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Adoptive T-cell therapy can involve donor lymphocyte infusion after allogeneic
hematopoietic stem cell transplantation, the administration of tumor infiltrating
lymphocyte expanded ex-vivo, or more recently the use of T cell receptor or chimeric
antigen receptor redirected T cells. However, cellular therapies can pose significant
risks, including graft-vs.-host-disease and other on and off-target effects, and therefore
strategies need to be implemented to permanently reverse any sign of toxicity. A suicide
gene is a genetically encoded molecule that allows selective destruction of adoptively
transferred cells. Suicide gene addition to cellular therapeutic products can lead to
selective ablation of gene-modified cells, preventing collateral damage to contiguous
cells and/or tissues. The “ideal” suicide gene would ensure the safety of gene modified
cellular applications by granting irreversible elimination of “all” and “only” the cells
responsible for the unwanted toxicity. This review presents the suicide gene safety
systems reported to date, with a focus on the state-of-the-art and potential applications
regarding two of the most extensively validated suicide genes, including the clinical
setting: herpes-simplex-thymidine-kinase and inducible-caspase-9.
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INTRODUCTION
Adoptive T-cell therapy can involve donor lymphocyte infusion
(DLI) after allogeneic hematopoietic stem cell transplantation
(allo-HSCT) (Copelan, 2006; Bar et al., 2013), the administra-
tion of tumor infiltrating lymphocyte (TILs) expanded ex-vivo
(Dudley et al., 2013), or more recently the use of T cell recep-
tor (TCR) or chimeric antigen receptor (CAR) redirected T cells
(Cieri et al., 2014).

Cellular therapies are not without risks. Donor T cells within
the HSC product or infused post-transplant as DLI have been
associated with potentially fatal graft-vs.-host-disease (GVHD)
(Copelan, 2006), whereas administration of engineered T cells has
also resulted in on/off target toxicities as well as a cytokine release
syndrome (Tey, 2014).

Unlike small molecules or biologics, cell therapies have a very
long, or even an indefinite half-life, therefore since toxicity can
be progressive a safety switch is needed in order to eliminate
the infused cells in case of adverse events. A suicide gene is a
genetically encoded molecule that allows selective destruction of
adoptively transferred cells. Suicide gene addition to cellular ther-
apeutic products can lead to selective ablation of gene-modified
cells, preventing collateral damage to contiguous cells and/or tis-
sues. The “ideal” suicide gene would ensure the safety of gene
modified cellular applications by granting irreversible elimination
of “all” and “only” the cells responsible for the unwanted toxicity.

This review presents the suicide gene safety systems reported
to date, with a focus on the state-of-the-art and potential

applications regarding two of the more extensively validated
suicide genes in the clinical setting: herpes-simplex-thymidine-
kinase (HSV-TK) and inducible-caspase-9 (iCasp9).

AVAILABLE SUICIDE GENE TECHNOLOGIES
Suicide gene technologies can be broadly classified based upon
their mechanism of action in metabolic (gene-directed enzyme
prodrug therapy, GDEPT), dimerization inducing, and therapeu-
tic monoclonal antibody mediated. The ideal agent for suicide
gene activation should be biologically inert, have an adequate bio-
availability and bio-distribution profiles, and be characterized by
intrinsic acceptable or absent toxicity.

GDEPT (Springer and Niculescu-Duvaz, 2000) converts a
nontoxic drug to a toxic compound in gene-modified cells.
Examples include herpes simplex virus thymidine kinase (HSV-
TK) (Ciceri et al., 2007, 2009), and cytosine deaminase (CD)
(Tiraby et al., 1998). Unlike the mammalian thymidine kinase,
HSV-TK is characterized by 1000 fold higher affinity to spe-
cific nucleoside analogs (Elion et al., 1977), including ganciclovir
(GCV), making it suitable for use as a suicide gene in mam-
malian cells. Mechanistically, HSV-TK phosphorylates nucleo-
side analogs, including acyclovir and GCV, and their result-
ing triphosphate form incorporates into DNA via the action
of DNA polymerase, leading to chain termination and cell
death (Moolten, 1986). HSV-TK/GCV also induces apoptosis
through CD95-L independent CD95 aggregation, leading to the
formation of a Fas-associated death domain protein (FADD)
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and caspase-8-containing death-inducing signaling complex
(Beltinger et al., 1999). Similarly, the CD gene encodes cyto-
sine deaminase, which converts 5-fluorocytosine (5-FC) into the
cytotoxic 5-fluorouracil (5-FU) (Tiraby et al., 1998).

Apoptotic genes (e.g., Caspases) eliminate cells by inducing
apoptosis (Yamabe et al., 1999; Carlotti et al., 2005; Di Stasi et al.,
2011; Zhou et al., 2014). Chimeric proteins composed of a drug
binding domain linked in frame with components of the apop-
totic pathway allow conditional dimerization and apoptosis of the
transduced cells after administration of a non-therapeutic small
molecule dimerizer (Belshaw et al., 1996; Spencer et al., 1996;
MacCorkle et al., 1998; Straathof et al., 2005). Examples include
the inducible FAS (iFAS) or inducible Caspase9 (iCasp9)/AP1903
systems (Clackson et al., 1998; Di Stasi et al., 2011).

Genetic modification of cells with a protein expressed in the
plasma membrane (Hewitt et al., 2007), allows cell removal after
administration of a specific monoclonal antibody. For example,
retroviral delivery of the CD20 molecule into T cells and anti-
CD20 monoclonal antibody treatment post T cell infusion has
been validated in preclinical models as a suicide gene strategy
(Introna et al., 2000; Serafini et al., 2004; Griffioen et al., 2009). As
an extension of this concept, other interesting pre-clinical mod-
els have been investigated: Kieback et al. introduced a 10 amino
acid tag of c-myc protein into the TCR sequence allowing elimi-
nation after monoclonal antibody administration (Kieback et al.,
2008), whereas a group from London generated a novel compact
suicide gene (RQR8) combining epitopes from CD34 and CD20
enabling CD34 selection, cell tracking, as well as deletion after
anti-CD20 monoclonal antibody administration (Philip et al.,
2014), and finally, another approach has used truncated human
EGFR polypeptide/anti-EGFR monoclonal antibody (Wang et al.,
2011).

The mechanisms of action for the different suicide gene fami-
lies is depicted in Figure 1, and characteristics of the major suicide
gene systems investigated to date for adoptive immunotherapy are
listed in Tables 1, 2.

The effectiveness of four suicide gene strategies has been com-
pared in vitro using Epstein Barr virus cytotoxic T cells genetically
modified to express HSV-TK, iCasp9, mutant human thymidy-
late kinase (mTMPK), or human CD20 codon optimized suicide
gene. In this study, activation of HSV-TK, iCasp9, and CD20
ultimately resulted in equally effective destruction of transduced
T cells. However, while iCasp9 and CD20 effected immediate
cell-death induction, HSV-TK-expressing T cells required 3 days
of exposure to ganciclovir to reach full effect, and mTMPK-
transduced cells showed lower T-cell killing at all time-points
(Marin et al., 2012).

Currently a one size fits all suicide gene is yet to be identi-
fied. The best suicide gene strategy should be designed for each
specific application, taking into consideration the nature of target
cells, the source of the suicide gene, the type of activating agent,
the onset of action, and the elimination’s kinetic of the target
population.

Pre-clinical and clinical data employing the iCasp9 suicide
gene system showed preferential elimination of cells with high
iCasp9 transgene expression with sparing of quiescent cells. While
this can represent an advantage when used for DLI, sparing viral

and fungal reactive T cells (Zhou et al., 2014), complete elimi-
nation of CAR/TCR redirected T cells or HSCs may be necessary
for the adverse event to abate. Therefore selection of cells with
bright transgene expression, or combination of two suicide genes
is advisable. Several strategies can be employed to ensure that all
the “gene corrected” cells harbor the suicide gene. Cells may be
transduced with a bicistronic vector with the suicide gene before
an IRES or 2A sequence, or alternatively a selection strategy is
used with introduction of a selectable marker.

The source of the suicide gene is also an important compo-
nent of the strategy design. For example, in contrast to the iCasp9
suicide gene almost completely human derived, viral derived
systems, such as HSV-TK, proved immunogenic in immune-
competent patients with limited persistence of HSV-TK cells
(Traversari et al., 2007).

Activating agents can also have varying effects, affecting the
choice of which suicide gene system utilize for a given applica-
tion. For example, AP1903 is a biologically inert small molecule
dimerizer, whereas ganciclovir can also be used as a therapeutic
agent to treat cytomegalovirus reactivation, precluding its use in
patients receiving HSV-TK modified cells. The use of therapeutic
monoclonal antibodies, in case of CD20 suicide gene or other sur-
face markers, can lead to on-target effects. Therefore the adoption
of molecules/antibodies with low toxicity profiles are preferred.
Rapid onset of action of iCasp9 may be preferred to shut down a
potentially fatal GVHD event. However a more gradual onset of
action might be preferred to preserve a graft versus tumor effect.

Finally, resistance mechanisms can develop with these new
technologies, and GCV-resistant truncated HSV-TK forms have
been observed (Garin et al., 2001).

Currently, only HSV-TK/GCV and iCasp9/AP1903 have
entered clinical trials to enhance the safety of cellular therapeutics
for hematologic malignancies.

CLINICALLY VALIDATED SUICIDE GENES FOR CONTROL OF
GVHD
Two suicide genes have been validated in the clinic for control
of GVHD from administration of donor T cells after HSCT in
an effort to enhance immune recovery and maximize graft-vs.-
leukemia (GVL) effect: the iCasp9 and the HSV-TK suicide genes.
Clinical results are summarized in Table 3.

HSV-TK SUICIDE GENE
Bonini et al. demonstrated the efficacy of HSV-TK suicide gene
modified T cells in controlling GVHD in 8 patients who received
DLI after HSCT for disease relapse or EBV post-transplant
lymphoproliferative disease (PTLD). Importantly, a GVL effect
attributed to the DLI was demonstrated in five patients (Bonini
et al., 1997).

Subsequently, Tiberghien reported on 12 patients with hema-
tologic malignancies who underwent HLA-matched related
donor allo-HSCT (Tiberghien et al., 2001), and received HSV-TK
DLI on the day of transplantation. Treatment with GCV alone
resulted in complete remission (CR) in two of the three patients
with aGVHD and CR was achieved with the addition of steroids
in the third. GCV treatment also resulted in CR for the patient
with cGVHD (Tiberghien et al., 2001).
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FIGURE 1 | Mechanism of action of the different suicide gene

technologies. (A) Suicide gene modification of cells of interest to allow
conditional elimination in case of serious adverse events. Surface marker
suicide genes, e.g., CD20, can also function as a selectable marker. (B)

Dimerization induced e.g., iCasp9 protein with FKBP12-F36V binding
domain joined to human caspase-9. Administration of AP1903 leads to
dimerization of iCasp9 activating the intrinsic mitochondrial apoptotic
pathway. (C) Metabolic, e.g., HSV/TK leads to phosphorylation of

ganciclovir, and its triphosphate form (phosphorylated also through cellular
kinases) incorporates into DNA with chain termination. (D) Monoclonal
antibody (mAb) mediated, e.g., CD20 overexpression allows elimination
after exposure to CD20 mAb through complement/antibody dependent
cellular cytotoxicity (CDC/ADCC). LTR: long terminal repeat, psi: retroviral
packaging element, iCasp9: inducible Caspase9, CARD: Caspase
recruitment domain, HSVTK: herpes simplex virus thymidine kinase, GCV:
ganciclovir, mAb: monoclonal antibody.

The anti-tumor effects of HSV-TK DLI was studied in
23 patients with relapsed hematologic malignancies (Oliveira
et al., 2012), where a clinical benefit was demonstrated in
65% of the cases. The development of antibodies against HSV-
TK did not preclude a GVL effect, as the patients remained
in complete remission thereafter, possibly due either to sur-
vival of a low T cell number in the periphery sufficient for
immune surveillance, or abrogation of minimal residual dis-
ease. Eventually, the gradual elimination of HSV-TK cells can
also contribute to a protracted GvL effect. GVHD was suc-
cessfully controlled abrogated by the safety switch in this trial,
as well (Traversari et al., 2007). Of note, infused T cells per-
sisted in vivo up to 14 years after infusion (Oliveira et al.,
2012). The largest study with 28 patients receiving HSV-TK
engineered DLI after T cell depleted haplo-HSCT was pub-
lished in 2009 (Ciceri et al., 2009). GVHD was successfully

controlled with daily GCV administered for 2 weeks, with no
cases of GCV resistance, progression from acute to chronic
GVHD, and no GVHD-associated deaths. For patients with
primary acute leukemia transplanted in remission the non-
relapse mortality at 3 years was 19%. All patients in remis-
sion 3 years after transplant remained so in the following years
(longest follow up 9 years) (Ciceri et al., 2009; Oliveira et al.,
2012) Additional indirect evidence suggesting a GVL effect
was the finding of de novo loss of mismatched HLA expres-
sion on leukemic blasts in one patient at the time of relapse
(Vago et al., 2009).

iCasp9 SUICIDE GENE
Spencer et al. (1993) and Clackson et al. (1998) demon-
strated the ability to control signaling pathways through the
administration of lipid permeable synthetic ligands, inducing

www.frontiersin.org November 2014 | Volume 5 | Article 254 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Jones et al. Cellular therapy and suicide genes

Table 1 | Comparison of suicide genes for adoptive immunotherapy.

Category Technology Source Activating

agent

Mechanism(s) References

Metabolic HSV-TK Virus GCV 1. Phosphorylated nucleotide
disrupts DNA with cell death;
2. Apoptosis

Moolten, 1986; Bonini et al.,
1997; Tiberghien et al., 2001;
Ciceri et al., 2007, 2009; Vago
et al., 2009; Oliveira et al., 2012

CD Bacteria,fungi 5-FC Conversion of 5-FC to cytotoxic
5-FU

Tiraby et al., 1998

Dimerization inducing iFAS Human Small molecule
dimerizer

Dimerization and induction of
apoptosis

Spencer et al., 1996

iCasp9 Human As above As above Spencer et al., 1993; Clackson
et al., 1998; Di Stasi et al., 2011;
Zhou et al., 2014

Therapeutic mAb mediated CD20 Human Anti-CD20 mAb Complement dependent/antibody
dependent cellular cytotoxicity

Introna et al., 2000; Serafini et al.,
2004; Griffioen et al., 2009

RQR8 Human Anti-CD20 As above Philip et al., 2014

c-myc Human Anti-cmyc As above Kieback et al., 2008

EGFR Human Anti-EGFR As above Wang et al., 2011

Legend: HSV-TK, herpes simplex virus thymidine kinase; GCV, ganciclovir; CD, cytosine deaminase; 5-FC, 5-fluorocytosin; 5-FU, 5-fluorouracil; iFAS, inducible FAS;

iCasp9, inducible Caspase9; mAb, monoclonal antibody; EGFR, Epidermal growth factor receptor.

Table 2 | Pros and cons of suicide gene technologies.

Category Example Clinically validated Pros Cons

Metabolic HSV-TK � (safe) Gradual onset
Eliminates alloreactive cells

Immunogenic in
immunocompetent pts; unwanted
elimination of modified T-cells
with tx use of GCV

Dimerization inducing iCasp9 � (safe) Rapid onset
Eliminates alloreactive cells
Non Immunogenic
Use non-therapeutic agent

Incomplete elimination, although
of ≥90% of cells

Therapeutic mAb mediated Surface
molecule (e.g.
CD20)

✘ (not validated) Rapid onset
Non immunogenic
No additional selectable marker
required

On-target toxicity from mAb

Legend: HSV-TK, herpes simplex virus thymidine kinase; GCV, ganciclovir; iCasp9, inducible Caspase9; tx, therapeutic.

conditional dimerization of intracellular proteins. They gener-
ated an inducible Casp9 suicide gene consisting of FKBP12-F36V
domain linked, via a flexible Ser-Gly-Gly-Gly-Ser linker, to
�Caspase 9, which is Caspase without its Caspase activator
recruitment domain (Straathof et al., 2005). FKBP12-F36V con-
sists of a FKBP domain with a substitution at residue 36 of
phenylalanine for valine, binding synthetic dimeric ligands, such
as AP1903 (Iuliucci et al., 2001), with high selectivity and sub-
nanomolar affinity. The transgenic cassette was redesigned later
to include a truncated CD19 (�CD19) molecule, serving as
selectable marker to ensure ≥90% purity (Zhou et al., 1991;
Fujimoto et al., 1998; Tey et al., 2007). After preclinical validation
(Straathof et al., 2005; Tey et al., 2007), Brenner and collaborators

reported their early results of a phase I clinical trial using the
iCasp9 system (Di Stasi et al., 2011). Recipients of CD34-selected
haplo-HSCT for hematological malignancies received escalating
doses of iCasp9-modified allo-depleted (Amrolia et al., 2006;
Tey et al., 2007) T cells from day 30 onwards. The iCasp9-
modified T cells expanded and persisted for at least two years
in surviving patients. In four patients who developed aGVHD
the administration of 0.4 mg/kg AP1903 resulted in apoptosis
of ≥90% of iCasp9-modified T cells within 30 min, followed by
the rapid (within 24 h) and permanent abrogation of GVHD.
Remarkably, residual iCasp9-modified T cells were able to re-
expand, contained pathogen-specific precursors, without further
GVHD. Although T cells recognizing tumor-associated antigens
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Table 3 | Larger studies of suicide gene modified donor lymphocyte infusion.

Graft Disease Suicide Relapse N N (aGVHD; N (cGVHD; N, Clinical References

status (N) gene (N) response) response) response

TCD-Haplo CR (9)
AD (1)

iCasp9 (10) 4 4 (CR) 0 5 CCR Di Stasi et al., 2011;
Zhou et al., 2014

N/A Relapse or EBV-PTLD (8) HSV-TK (8) N/A 2 (CR) 1(PR) 3 CR, 2 PR Bonini et al., 1997

TCD-MRD AD (5)
CR (3)
CP (4)

HSV-TK (12) 2 5; CR 3/5 1 (CR) 4 (CR/CCR) Tiberghien et al., 2001

MRD, MMRD Relapse (30) HSV-TK (23) N/A 4 (CR) 1 (clinical benefit) 6 CR, 5 PR Ciceri et al., 2007

TCD-Haplo AD (20)
CR (30)

HSV-TK (28) 17 10 (CR) 1(CR) 5 CR, 11 CCR Ciceri et al., 2009

Legend: GVHD, graft-versus-host-disease; a, acute; c, chronic; N, number; TCD, T cell depleted; haplo, 5/10 HLA matched haploidentical; (C)CR, (continuous)

complete remission; AD, active disease; iCasp9, inducible Caspase9; D, day(s); EBV-PTLD, Epstein-Barr virus post-transplant lymphoproliferative disease; HSV-TK,

herpes simplex virus thymidine kinase; NA, not available/applicable; PR, partial response; (M)MRD, (mis)matched related donor; CP, chronic phase.

(TAAs) could be reactivated ex vivo from the peripheral blood
before and after AP1903 infusion, three of the four patients receiv-
ing AP1903 had disease relapse, compared to only one of six
patients who were not so treated, raising the concern that elim-
ination of alloreactive cells would hamper GVL (Zhou et al.,
2014), because of the potential co-expression of minor histo-
compatibility antigens on hematopoietic and non-hematopoietic
tissues (de Bueger et al., 1992; Wang et al., 1995; Meadows
et al., 1997; Vogt et al., 2000). The relative contribution of allo-
reactive cells, as compared with TAAs specific T cells is not
difficult to quantify, however since most TAAs are aberrantly
expressed self-proteins resulting in T cells with low-affinity TCR,
it is possible that the alloreactive component is more determi-
nant for GvL. Additionally, although low frequency TAA specific
T cells are transferred to patients after allo-HSCT or DLI, they
do not persist (Rezvani et al., 2005, 2007), potentially due to
activation-induced apoptosis (Molldrem et al., 2003), or termi-
nally differentiated effector memory phenotype (Brenchley et al.,
2003).

Given the successful abrogation of GVHD in vivo, sev-
eral ongoing clinical trials have replaced the time consum-
ing in vitro allo-depletion step with in vivo allo-depletion
using AP1903 for those developing GVHD in the haploiden-
tical (Clinicaltrials.gov identifier NCT01494103; NCT02065869;
NCT01744223), or matched related settings, (Clinicaltrials.gov
identifier NCT01875237).

In both the HSV-TK and iCasp9 studies, infusion of suicide
gene modified cells aided non-gene modified T cell immune
reconstitution (Ciceri et al., 2009; Bondanza et al., 2011; Di
Stasi et al., 2011), as a consequence of interleukin-7 secre-
tion by gene modified cells (Vago et al., 2012). The lack
of further aGVHD in these studies might suggest either (i)
complete elimination of allo-reactive cells, or (ii) develop-
ment of peripheral tolerance. Additionally, the incidence of
cGvHD was low in the HSV-TK T cell studies, and absent
in the iCasp9 trial (Di Stasi et al., 2011; Zhou et al.,
2014), and lymphocytes recovering from infused HSCs did not
cause GVHD likely because of thymic education (Vago et al.,
2012).

SUICIDE GENES APPLICATION FOR THE SAFETY OF
GENETICALLY REDIRECTED T CELLS
TCR (Robbins et al., 2011) or CAR redirected T cells (Porter
et al., 2011; Kochenderfer et al., 2012; Brentjens et al., 2013) have
been successful implemented in several clinical trials. However
adverse events including autoimmunity or off-target effects have
been reported. Autoimmune phenomena manifested because the
targeted antigens was shared also on normal tissues, (Yee et al.,
2000; Dudley et al., 2002; Johnson et al., 2009; Parkhurst et al.,
2011; Morgan et al., 2013) whereas off-target cardiac toxicity
after high-avidity MAGE-A3 TCR T cells infusion was attributed
to cross-reactivity with the Titin peptide in the striated mus-
cles (Linette et al., 2013). Other toxicities observed included
cytokine release syndrome (Brentjens et al., 2010; Kochenderfer
et al., 2012), organ damage, including a case of fatal acute
lung injury (Lamers et al., 2006, 2013; Morgan et al., 2010),
and hypogammaglobulinemia from depletion of normal B cells
(Kochenderfer et al., 2012). Although strategies including gamma
globulin replacement, high dose corticosteroids, or the inter-
leukin 6 receptor blocking antibody, tocilizumab exist for the
management of hypogammaglobulinemia or cytokine release
(Grupp et al., 2013; Davila et al., 2014), the use of a suicide
gene is potentially able to irreversibly abrogate such toxicities.
Pre-clinical experiments expressing the iCasp9 in conjunction
with CAR CD19/CD20 T cells have proven the feasibility of
such approach (Hoyos et al., 2010; Budde et al., 2013), and a
phase 1 clinical trials in patients with sarcoma or neuroblastoma
receiving iCasp9 T cells co-expressing a CAR against disialogan-
glioside GD2 molecule is ongoing (Clinicaltrials.gov identifier
NCT01822652 and NCT01953900, respectively). If toxicity is
related to the transduced T cells only, selectable markers could
be obviated, especially in an autologous setting, provided that all
the transduced cells also harbored the suicide gene in order to be
eliminated in case of serious adverse events.

CONCLUSIONS
Innovative technologies offer compelling opportunities for the
optimization of gene therapy based approaches. Successful clin-
ical validation of suicide gene strategies to control GVHD after
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allo-HSCT is now in advanced phase clinical studies, and intro-
duction of suicide genes in conjunction with CAR modification
of T cells for cancer immunotherapy is now undergoing phase 1
clinical testing.

Suicide genes have also been employed as cytotoxic strategy,
in vitro and in vivo models (Huber et al., 1991; Clark et al., 1997;
Nor et al., 2002; Nakayama et al., 2005; Hodish et al., 2009; Evans
and Dey, 2011; Duarte et al., 2012; Mazor et al., 2012), including
combination with replication competent oncolytic viruses (Ahn
et al., 2009; Kaur et al., 2009), with some evidence of clinical ben-
efit in solid tumors (Pandha et al., 1999; Freytag et al., 2003, 2007;
Nemunaitis et al., 2003; Voges et al., 2003; Li et al., 2007; Xu et al.,
2009).

Finally, non-integrating vectors (Banasik and McCray, 2010),
strategies for the replacement or correction of defective genes
(Narsinh et al., 2011; Mukherjee and Thrasher, 2013; Li et al.,
2014), together with effective suicide gene strategies, may lead to a
more broad application of stem cell or inducible pluripotent stem
cell based applications in cancer and regenerative medicine.
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