 in Acute Stroke Treatment; UKB =
UK Biobank; WM = white matter; WMH = white matter hyperintensities.
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instruments (table e-2, doi.org/10.5061/dryad.9s4mw6mdh).
Given the average LD block length of 22,000 kB,17 we used a
10,000 kB clumping window, with the notice that we cannot
rule out very long-range LD effects.

Hyperglycemia
We selected genetic instruments for HbA1c levels (per 1%
increment) based on 2 different GWAS that we performed on
individuals of White British ancestry in the UK Biobank
(UKB).18 In the primary analysis, we explored HbA1c levels
across the entire range of values among both diabetic and
nondiabetic individuals (n = 421,923). In this analysis, we

only excluded individuals on antidiabetic medications or in-
sulin at the start of the study (n = 5,468), as these medications
affect HbA1c levels beyond genetic influence. In a secondary
analysis, we explored HbA1c levels in the prediabetic range
among diabetes-free individuals. In this analysis, we excluded
individuals with self-reported history of physician-diagnosed
diabetes, use of oral antidiabetic drugs or insulin, HbA1c level
>6.5%, or random glucose levels >200 mg/dL (n = 400,989).
In both analyses, we also excluded 17,534 individuals who
were included in the GWAS analysis for imaging phenotypes
(see below) to avoid population overlap between exposure
and outcome datasets. We adjusted for age, sex, genotyping

Table 1 Data Sources Used in the Analyses for the Current Study

Phenotype Source

Total or
cases/
controls

Imputation
reference
panel Ancestry Adjustments

Diabetes mellitus type 2 DIAGRAM
Consortium16

74,124/
824,006

HRC European Age, sex, 6 PCs

HbA1c UK Biobank18 421,923 HRC + UK10K White British Age, sex, 20 PCs, genotyping platform array,
assessment center

Fasting glucose levels MAGICConsortium19 133,010 HapMap European Age, sex

Insulin resistance
(fasting insulin levels)

Multitrait GWAS and
MAGICConsortium19

108,557 HapMap European Age, sex, BMI

β-cell dysfunction
(fasting proinsulin
levels)

MAGICConsortium23 16,378 1,000
Genomes

European Age, sex, fasting insulin

Any ischemic stroke MEGASTROKE
Consortium29

60,341/
454,450

1,000
Genomes

Transethnic
(70%
European)

Age, sex, population structure up to 20 PCs

Large artery stroke MEGASTROKE
Consortium29

6,688/
454,450

1,000
Genomes

Transethnic
(70%
European)

Age, sex, population structure up to 20 PCs

Cardioembolic stroke MEGASTROKE
Consortium29

9,006/
454,450

1,000
Genomes

Transethnic
(70%
European)

Age, sex, population structure up to 20 PCs

Small vessel stroke MEGASTROKE
Consortium29

11,710/
454,450

1,000
Genomes

Transethnic
(70%
European)

Age, sex, up to 20 PCs

Intracerebral
hemorrhage

ISGC meta-analysis32 1,545/1,481 1,000
Genomes

European Age, sex, 4 PCs

Carotid plaque CHARGE
Consortium33

21,540/
26,894

1,000
Genomes

European Age, sex, up to 10 PCs

WMH volume UK Biobank imaging
database34

17,534 HRC + UK10K White British Age, sex, mean resting and task functional MRI
headmotion, 10 PCs, genotyping platform array

Mean diffusivity UK Biobank imaging
database34

17,534 HRC + UK10K White British Age, sex, mean resting and task functional MRI
headmotion, 10 PCs, genotyping platform array

Fractional anisotropy UK Biobank imaging
database34

17,534 HRC + UK10K White British Age, sex, mean resting and task functional MRI
headmotion, 10 PCs, genotyping platform array

Normalized gray matter
volume

UK Biobank imaging
database34

17,534 HRC + UK10K White British Age, sex, mean resting and task functional MRI
headmotion, 10 PCs, genotyping platform array

Normalized total brain
volume

UK Biobank imaging
database34

17,534 HRC + UK10K White British Age, sex, mean resting and task functional MRI
headmotion, 10 PCs, genotyping platform array

Abbreviations: BMI = body mass index; GWAS = genome-wide association studies; ISGC = International Stroke Genetics Consortium; PC = principal
component.
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platform array, assessment center, and the first 20 principal
components of the population structure and performed the
analyses using BOLT-LMM with correction for relatedness
and subtle population stratification. For fasting glucose levels
(per 1-SD increment), we used the most recent GWAS meta-
analysis (adjusted for age, sex, and population structure) by
the MAGIC consortium on 133,010 diabetes-free individuals
of European ancestry.19 For both HbA1c and fasting glucose,
we selected as instruments genetic variants reaching genome-
wide significance (p < 5 × 10−8) after clumping at an r2 < 0.01
threshold (clumping window 10,000 kB). We identified 333
instruments for HbA1c among both diabetic and nondiabetic
individuals, 543 instruments for HbA1c levels among
diabetes-free individuals, and 21 for fasting glucose levels
among diabetes-free individuals (tables e-3 to e-5, doi.org/10.
5061/dryad.9s4mw6mdh).

As several variants may influenceHbA1c levels through effects
on erythrocyte biology and not by inducing hyperglycemia,20

to isolate the effects of the hyperglycemia-related genetic
component of HbA1c levels, we performed sensitivity analy-
ses excluding those variants reported to be associated at p <
0.001 with erythrocyte-related traits (hemoglobin concen-
tration, red blood cell count, hematocrit, mean corpuscular
volume, mean corpuscular hemoglobin concentration, mean
corpuscular hemoglobin, red cell distribution width, re-
ticulocyte count, reticulocyte fraction of red cells, immature
fraction of reticulocytes, high light scatter percentage of red
cells, high light scatter reticulocyte count) in Phenoscanner.21

Insulin Resistance and β-Cell Dysfunction
As instruments for insulin resistance, we used 53 genetic
variants identified in a multi-trait GWAS to associate with the
3 components of this phenotype (fasting insulin levels, tri-
glycerides, and high-density lipoprotein cholesterol; table e-6,
doi.org/10.5061/dryad.9s4mw6mdh).22 All 3 GWAS that
were used to perform the multi-trait GWAS were based ex-
clusively on European individuals. We weighted the instru-
ments based on their effects on fasting insulin levels (per 1-log
increment) in a GWASmeta-analysis of 108,557 diabetes-free
European individuals.19 In accordance with existing literature,
we proxied β-cell dysfunction based on fasting proinsulin
levels (per 1-log increment).23,24 We used summary statistics
from a GWASmeta-analysis of 16,378 diabetes-free European
individuals and identified 21 genetic instruments (at p < 5 ×
10−8, r2 < 0.01; clumping window 10,000 kB; table e-7, doi.
org/10.5061/dryad.9s4mw6mdh).23 The GWAS for fasting
insulin levels was adjusted for age, sex, and population
structure,19 whereas the GWAS for proinsulin was also ad-
justed for fasting insulin levels.23

We further used T2D-associated genetic variants previously
grouped into clusters of diabetic endophenotypes: 3 clusters
of insulin resistance (related to obesity, fat distribution, or
lipid metabolism) and 2 clusters of β-cell dysfunction, both
associated with reduced levels of fasting insulin, but with
opposing effects on fasting proinsulin.25 We used the clusters

of the variants and the respective weights per variant and
cluster as described by Udler et al.25 (table e-8, doi.org/10.
5061/dryad.9s4mw6mdh).

Proportion of Explained Variance
For all genetic variants used as instruments, we estimated the
proportion of explained variance for the respective phenotypes
(tables e-2 to e-7, doi.org/10.5061/dryad.9s4mw6mdh). We
estimated the variance explained by each genetic variant for
T2D based on the method by So et al.26 for binary phenotypes
and for the continuous traits we used a previously described
formula based on summary statistics.27 For the estimations
regarding T2D, we used a prevalence rate of 8.5%, according
to the 2015 estimate of the global prevalence of the disease
by the International Diabetes Federation.28

Associations With Outcomes
We then examined associations of the selected instruments
with ischemic stroke, ischemic stroke subtypes, and in-
tracerebral hemorrhage (ICH) as the primary outcomes of
interest. For ischemic stroke, we used summary GWAS data
from MEGASTROKE, mainly consisting of European indi-
viduals (70%).29,30 We extracted summary GWAS statistics
for any ischemic stroke (60,341 cases, 451,210 controls) and
for the major ischemic stroke subtypes: large artery stroke
(6,688 cases, 238,513 controls), cardioembolic stroke (9,006
cases, 352,852 controls), and small vessel stroke (11,710
cases, 287,067 controls). The major ischemic stroke subtypes
in MEGASTROKE were defined according to Trial of Org
10172 in Acute Stroke Treatment (TOAST) criteria.31 In
sensitivity analyses, we also restricted our analyses to solely
individuals of European ancestry. GWAS data for ICH were
derived from the International Stroke Genetics Consortium
(ISGC) GWASmeta-analysis including 1,545 cases and 1,481
controls of European ancestry.32

Presence of carotid plaque, markers of WM tract integrity
(WM hyperintensities [WMH] volume, mean diffusivity,
fractional anisotropy), and markers of brain atrophy (gray
matter volume, total brain volume) were explored as sec-
ondary outcomes. Carotid plaque data were derived from a
GWAS meta-analysis (21,540 cases, 26,894 controls of Eu-
ropean ancestry) from the CHARGE consortium.33 As de-
tailed in this meta-analysis, carotid plaques across the
individual studies was defined by atherosclerotic thickening of
the common carotid artery wall or the proxy measure of lu-
minal stenosis greater than 25%.33 For the imaging pheno-
types (WMH volume, mean diffusivity, fractional anisotropy,
gray matter volume, total brain volume), we undertook
GWAS analyses in the UK Biobank neuroimaging dataset
including 17,534 individuals of White British ancestry based
on the MRI sequences.34 In this analysis, we excluded study
participants who reported having received a diagnosis of de-
mentia, Alzheimer disease, Parkinson disease, or any other
chronic degenerative neurologic problem, demyelinating
diseases, brain cancer, nervous system infection, brain abscess,
encephalitis, cerebral palsy, head or neurologic injury/trauma,
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brain hemorrhage, cerebral aneurysm, or stroke (n = 388).
We performed linear regression analyses (additive models)
for ln-transformed WMH volume, the first principal compo-
nents of all measurements of mean diffusivity and fractional
anisotropy across the different white matter tracts in the dif-
fusion sequences, and for normalized gray matter and total
brain volumes. Adjustments were made for age, sex, mean
resting and task functional MRI head motion, the genotype
platform array, and the first 10 principal components of the
population structure.

Statistical Analysis
All analyses were performed in R (v3.5.0; The R Foundation
for Statistical Computing) using the MendelianRandomiza-
tion, TwoSampleMR, and MR-PRESSO packages.

Main Analyses
We applied 2-sample Mendelian randomization using asso-
ciation estimates derived from the abovementioned sources.
Following extraction of the single nucleotide polymorphism
(SNP)–specific association estimates between the instru-
ments and the outcomes, and harmonization of the direction
of estimates by effect alleles, we computed Mendelian ran-
domization estimates for each instrument with the Wald es-
timator. We calculated standard errors with the Delta method.
We then pooled individual Mendelian randomization esti-
mates using random-effects inverse-variance weighted (IVW)
meta-analyses.35 For the main analyses, we corrected for
multiple comparisons with the false discovery rate approach
and set statistical significance at q value < 0.05. Associations
not reaching this threshold, but showing an unadjusted p <
0.05, were considered of nominal significance.

Assessment of Pleiotropy and Sensitivity Analyses
Mendelian randomization estimates derived from the IVW
approach could be biased in the presence of directional hori-
zontal pleiotropy. As a measure of overall pleiotropy, we
assessed heterogeneity across the SNP-specific Mendelian
randomization estimates in the IVWMendelian randomization
analyses with the CochranQ statistic (statistical significance set
at p< 0.05).36We applied alternativeMendelian randomization
methods that are more robust to pleiotropic variants. The
weighted median estimator allows the use of invalid instru-
ments as long as at least half of the instruments used in the
Mendelian randomization analysis are valid.37 The MR-Egger
regression allows for the estimation of an intercept term that
can be used as an indicator of unbalanced directional pleiot-
ropy.38 MR-Egger provides less precise estimates and relies on
the assumption that the strengths of potential pleiotropic in-
struments are independent of their direct associations with the
outcome.38 The intercept obtained from MR-Egger regression
was used as a measure of unbalanced pleiotropy (p < 0.05
indicated significance).38 Finally, MR-PRESSO regresses the
SNP outcome estimates against the SNP exposure estimates to
test for outlier SNPs.39 Outliers are detected by sequentially
removing all variants from the analyses and comparing the
residual sum of squares as a global measure of heterogeneity

(p < 0.05 for detecting outliers); outliers are then removed and
outlier-corrected estimates are provided. MR-PRESSO still
relies on the assumption that at least half of the variants are
valid instruments.39 Finally, when significant results were
found, we also applied bidirectional Mendelian randomization
analyses to test for any inverse associations using diabetes and
glucose-related traits as outcomes and stroke subtypes as ex-
posures. For these analyses, due to the low number of SNPs
associated with stroke or stroke subtypes, we lowered our p
value threshold for selecting genetic instruments at p < 10−6.

Primary Research Question/Classification
of Evidence
Is genetic predisposition to T2D and hyperglycemia associ-
ated with the risk of stroke subtypes? This study provides
Class II evidence that genetic predisposition to T2D and
higher HbA1c levels are associated with a higher risk of large
artery ischemic stroke (odds ratio [OR] per 1-log increment
in T2D odds: 1.22, 95% confidence interval [CI] 1.17–1.28;
OR per 1% increment in HbA1c levels: 2.06, 95% CI
1.60–2.66) and small vessel ischemic stroke (OR per 1-log
increment in T2D odds: 1.18, 95% CI 1.13–1.23; OR per 1%
increment in HbA1c levels: 1.85, 95% CI 1.50–2.27).

Standard Protocol Approvals, Registrations,
and Patient Consents
This study, conducted in accordance with the STROBE-MR
criteria,15 was based on publicly available summary statistics
from GWAS meta-analyses of individual studies that had al-
ready obtained ethical review board approvals and that had
obtained written informed consent from all included patients
or their guardians.

Data Availability
This study was based on summary statistics. Data sources are
detailed in table 1. The data from the GWAS studies for
ischemic stroke, ICH, and glycemic traits are publicly available
and may be accessed through the MEGASTROKE,40 ISGC,41

and MAGIC42 web sites, respectively. Data from the UK
Biobank GWAS for the neuroimaging traits may be accessed
through an application to the UK Biobank. Data for the ca-
rotid plaque phenotype may be accessed through an appli-
cation to the CHARGE Consortium. Detailed information on
the genetic variants used as instruments to produce the pre-
sented results are available as supplementary material (tables
e-2 to e-8, doi.org/10.5061/dryad.9s4mw6mdh).

Results
The 289 genetic variants used as genetic instruments for T2D
explained 12.7% of the variance in T2D prevalence (table e-2,
doi.org/10.5061/dryad.9s4mw6mdh), whereas variants used
as instruments for the continuous hyperglycemia traits, insulin
resistance (proxied by fasting insulin levels), and β-cell dys-
function (proxied by fasting proinsulin) explained lower
proportions of variance: 2.6% for HbA1c among both diabetic
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and nondiabetic individuals, 1.9% for HbA1c among non-
diabetic individuals, 1.5% for fasting glucose, 0.7% for insulin
resistance, and 4.5% for β-cell dysfunction (tables e-1 to e-5).

Genetic Predisposition to T2D and Risk
of Stroke
In the primary IVW Mendelian randomization analyses, ge-
netic predisposition to T2D (1-log increment = 2.72-fold
higher odds) was significantly associated with a higher risk of
any ischemic stroke (OR 1.11, 95%CI 1.08–1.13), large artery
stroke (OR 1.22, 95% CI 1.17–1.28), and small vessel stroke
(OR 1.18, 95% CI 1.13–1.23; figure 1A). In addition, there
was an association of nominal significance with higher risk of
cardioembolic stroke (OR 1.05, 95% CI 1.01–1.09), but no
significant association with ICH (OR 1.09, 95%CI 0.97–1.23;
figure 1A). With the exception of ICH, there was evidence of
significant heterogeneity in all of the main analyses (p < 0.05;
table e-9, doi.org/10.5061/dryad.9s4mw6mdh), but no evi-
dence of unbalanced pleiotropy, as assessed by the Egger
intercept p values (all p > 0.05; table e-10). Across sensitivity
analyses based on alternative Mendelian randomization
methods (weighted median, MR-Egger, outlier-corrected
MR-PRESSO), all effects remained directionally consistent
and all estimates stable with p < 0.05 for any ischemic stroke,

large artery stroke, and small vessel stroke (table e-10).
Similar results were also obtained when restricting the anal-
yses to the European population of MEGASTROKE (table
e-10). Bidirectional Mendelian randomization analyses
showed no effect of genetic predisposition to any ischemic
stroke, large artery stroke, or small vessel stroke on risk of
T2D (table e-11).

Genetic Predisposition to Measures of
Hyperglycemia and Risk of Stroke
In analyses of hyperglycemia traits, we found that genetically
predicted HbA1c levels (per 1% increment) were significantly
associated with risk of any ischemic stroke (OR 1.36, 95% CI
1.21–1.53), large artery stroke (OR 2.06, 95% CI 1.60–2.66),
and small vessel stroke (OR 1.85, 95% CI 1.50–2.27; figure
1B). There was evidence of heterogeneity in the analyses for
HbA1c levels (table e-8, doi.org/10.5061/dryad.9s4mw6mdh)
and in some alternative Mendelian randomization analyses the
effect estimates for any ischemic stroke, large artery stroke, and
small vessel stroke were smaller (table e-8). However, in sen-
sitivity analyses that excluded SNPs influencing HbA1c levels
through erythrocyte-related traits, the association estimates
were even larger (ischemic stroke: OR 1.53, 95%CI 1.35–1.75;
large artery stroke: OR 2.83, 95% CI 2.06–3.89; small vessel

Figure 1 Mendelian Randomization Associations of Genetic Predisposition to Type 2 Diabetes Mellitus and HbA1c Levels
Among Diabetic and Nondiabetic Individuals

(A) Type 2 diabetes. (B) HbA1c levels. Results derived from
random-effects inverse-variance weighted analyses. Full cir-
cles correspond to statistically significant association esti-
mates at a false discovery rate–adjusted p value < 0.05. CI =
confidence interval; OR = odds ratio.
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stroke: OR 2.26, 95% CI 1.72–2.97; table e-10, doi.org/10.
5061/dryad.9s4mw6mdh) and there was no evidence of het-
erogeneity (all p > 0.10). Similar results were obtained when
restricting analyses for stroke subtypes to the European pop-
ulation of MEGASTROKE, as well as when performing anal-
yses for HbA1c in the nondiabetic range among diabetes-free
individuals (figure e-2; table e-10). In bidirectional Mendelian
randomization analyses, genetic predisposition to any ische-
mic stroke, large artery stroke, or small vessel stroke was
not associated with HbA1c levels (table e-11). In contrast,
we found no significant associations between genetically pre-
dicted fasting glucose levels among diabetes-free individuals
and risk of stroke subtypes (figure e-2; table e-10).

Genetic Predisposition to Insulin Resistance,
β-Cell Dysfunction, and Risk of Stroke
We next selected genetic variants as instruments for insulin re-
sistance and β-cell dysfunction, the 2 primary underlying mech-
anisms contributing to the development of hyperglycemia and
T2D. Among diabetes-free individuals, we found genetic pre-
disposition to insulin resistance (1-log increment in fasting insulin
levels) to be associated with a higher risk for ischemic stroke (OR
1.33, 95% CI 1.13–1.57), large artery stroke (OR 1.60, 95% CI
1.12–2.31), and small vessel stroke (OR 1.63, 95% CI 1.21–2.20;

figure 2A). Genetic predisposition to β-cell dysfunction (1-log
increment in fasting proinsulin levels) was further associated with
a higher risk for small vessel stroke (OR 1.38, 95% CI 1.17–1.63)
and ICH (OR 1.75, 95% CI 1.21–2.52). Furthermore, there was
an association of nominal significance between genetic pre-
disposition to β-cell dysfunction and the risk of cardioembolic
stroke (OR 1.18, 95%CI 1.03–1.35). There was no heterogeneity
in these analyses (table e-9, doi.org/10.5061/dryad.9s4mw6mdh)
and the results were consistent in alternative Mendelian ran-
domization analyses, as well as in analyses restricted to individuals
of European ancestry (table e-10).

To gain additional insights into the relationship among insulin
resistance, β-cell dysfunction, and etiologic stroke subtypes, we
further explored the effects of T2D-associated variants clustered
in 5 differentmechanisms of action. These included 3 clusters for
insulin resistance (mediated by obesity, fat distribution, lipid
metabolism) and 2 clusters related to β-cell dysfunction (asso-
ciated with high or low proinsulin). In multivariable analyses
including all clusters and also adjusting for their effects on
HbA1c, we found significant effects of genetic predisposition to
β-cell dysfunction related to high proinsulin on risk of ischemic
stroke and small vessel stroke (figure 2B). We further found
genetic predisposition to insulin resistance mediated through

Figure 2 Mendelian Randomization Associations of Genetically Predicted Insulin Resistance and β-Cell Dysfunction With
Stroke Subtypes

(A) Results derived from random-effects inverse-variance
weighted analyses. (B) Heatmap of the associations between
clusters of diabetic endophenotypes related to β-cell dys-
function and insulin resistance with the risk of stroke sub-
types. Full colored circles in A correspond to statistically
significant association estimates at a false discovery rate
(FDR)–adjusted p value < 0.05. CI = confidence interval.
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altered fat distribution to be associated with higher risk of small
vessel stroke. Genetic predisposition to insulin resistance medi-
ated through obesity showed associations of nominal signifi-
cance with large artery and cardioembolic stroke.

Genetic Predisposition to T2D and Glycemic
Traits and Associations With Etiologically
Related Cerebrovascular Phenotypes
Table 2 presents theMendelian randomization associations of
genetic predisposition to T2D, measures of hyperglycemia,
insulin resistance, and β-cell dysfunction with carotid plaque,
as well as with neuroimaging traits related to white matter
integrity and brain atrophy. Genetic predisposition to T2D
and genetically elevated HbA1c levels were associated with
carotid plaque. We further found a significant association
between genetic predisposition to T2D and lower fractional
anisotropy, a diffusion imaging marker of impaired white
matter tract integrity, as well as significant associations with
lower gray matter and total brain volumes (table 2). Genetic
predisposition to β-cell dysfunction (1-log increment in
fasting proinsulin levels) was further associated with lower
gray matter volume (β −0.13, 95% CI −0.20 to −0.07) and
total brain volume (β −0.17, 95% CI −0.23 to −0.11; table 2).
These results remained stable in sensitivity analyses (table
e-10, doi.org/10.5061/dryad.9s4mw6mdh).

Discussion
Leveraging large-scale GWAS data in Mendelian randomiza-
tion analyses, we investigated the causal associations between

T2D, glycemic traits, and cerebrovascular disease. We found
genetic predisposition to T2D and hyperglycemia (elevated
HbA1c levels) to be associated with a higher risk of ischemic
stroke, particularly large artery and small vessel stroke. In-
dependently of hyperglycemia, genetic predisposition to insulin
resistance but not β-cell dysfunction was associated with higher
risk of large artery stroke, whereas genetic predisposition to
both insulin resistance and β-cell dysfunction was associated
with small vessel stroke. Genetic determinats for T2D and
hyperglycemia further showed significant effects on carotid
plaque and fractional anisotropy, a WM neuroimaging marker
related to cerebral small vessel disease, as well as neuroimaging
markers of brain atrophy. Furthermore, genetic predisposition
to β-cell dysfunction was associated with intracerebral hemor-
rhage and neuroimaging markers of brain atrophy.

Our Mendelian randomization results provide genetic evidence
for a causal effect of T2D and hyperglycemia on risk of ischemic
stroke. T2D is among the established risk factors for stroke and
vascular disease in general,4 but primary prevention trials fo-
cusing on intensive glucose control or specific oral antidiabetic
agents showed inconsistent effects on stroke risk.6,8 Previous
Mendelian randomization studies were underpowered to detect
effects of hyperglycemia (HbA1c or fasting glucose levels) on
stroke risk.43,44 Here, by using data from >400,000 individuals
from the UKB, we were able to show that genetically elevated
HbA1c levels are associatedwith a higher risk of ischemic stroke,
thus suggesting that preventive strategies focusing on long-term
HbA1c-lowering will result in risk reductions for ischemic
stroke. The lack of significant effects in previous trials might
relate to insufficient power due to the low number of incident

Table 2 Mendelian Randomization Associations Between Genetically Predicted Diabetic Traits and Etiologically Related
Cerebrovascular Phenotypes as Derived From Random-Effects Inverse-Variance Weighted Analyses

Outcomes

Exposures

T2D (1-log odds increment) HbA1c (1% increment)

Insulin resistance
(1-log increment in
fasting insulin levels)

β-cell dysfunction
(1-log increment
in fasting proinsulin
levels)

Carotid atherosclerosis, OR (95% CI)

Carotid plaque 1.06 (1.03–1.10)a 1.21 (1.03–1.42)b 0.93 (0.83–1.05) 1.10 (0.80–1.50)

White matter integrity,
β coefficient (95% CI)

WMH volume 0.003 (−0.010, 0.019) −0.002 (−0.081, 0.077) 0.094 (−0.062, 0.251) 0.062 (−0.021, 0.146)

Mean diffusivity 0.005 (−0.016, 0.026) −0.086 (−0.171, −0.002)b 0.146 (−0.056, 0.347) 0.048 (−0.017, 0.114)

Fractional anisotropy −0.028 (−0.048, −0.006)a −0.008 (−0.118, 0.101) −0.181 (−0.380, 0.019) −0.048 (−0.115, 0.020)

Brain atrophy, β coefficient (95% CI)

Gray matter volume −0.031 (−0.048, −0.013)a −0.074 (−0.143, −0.005)b −0.039 (−0.220, 0.142) −0.130 (−0.195, −0.065)a

Total brain volume −0.027 (−0.047, −0.008)a −0.181 (−0.272, −0.089)a −0.087 (−0.285, 0.112) −0.170 (−0.232, −0.108)a

Abbreviations: CI = confidence interval; OR = odds ratio; T2D = type 2 diabetes; WMH = white matter hyperintensities.
ORs are presented for binary traits (carotid plaque) and β coefficients (standardized based on the SD of the measure) for the continuous imaging traits.
a Statistical significance at a false discovery rate–adjusted p value < 0.05.
b Associations reaching nominal significance (unadjusted p < 0.05).
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stroke events, short follow-up periods, and differences in the
efficacy profiles of the individual treatments.45

We found the effects of genetic predisposition to T2D and
hyperglycemia to be specific for large artery and small vessel
stroke. In accordance with these results, we found genetic pre-
disposition to T2D to be associated with carotid plaque, an
atherosclerotic phenotype, and fractional anisotropy, a marker of
WM integrity associated with small vessel disease. Thus, our
findings provide evidence for a causal involvement of T2D and
hyperglycemia in both large artery atherosclerosis and cerebral
small vessel disease. The discordant effects between genetically
predicted HbA1c and fasting glucose levels might relate to the
fact that HbA1c levels are a more accurate marker of average
glucose levels and less prone to between-measurement variability
than single measurements of fasting glucose. Differences in
sample sizes between the GWAS, as well as the inclusion of
nondiabetic patients in the analysis for HbA1c levels, might also
partly explain this discordance. On the contrary, we found no
significant effects of T2D or other diabetic traits on car-
dioembolic stroke. Differences in the magnitude of the effects
between stroke subtypes might in part explain the heterogeneity
in the effects of glucose-lowering treatments across previous
clinical trials.45 On the basis of our findings, future trials testing
glucose-lowering approaches should account for stroke subtypes.

As another finding, we show that genetic predisposition to
insulin resistance and β-cell dysfunction influences the risk of
stroke. This could have clinical implications for oral antidia-
betic medications. Whereas all antidiabetic agents lower glu-
cose levels, some drug classes primarily target insulin
sensitivity and others primarily target β-cell function.9 Spe-
cifically, metformin and thiazolidinediones primarily act by
improving insulin sensitivity, whereas drug classes like
α-glucosidase inhibitors, sulfonylureas, and GLP1 receptor
agonists primarily act by increasing insulin secretion from the
β cells.9 How these drug classes influence risk of the different
stroke subtypes should be explored further in future research.

Our study has several methodologic strengths. The large
sample size (898,130 individuals for diabetic traits and up to
514,791 individuals for stroke) and nature of our datasets
provided the power to detect differential effects of diabetes on
etiologic stroke subtypes and to perform multiple sensitivity
analyses for testing the validity of the Mendelian randomi-
zation assumptions, thus minimizing the possibility of biased
results. Whereas the genetic determinants of HbA1c might
influence its levels via both erythrocyte and glycemic biology,
we provided support for the latter, as the effects were stronger
when focusing on variants not associated with erythrocyte
traits. Incorporating insulin resistance and β-cell dysfunction
on top of hyperglycemia in the analyses offered deeper in-
sights into the pathophysiologic mechanisms linking diabetes
with the different stroke subtypes. Finally, the exploration of
additional cerebrovascular disease traits enabled us to tri-
angulate our findings for stroke subtypes by showing similar
associations for etiologically related phenotypes.

Our study also has limitations. First, by design Mendelian
randomization examines the effects of lifetime exposure to the
traits of interest, which might differ from the effects of clinical
interventions (e.g., glucose-lowering approaches) applied for
shorter time periods later in life. Second, T2Dwas analyzed as a
binary trait and this might violate the monotonicity assumption
of Mendelian randomization because only a fraction of indi-
viduals with increased genetic liability to T2D will actually get
the disease. Thus, genetic liability to T2D that is used as an
exposure in our analyses might capture a combination of un-
derlying mechanisms including hyperglycemia, insulin re-
sistance, and β-cell dysfunction. Third, the Mendelian
randomization analyses for insulin resistance were weighted
based on the effects of the genetic variants on fasting insulin
adjusting for body mass index and the analyses for β-cell dys-
function based on the effects of the variants on fasting pro-
insulin adjusting for fasting insulin. These adjustments in the
original GWAS might increase the risk for collider bias in
Mendelian randomization analyses,46 which should be con-
sidered when interpreting our findings. Fourth, the analyses for
HbA1c and fasting glucose that were restricted to nondiabetic
individuals might also introduce collider bias in the analyses,
which might bias the association estimates to the null. Yet the
results for HbA1c in the entire population of both diabetic and
nondiabetic individuals showed similar results. Fifth, the vari-
ance explained by the genetic instruments used for hypergly-
cemic traits, insulin resistance, and β-cell dysfunction was very
low, which might have limited the power of our analyses.
However, despite the low proportion of variance explained, the
instruments were sufficiently strong, thus ruling out potential
weak instrument bias. Sixth, there was high heterogeneity in the
majority of the Mendelian randomization analyses performed
for this study. Whereas the results from alternative Mendelian
randomization methods were consistent, we cannot entirely
rule out the possibility of bias in the derived effect estimates due
to pleiotropic effects of the genetic instruments. Seventh, is-
chemic stroke subtypes were defined according to the TOAST
classification system, which although widely used, might still
inherently lead to misclassifications, especially in cases of mixed
stroke etiology. Eighth, many of our exposure phenotypes like
HbA1c levels, fasting glucose, and fasting insulin are time-
dependent and might change with age, disease stage, and be-
havioral factors, as well as by epigenetic factors. However, our
Mendelian randomization analyses are inherently limited in not
taking such effects into account. Novel methods in addressing
the time-varying effects47 of these phenotypes on stroke sub-
types should be examined in the future using datasets with
available data. Finally, our analyses were primarily based on
datasets involving individuals of European ancestry and might
thus not be applicable to other ethnicities.

Our results suggest causal associations of T2D and hyper-
glycemia with a higher risk for ischemic stroke, particularly
large artery and small vessel stroke. Against findings from
secondary analyses of clinical trials, our results support that
therapeutic approaches aimed at lowering HbA1c have the
potential to decrease the risk of ischemic stroke.
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