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Abstract: The Pythagorean fuzzy sets conveniently capture unreliable, ambiguous, and uncertain
information, especially in problems involving multiple and opposing criteria. Pythagorean fuzzy
sets are one of the popular generalizations of the intuitionistic fuzzy sets. They are instrumental
in expressing and managing hesitant under uncertain environments, so they have been involved
extensively in a diversity of scientific fields. This paper proposes a new Pythagorean entropy for
Multi-Criteria Decision-Analysis (MCDA) problems. The entropy measures the fuzziness of two
fuzzy sets and has an influential position in fuzzy functions. The more comprehensive the entropy,
the more inadequate the ambiguity, so the decision-making established on entropy is beneficial.
The COmplex PRoportional ASsessment (COPRAS) method is used to tackle uncertainty issues in
MCDA and considers the singularity of one alternative over the rest of them. This can be enforced
to maximize and minimize relevant criteria in an assessment where multiple opposing criteria are
considered. Using the Pythagorean sets, we represent a decisional problem solution by using the
COPRAS approach and the new Entropy measure.

Keywords: entropy; pythagorean fuzzy sets; multiple criteria decision analysis; decision-making;
complex proportional assessment

1. Introduction

Decision-making methods reflect how decisions are completed and how they can be
completed better or more successfully. The decision-making process can also be described
as evaluating successive decision alternatives and is broadly used in both the social sciences
and the more demanding natural sciences and engineering. The fuzzy sets generalizations
are involved in the process of decision making by modeling the value of decisional attributes
with uncertainty [1]. A very important aspect is that, unlike probabilistic theories and game
theory, these generalizations are used to handle incomplete and uncertain information
formulated by the decision-maker [2].

When we have complete and accurate information about each decision attribute and
know the crisp values of the decision criteria weights, we deal with decision-making with
certainty. On the other hand, when the information is uncertain, the values are unknown or
given in some approximation, then we are dealing with decision-making under uncertainty.
One approach successfully used to model uncertainty is fuzzy set theory. A fuzzy set is
often a functional relationship linking a feature value to a so-called membership function. A
domain expert often identifies this function and less often by physical readings. Fuzzy sets
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as a generalization of classical two-state logic allow better reality modeling, especially in
an uncertain environment [3,4]. Fuzzy sets have been widely used in technics and complex
Multi-Criteria Decision-Analysis (MCDA) problems. They have been prevalent since they
were proposed by Zadeh [5].

Considerable mathematicians put forth exceptional tries to compute the concept of
fuzzy sets in various substantial manners. To overcome the confinements of the fuzzy
set in managing conflicting statements regarding the enrollment of articles and decision-
making, in 1986, Atanassov submitted the intuitionistic fuzzy set [6,7]. The intuitionistic
fuzzy sets are progressively effective and valuable because they execute the extents of
conviction, incredulity, and hesitation margin simultaneously [8]. An intuitionistic fuzzy
set is portrayed by two functions, i.e., a membership and a non-membership function. They
specify the degree of membership and non-membership of each element [9]. The degree of
hesitancy is 1 minus the degrees of membership and non-membership. Thus, the aggregate
of both significances is smaller than one [3]. With the two functions relating to membership
and non-membership and the hesitancy index of an Intuitionistic Fuzzy Sets (IFS), we can
express three states: support state, opponent state, and neutral state [10].

An intuitionistic fuzzy set is a powerful tool for dealing with indeterminate or uncer-
tain information in decision making, mathematical programming tasks, medical diagnosis
cases [11], pattern recognition problems [12], and human expressions such as behavior,
perception, and understanding [13]. Many researchers have successfully used intuitionistic
fuzzy theory in decision-making at different stages of this process [14–17]. The concept of
multi-criteria decision analysis (MCDA) involves using expert knowledge. The expert’s
task is to evaluate different alternatives concerning specific criteria.

One way of expressing expert knowledge in MCDA methods is a characteristic objects
comparison approach called Characteristic Object METhod (COMET) [18,19]. However,
many popular multi-criteria decision analysis methods use expert knowledge in the form
of weights to evaluate alternatives. Popular MCDA methods using this approach include
Technique for the Order of Prioritisation by Similarity to Ideal Solution (TOPSIS) [20,21],
VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [22,23], Preference Rank-
ing Organization METHod for Enrichment of Evaluations I & II (PROMETHEE) [24,25], Sta-
ble Preference Ordering Towards Ideal Solution (SPOTIS) [26,27], COmbined COmpromise
SOlution (COCOSO) [28,29], Multi-Attributive Border Approximation area Comparison
(MABAC) [30,31], or Additive Ratio ASsessment (ARAS) [32].

These weights can be assigned arbitrarily by an expert or using a subjective or objective
method. In the case of objective weight assignment, the significance of the criteria is
examined using a measure such as Entropy or Standard Deviation. In the subjective
approach, a domain expert determines the significance of the criteria. The significance of
criteria in subjective methods can be expressed by criterion rankings or pairwise criteria
comparisons. Subjective weighting methods based on criterion rankings are the Best-Worst
Method (BWM) [33], FUll COnsistency Method (FUCOM) [34], or Step-wise Weighting
Assessment Ratio Analysis (SWARA) [35]. The most popular approach is the Analytical
Hierarchy Process (AHP) regarding subjective weighting by pairwise comparisons [36].

Although these methods work on crisp values, they cannot be applied to matrices
represented using fuzzy logic and extensions. Therefore, new extensions to these methods
are proposed to account for uncertain data. Ghorabaee et al. proposed an extension of the
SWARA and CRiteria Importance Through Intercriteria Correlation (CRITIC) approach to
determine the criterion weights for a matrix represented using fuzzy sets [37]. Lyu et al.
proposed an extension of the FAHP method with trapezoidal fuzzy numbers for evaluating
urban infrastructure [38]. Finally, Joshi et al. presented a new decision-making method
based on correlation coefficients that use entropy weights in an IFS environment [39].

The use of IFS has found wide application in real-life situations due to the excellent
modeling properties of human knowledge in decision-making tasks such as public admin-
istration, engineering, management science, economics, military, and scientific research.
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In some real-world problems solved by MCDA methods, it turns out that all the
degrees of estimation of the membership and non-membership of the individual alterna-
tives provided by the decision-maker can be determined such that their sum is greater
than 1. Such a situation is inappropriate for applying intuitionistic fuzzy sets and makes
uncertainty modeling difficult. Therefore, as an extension of intuitionistic fuzzy sets,
a Pythagorean fuzzy set (PFS) is presented, which is more flexible in expressing and
dealing with uncertainty and imprecision than intuitionistic fuzzy sets in various decision-
making procedures.

Pythagorean fuzzy sets were initially developed by Atanassov in 1999 using the name
“intuitionistic fuzzy sets of the second kind”. Yager presented the first real applications
of PFS in decision-making in 2013 [40]. Yang and Hussain [41], and Zhang [42] proposed
various new estimations of fuzzy entropy values for Pythagorean fuzzy sets depending on
the probabilistic type, distance, and Pythagorean index.

MCDA provides decision-makers and experts with a wide range of methodologies
well suited to the complexity of decision problems. MCDA methods mostly incorporate
human participation and judgment. Pythagorean fuzzy sets provide better space for experts
to depict their views concerning the vagueness and uncertainty of the considered Multi-
Criteria Decision Making (MCDM) issues [43]. Since the introduction of Pythagorean fuzzy
MCDA, researchers have shown great interest and concentration in exploring various
applications of the Pythagorean fuzzy set.

Previous researchers have previously developed multiple MCDA approaches to illus-
trate the complex choice problems that arise in our daily life. Each choice problem consists
of a set of alternatives, criteria, and a vector of weights and types of each criterion (cost
or profit). The COPRAS method has been repeatedly applied to uncertainty problems,
where uncertainty has been modeled mainly by fuzzy sets. This approach is a suitable
and uncomplicated technique to succeed in MCDM problems. The COPRAS approach has
been prolonged by countless scholars from the characteristics of composition in the most
modern times. This approach estimates the individuality of one alternative over another
and is an example of a reasonable equating of alternatives. This approach can maximize
and minimize criteria in a study where more than one measure must be evaluated [44].
The COPRAS approach progressively ranks and evaluates alternatives in terms of their
suitability and degree of use [45]. It is a progressive approach to solving real-world diffi-
culties. Previous research has also combined the COPRAS method with the Pythagorean
Fuzzy Sets environment. For example, Buyukozkan and Gocer used PFS COPRAS to
evaluate alternative Digital Supply Chain partners [46]. In addition, Alipour et al. used the
SWARA-COPRAS approach to select a fuel cell combined with hydrogen supplier [47].

Due to the vast pool of available tools related to multi-criteria decision analysis, the
COPRAS approach has been compared more than once. For example, Özcan and Çelik
compared the COPRAS method with the TOPSIS method in a machine selection problem in
the food industry in Turkey [48]. Pamucar and et al. compared the COPRAS method with
four other multi-criteria decision analysis methods in a site selection problem for developing
a multimodal logistics center on the Danube River [49]. Borkar and et al. compared the
COPRAS and ELECTRE approaches in the manufacturing domain problem [50]. Mulliner
and et al. compared the WPM, WSM, and TOPSIS methods with the COPRAS technique in
the sustainable housing affordability assessment problem [51].

1.1. Challenges and Motivation

Based on the above review, it can be concluded that the COPRAS method is a promis-
ing approach to decision support that has been developed relatively recently. Unfortunately,
applications using Pythagorean Fuzzy Sets are pretty limited. Therefore, further work
should be conducted towards developing the COPRAS method using entropy measures.
The entropy measure in PFS is also an interesting issue, as it is the basis for determin-
ing weights in decision matrices in the COPRAS technique. Research towards group
decision-making is directed toward aggregating expert knowledge, which is one of the
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main challenges of group decision-making. Many techniques related to multi-criteria
decision analysis provide an answer for a single subjective set of evaluations, so they are
extended to the topic of group decision-making. In addition, there is a difficulty associated
with incorporating uncertain data into the process of expert knowledge extraction.

Due to the above limitations associated with group decision-making, the motivation
of this paper is as follows:

• Some works have omitted research on the sensitivity analysis of the COPRAS method
in a PFS environment [52];

• Several papers miss the process of assigning weights in the aggregate preference
matrix of Pythagorean Fuzzy Sets decision-makers [53];

• Sensitivity analysis of the proposed entropy methods in Pythagorean Fuzzy Sets
is missing;

• The small number of approaches related to entropy determination in the Pythagorean
Fuzzy Sets environment results in a lack of comparisons and accurate statements.

1.2. Contribution and Novelties

This paper focuses on using the Pythagorean Fuzzy COPRAS approach in group
decision-making. A new Pythagorean Fuzzy Entropy measure is proposed to determine
the attribute weights for the group decision-making problem. The proposed approach is
applied to a crop field evaluation problem involving four domain experts. In addition,
a sensitivity analysis is performed in this paper to check the accuracy of the proposed
approach. The main contribution of our work is applying the new Pythagorean Fuzzy
Entropy measure combined with the COPRAS method for crop field evaluation.

1.3. Framework of This Study

The rest of the paper is organized as follows. Section 2 gives a brief introduction to
the Pythagorean fuzzy set. In the next Section 3, a new entropy measure PFS is proposed.
Section 4 presents a practical application in decision-making and sensitivity analysis of
the proposed approach. Finally, Section 5 concludes with a summary of the paper and
directions for future work.

2. Preliminaries

Yager [54] defines the Pythagorean fuzzy set as: Let us consider a non-empty and
finite set N of nominal elements, N = {n1, n2, . . . , nm}. A Pythagorean fuzzy set K in the
crisp set N may be represented as (1):

K = {(n, µK(n), ϑK(n))|n ∈ N} (1)

where µK(n) : N → [0, 1] and ϑK(n) : N → [0, 1] with the condition 0 ≤ µK
2(n) +

ϑK
2(n) ≤ 1.

The µK(n) is the degree of membership of element n ∈ N; ϑK(n) is the degree of
non-membership of the element n ∈ N.

3. The New Entropy for Pythagorean Fuzzy Set

The fuzzy set theory causes the use of entropy to estimate the degree of fuzziness
in a fuzzy set. Fuzzy entropy describes the mathematical importance of the fuzziness
of fuzzy sets. Classical Shannon entropy is involved with probabilistic uncertainties,
whereas fuzzy entropy is involved with randomness, vagueness, fuzziness, and ambiguous
uncertainties [55]. Axiomatic entropy of fuzzy sets is persisted as the Pythagorean fuzzy
sets [56]. The entropy of fuzzy sets measures the fuzziness of two fuzzy sets. It has
an influential place in fuzzy functions, such as fuzzy neural network functions, fuzzy
knowledge base functions, fuzzy decision-making functions, fuzzy management functions,
and fuzzy management details functions [57].
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Definition 1. A real function E: pythagorean fuzzy set (N)→ [0, 1] is characterized as entropy
on pythagorean fuzzy set (N) if E satisfies the latter axioms [58]:

• Minimality: E(K) = 0, if A is crisp set;
• Maximality: E(K) = 1, if µK(n) = ϑK(n) = 1√

3
, ∀n;

• Resolution: E(K) ≤ E(L), if K is less fuzzy than L, i.e., µK(n) ≤ µL(n) ≤ 1√
3

and

ϑL(n) ≤ ϑK(n) ≤ 1√
3

for µL(n) ≤ µK(n) or µK(n) ≥ µL(n) ≥ 1√
3

and

ϑL(n) ≥ ϑK(n) ≥ 1√
3

for µL(n) ≥ µK(n);

• Symmetry: E(K) = E(Kc), where Kc is the complement of K.

According to Pythagorean fuzzy knowledge, we propose that this last Pythagorean fuzzy
entropy is analogous to the criteria:

Let N = n1, n2, n3, . . . , nm be the universal set. Let A = {(ni, µa(ni), ϑa(ni)|ni ∈ N)} be
a pythagorean fuzzy set on N.

Ep(A) =
1
m

m

∑
i=1

E#
p(S) (2)

where,

E#
p(A) =

1
1 +
√

e

[
log (2− µa(ni) + ϑa(ni)) + log (2 + µa(ni)− ϑa(ni))−

√
0.22764

]
×

×
(

1
0.04717

) (3)

for all i = 1, 2, 3, . . . , m.

Theorem 1. The measure Ep(A) is a valid entropy.

Proof. To prove the proposed measure is valid, we have to show that it satisfies the
properties as provided in Definition 1.

1. Minimality: if A is a crisp set, i.e., µa(ni) = 1, ϑa(ni) = 0 or µa(ni) = 0, ϑa(ni) = 1
for all ni ∈ N then,

1
1 +
√

e

[
log (2− µa(ni) + ϑa(ni)) + log (2 + µa(ni)− ϑa(ni))−

√
0.22764

]
×
(

1
0.04717

)
= 0

Therefore, Ep(A) = 0
2. Maximility: for all ni ∈ N, if µa(ni) = ϑa(ni) =

1√
3

then, 1
1+
√

e [log (2− µa(ni) + ϑa(ni))

+ log (2 + µa(ni)− ϑa(ni))−
√

0.22764
]
×
(

1
0.04717

)
= 1, for all ni ∈ N.

3. Resolution: in order to prove the fourth property, consider the function f (µ, ϑ) such
that (4):

f (µ, ϑ) =
1

1 +
√

e
[log (2− µa(ni) + ϑa(ni)) + log (2 + µa(ni)− ϑa(ni))−

−
√

0.22764
]
×
(

1
0.04717

) (4)

where µ, ϑ ∈ [0, 1].
The partial derivatives with respect to µ (5) and ϑ (6) are obtained as,

∂ f
∂µ

=
1

1 +
√

e

[
−1

2− µ + ϑ
+

1
2 + µ− ϑ

]
×
(

1
0.04717

)
(5)

∂ f
∂ϑ

=
1

1 +
√

e

[
1

2− µ + ϑ
+

−1
2 + µ− ϑ

]
×
(

1
0.04717

)
(6)
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We obtained that, ∂ f (µ, ϑ)
∂µ ≥ 0 when µ ≤ ϑ and ∂ f (µ, ϑ)

∂µ ≤ 0 when µ ≥ ϑ, whereas;
∂ f (µ, ϑ)

∂ϑ ≤ 0 when µ ≤ ϑ and ∂ f (µ, ϑ)
∂ϑ ≥ 0 when µ ≥ ϑ. Thus f is increasing with

respect to µ when µ ≤ ϑ and decreasing when µ ≥ ϑ. Moreover, f is decreasing with
respect to ϑ when µ ≤ ϑ and increasing when µ ≥ ϑ.
Presently, by using this property of the function, we can conclude that E(A) ≤ E(Ȧ),
if K is less fuzzy than L, i.e., µK(n) ≤ µL(n) ≤ 1√

3
and ϑL(n) ≤ ϑK(n) ≤ 1√

3
for

µL(n) ≤ µK(n) or µK(n) ≥ µL(n) ≥ 1√
3

and ϑL(n) ≥ ϑK(n) ≥ 1√
3

for µL(n) ≥ µK(n).

4. Symmetry: for the property we have A = (µa, ϑa) as Ac = (ϑa, µa). Thus, we
have (7),

E#
p(Ac) =

1
1 +
√

e

[
log (2− ϑa(ni) + µa(ni)) + log (2 + ϑa(ni)− µa(ni))−

√
0.22764

]
×
(

1
0.04717

)
=

=
1

1 +
√

e

[
log (2− µa(ni) + ϑa(ni)) + log (2 + µa(ni)− ϑa(ni))−

√
0.22764

]
×
(

1
0.04717

)
=

=E#
p(A)

(7)

Hence, E#
p(Ac) = E#

p(A).

4. Application of the Proposed Entropy with the Copras Method
4.1. Study Case

In this section, we use the Pythagorean fuzzy entropy in the COPRAS approach for
assessing five agriculture fields (A1, A2, A3, A4, A5). An agricultural scientist reviews for
specific points, incorporating a short priority sheet for checking the agriculture field. The
priority from an agricultural scientist (decision-maker) for a particular criterion has been
taken in terms of linguistic variables – Excellent, Good, Average, Poor, and Very Poor are
used in this research paper to determine the standard level. For a particular criterion, the
agricultural scientist will indicate the degree of priority level on a discrete scale of 1 (Very
Poor) to 5 (Excellent). The broad category of the priority sheet has been chosen to be a
physical factor, economic factor, infrastructure facilities, and government policies. Further,
in the priority sheet, these categories have been sub-divided into eleven different evaluation
criteria from top to bottom in the framework shown in Figure 1. Four primary criteria classi-
fications were considered, i.e., Physical, Economic, Infrastructure, and Government policies.
The Physical factors included criteria mainly related to cultivation, such as irrigation facili-
ties (C1), climate (C2), and solid (C3). The economic factors included attributes related to
the economics of maintaining agricultural fields, such as insurance against risk (C4), price
and income maximization (C5), and farm size (C6). For Infrastructure factors, storage (C7),
irrigation (C8), and transport (C9) were selected. Finally, for Government policies, the
criteria were legislative and administrative policies (C10) and the green revolution (C11).

Assessing agriculture fields

Physical factors Economic factors Infrastructure factors Government policies

Soil 
( ) 

Climate 
( ) 

Irrigation facilties 
 ( ) 

Farm size 
( ) 

Price and income
maximization 

( ) 

Insurance against
risk 
( ) 

Transport 
( ) 

Irrigation 
( ) 

Storage
( ) 

Green revolution 
( ) 

Legislative and
administrative

policies 
( ) 

Figure 1. Framework of Evaluation Criteria.

Step I: The decision-makers qualitatively expressed the linguistic evaluations for the 11 cri-
teria under consideration (Table 1). They have been transformed into Pythagorean fuzzy
information using their quantitative ratings in the Pythagorean fuzzy number (PFN) scale
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given in Table 2. We have a PFN value and a numeric symbol for each linguistic expression
from 1 to 5. Moreover, the decision makers provide the qualitative information for five
agriculture fields A1, A2, A3, A4 and A5 concerning criteria (Table 3) was transformed into
Pythagorean fuzzy information by using the defined quantitative rating in PFNs scale
given in Table 4.

Table 1. Linguistic evaluation for rating criteria.

DMi C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

DM1 5 5 4 4 5 5 4 5 4 4 5
DM2 3 3 5 5 3 3 5 4 5 4 3
DM3 4 5 4 5 4 4 3 4 3 5 4
DM4 5 4 5 3 4 5 4 3 4 4 5

Table 2. Linguistic terms for rating the importance of criteria and decision makers.

Linguistic Term PFNs

Excellent—5 (0.96, 0.27)
Good—4 (0.83, 0.46)

Average—3 (0.65, 0.54)
Poor—2 (0.46, 0.73)

Very Poor—1 (0.38, 0.84)

Table 3. Linguistic evaluation for rating of the alternatives by decision makers.

DMi Ai C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

DM1

A1 6 7 6 5 6 7 6 7 6 7 7
A2 4 7 7 7 6 5 7 6 6 6 7
A3 7 5 7 6 7 6 7 5 7 5 5
A4 5 5 5 6 7 6 5 7 4 6 7
A5 7 5 5 4 6 7 4 7 3 6 6

DM2

A1 7 6 5 3 5 7 6 6 7 7 6
A2 6 7 6 4 4 7 7 4 5 4 5
A3 3 7 7 6 4 6 7 5 7 3 4
A4 3 5 7 5 5 5 4 5 7 3 6
A5 6 5 6 5 5 6 3 6 3 4 6

DM3

A1 6 6 7 7 6 6 4 6 4 6 7
A2 5 6 6 7 6 7 6 7 4 6 7
A3 5 6 5 7 6 7 5 5 5 7 7
A4 4 4 7 6 5 5 5 7 6 7 5
A5 7 3 7 4 7 5 7 3 6 5 4

DM4

A1 7 6 3 6 7 4 7 6 4 5 5
A2 7 6 4 5 4 4 6 3 7 7 6
A3 3 5 4 6 6 4 5 7 7 6 6
A4 4 7 6 5 6 6 6 5 6 6 4
A5 5 7 6 7 5 6 6 7 6 7 6

Table 4. Linguistic terms for rating alternatives.

Linguistic Term PFNs

Excellent Good—7 (0.95, 0.27)
Very Good—6 (0.85, 0.44)

Good—5 (0.76, 0.63)
Medium Good—4 (0.65, 0.73)

Fair—3 (0.57, 0.79)
Medium Bad—2 (0.49, 0.87)

Bad—1 (0.41, 0.93)
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Step II: In this step, we start by evaluating the importance of the decision makers using
the previously defined linguistic terms, which are then transformed into fuzzy information
using the Pythagorean approach with defined quantitative scores on the PFNs scale given in
Table 2. We then calculate the weights of the decision makers using the given Equation (8):

wi =
µ2

a(ni) + π2
a(ni)

[
µ2

a(ni)

µ2
a(ni)+ϑ2

a (ni)

]
∑m

i=1 µ2
a(ni) + π2

a(ni)
[

µ2
a(ni)

µ2
a(ni)+ϑ2

a (ni)

] (8)

where ∑m
i=1 w = 1 and w ≥ 0. The decision makers weights are given in the Table 5.

Table 5. Decision Maker’s weights.

DM1 DM2 DM3 DM4

Linguistic Term 5 4 3 5
Weight 0.28868 0.23832 0.18431 0.28868

Step III: Presently, using the Pythagorean fuzzy weighted averaging aggregation operator
given as (9):

rij =

(√
1−

m

∏
i=1

(
1− µ2

ij

)wi
,

m

∏
i=1

(
ϑij
)wi

)
(9)

The individual decision matrices received from different decision-makers are then
aggregated into one main decision matrix. The resulting aggregated decision matrix is
shown in Table 6 (Npq).

Table 6. Aggregated Pythagorean fuzzy decision matrix.

Ci A1 A2 A3 A4 A5

C1 (0.916, 0.340) (0.852, 0.472) (0.804, 0.556) (0.672, 0.729) (0.899, 0.387)
C2 (0.891, 0.382) (0.916, 0.340) (0.851, 0.482) (0.841, 0.507) (0.836, 0.514)
C3 (0.820, 0.519) (0.864, 0.442) (0.887, 0.421) (0.894, 0.397) (0.861, 0.446)
C4 (0.825, 0.513) (0.879, 0.437) (0.878, 0.402) (0.808, 0.532) (0.824, 0.529)
C5 (0.879, 0.416) (0.769, 0.574) (0.869, 0.431) (0.869, 0.445) (0.845, 0.486)
C6 (0.896, 0.394) (0.867, 0.459) (0.847, 0.465) (0.818, 0.512) (0.882, 0.408)
C7 (0.875, 0.419) (0.916, 0.340) (0.897, 0.403) (0.772, 0.588) (0.806, 0.535)
C8 (0.891, 0.382) (0.805, 0.537) (0.850, 0.493) (0.888, 0.422) (0.906, 0.370)
C9 (0.833, 0.498) (0.860, 0.457) (0.934, 0.316) (0.856, 0.453) (0.746, 0.599)
C10 (0.905, 0.377) (0.869, 0.431) (0.825, 0.513) (0.847, 0.462) (0.858, 0.461)
C11 (0.899, 0.387) (0.902, 0.380) (0.832, 0.503) (0.852, 0.472) (0.826, 0.483)

Step IV: In this, we normalize the obtained aggregated pythagrean fuzzy deicion matrix
using the given Equation (10):

rij =
(
µij, ϑij

)
=

{
r̃ij, for benefits criteria;

r̃ij; , for cost criteria.
(10)

The normalized aggregated pythagorean fuzzy decision matrix is presented in Table 7
(N′pq).
Step V: In this step, we will calculate the entropy for the given criteria using the proposed
Pythagorean fuzzy entropy, shown in Table 8. Using the entropies next, we will calculate
the weights given in Table 9.
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Table 7. Normalized aggregated Pythagorean fuzzy decision matrix.

Ci A1 A2 A3 A4 A5

C1 (0.916, 0.340) (0.852, 0.472) (0.804, 0.556) (0.672, 0.729) (0.899, 0.387)
C2 (0.891, 0.382) (0.916, 0.340) (0.851, 0.482) (0.841, 0.507) (0.836, 0.514)
C3 (0.820, 0.519) (0.864, 0.442) (0.887, 0.421) (0.894, 0.397) (0.861, 0.446)
C4 (0.513, 0.825) (0.437, 0.879) (0.402, 0.878) (0.532, 0.808) (0.529, 0.824)
C5 (0.416, 0.879) (0.574, 0.769) (0.431, 0.869) (0.445, 0.869) (0.486, 0.845)
C6 (0.394, 0.896) (0.459, 0.867) (0.465, 0.847) (0.512, 0.818) (0.408, 0.882)
C7 (0.875, 0.419) (0.916, 0.340) (0.897, 0.403) (0.772, 0.588) (0.806, 0.535)
C8 (0.891, 0.382) (0.805, 0.537) (0.850, 0.493) (0.888, 0.422) (0.906, 0.370)
C9 (0.833, 0.498) (0.860, 0.457) (0.934, 0.316) (0.856, 0.453) (0.746, 0.599)
C10 (0.905, 0.377) (0.869, 0.431) (0.825, 0.513) (0.847, 0.462) (0.858, 0.461)
C11 (0.899, 0.387) (0.902, 0.380) (0.832, 0.503) (0.852, 0.472) (0.826, 0.483)

Table 8. Evaluation of entropy.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Entropy 0.85575 0.83121 0.83869 0.87884 0.86614 0.84272 0.84011 0.82771 0.84901 0.84428 0.83842

Table 9. Evaluation of weights of criteria.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Weight 0.08550 0.10005 0.09561 0.07181 0.07934 0.09322 0.09477 0.10212 0.08949 0.09230 0.09577

Step VI: Determining the Criteria’s weight
Considering the vector containing the criteria weights has a decisive effect on the

ranking order of the alternatives. In the proposed approach, we identify the vector of
criteria weights using a newly developed entropy measure.

• For unknown criteria weights:
If the criteria weights are completely unknown, then they are determined using the
following Equation (11):

wj =
1− Ep(A)

∑m
i=1
(
1− Ep(A)

) , (t = 1, 2, . . . , m) (11)

where Ep(A) = 1
m ∑m

i=1 E#
p(A).

Criteria weights are shown in the Table 9.
After determining the criterion weights and the Pythagorean fuzzy decision matrix,

the COPRAS method will evaluate the various alternatives. The flowchart for this method
is shown in Figure 2, and its steps are part of the whole process and as follows:

Pythagorean Fuzzy Complex Proportional Assessment 

Preliminary 
assumptions

Create
Intuitionistic Fuzzy

Decision Matrix

Obtain Criteria
Weights

Create a Weighted
Decision Matrix

Evaluation

Calculate the score
function s(rij)

Compute Maximizing
and Minimizing Index

Calculate Relative
Significance Value

Ranking 

Determine
the Priority order

Ranking the
alternatives

Figure 2. Flowchart of COPRAS method.
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Step VII: Calculate the weighted decision matrix D =
[
dij
]

m×r where dij = wjnij =(√
1−

(
1− µ2

ij

)wu
, ϑ

wj
ij

)
where (j = 1, 2, . . . , r)

Step VIII: Calculate the score function

h
(
dij
)
= µ2

ij − ϑ2
ij (12)

where i = 1, 2, . . . , m; j = 1, 2, . . . , r.
Step IX: Determine the maximizing and minimizing index (13) and (14):

h(Ui) =
1
|B| ∑

j∈B
h
(
dij
)

(13)

and

h(Yi) =
1
|NB| ∑

j∈NB
h
(
dij
)

(14)

where B is the set of benefit criteria and NB is the set of non-benefit criteria, for all (i =
1, 2, . . . , m).
Step X: Determine the relative significance value of each alternative (15):

Si = g(Ui) +
∑m

i=1 eg(Yi)

eg(Yi) ∑m
i=1

1
eg(Yi)

(15)

where i = 1, 2, . . . , m.
Step XI: Determine the priority order (16):

Ti =
Si

max Si
× 100 (16)

where i = 1, 2, . . . , m.
Step XII: Ranking of the alternatives:

The ranking of the alternatives is regulated in declining order based on the values of
priority order. The highest final value has the highest rank.

By using the Tables 10 and 11, the evaluations of the alternatives for the proposed
approach are presented. For example, alternative A4 was designated as the best choice and
received a very similar rating to alternative A5. In contrast, the worst rating was given to
alternative A2, ranked last.

Table 10. The score function for alternatives.

Ai C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

A1 −0.6869 −0.6786 −0.7809 −0.9510 −0.9647 −0.9641 −0.7195 −0.6726 −0.7821 −0.6892 −0.6874
A2 −0.7747 −0.6388 −0.7324 −0.9665 −0.9279 −0.9519 −0.6561 −0.7795 −0.7557 −0.7343 −0.6822
A3 −0.8194 −0.7432 −0.7101 −0.9689 −0.9617 −0.9470 −0.6984 −0.7427 −0.6454 −0.7840 −0.7699
A4 −0.8973 −0.7572 −0.6957 −0.9462 −0.9606 −0.9353 −0.8219 −0.6917 −0.7564 −0.7570 −0.7494
A5 −0.7184 −0.7621 −0.7356 −0.9492 −0.9524 −0.9600 −0.7935 −0.6551 −0.8421 −0.7510 −0.7659

Table 11. Scores and ranking of alternatives.

Ai h (Ui) h (Yi) Si Ti Rank

A1 −0.71219 −0.76306 −0.26231 102.47 IV
A2 −0.71925 −0.79239 −0.25598 100 V
A3 −0.73918 −0.76735 −0.28737 112.26 III
A4 −0.76587 −0.79955 −0.29927 116.91 I
A5 −0.75302 −0.78223 −0.29443 115.02 II
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4.2. Sensitivity Analysis

In this section, studies on the proposed approach’s sensitivity analysis have been
conducted. First, the effect of the alternatives on the values of the obtained weights was
investigated. For this purpose, five datasets were created in which one of the possible
alternatives A1–A5 was not considered. Then, the criteria weights were determined for all
datasets and compared with those obtained for the complete set of alternatives.

Table 12 shows the results obtained for global and local weights when excluding
individual alternatives A1–A5 from the main decision matrix. For criterion C1, the largest
differences in weights are found for sets without alternatives A3 and A4. In contrast, the
smallest difference between the weight values for criterion C1 occurs for the set without
alternative A2. Concerning criterion C2 and its weight reference value, the largest apparent
difference in values was obtained for the sets with the exclusion of alternatives A2 and A5.
In contrast, the smallest difference was obtained for the set with the exclusion of alternative
A5. In the case of criterion C3, the smallest difference between the value of the global
weight and the local weight occurred for the set with the exclusion of alternative A5. In
contrast, the largest difference occurred for the set with the exclusion of alternative A1. For
criterion C4, the largest difference in weights occurred for the set without alternative A1.
In contrast, the slightest difference between the weight values for criterion C4 occurs for
the set without alternative A4. Concerning criterion C5 and its weight reference, the most
apparent differences in values were obtained for the set with the exclusion of alternative
A2, and the smallest for the set with the exclusion of alternative A5. For criterion C6, the
slightest difference between the value of the global weight and the local weight occurred
for the set with the exclusion of alternative A2. On the other hand, the enormous difference
occurred for the set with the exclusion of alternative A5. Concerning the criterion C7 and its
weight reference value, the most significant apparent difference in values was obtained for
the set with the exclusion of alternative A4. In comparison, a minor difference was obtained
for the set with the exclusion of alternative A1. For criterion C8, the least difference between
the value of the global weight and the local weight occurred for the set with the exclusion of
alternative A1. On the other hand, the most significant difference occurred for the set with
the exclusion of alternative A2. For criterion C9, the most considerable difference in weights
occurred for the set without alternative A2. In contrast, the almost negligible difference
between the weight values for criterion C9 occurs for the set without alternative A3. For
criterion C10, a minor difference between the global weight value and the local weight
value occurred for the sets with the exclusion of alternatives A2 and A5. On the other hand,
a tremendous difference occurred for the set with the exclusion of alternative A1. To the
criterion C11 and its weight reference value, the most significant apparent differences in
values were obtained for the set with the exclusion of alternative A3, and the smallest for
the exclusion of alternative A4.

Table 12. Overview of the weights obtained for the decision matrix upon exclusion of individual
alternatives A1–A5.

Weights C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

- 0.09082 0.09106 0.09099 0.09059 0.09072 0.09095 0.09097 0.09110 0.09089 0.09093 0.09099
A1 0.09053 0.09100 0.09129 0.09078 0.09067 0.09087 0.09101 0.09104 0.09111 0.09079 0.09090
A2 0.09090 0.09077 0.09104 0.09050 0.09101 0.09101 0.09066 0.09141 0.09094 0.09094 0.09082
A3 0.09105 0.09119 0.09092 0.09040 0.09063 0.09103 0.09084 0.09126 0.09040 0.09112 0.09117
A4 0.09107 0.09114 0.09074 0.09063 0.09055 0.09104 0.09120 0.09095 0.09081 0.09090 0.09098
A5 0.09054 0.09120 0.09096 0.09065 0.09071 0.09079 0.09116 0.09083 0.09116 0.09092 0.09108
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Figure 3 plots the comparison of the weights obtained excluding the given alternative
(local weights) against the weights obtained for the full dataset (global weights). Figure 3a
plots the local weights for the set of alternatives without alternative A1 against the global
weights. The largest differences between the values are found for weights w1, w3, w4 and
w9. Pearson’s correlation coefficient was 0.59158, indicating a minimal linear relationship
between the considered weights. The relationship between the local weights for the
decision matrix excluding the alternative A2 and global weights is shown in Figure 3b. The
lowest correlation was obtained from the cases considered for the comparisons obtained.
For this comparison, the largest differences were observed for weights w2, w5, w7 and
w8. Figure 3c shows the local weights for the set of alternatives without alternative A3
relative to the global weights. The largest corollary was obtained for this comparison,
where the Pearson coefficient was 0.75991. The largest difference between weight values
was obtained for weight w9. The correlation between the local weights for the decision
matrix excluding alternative A4 and the global weights is shown in Figure 3d. The resulting
Pearson correlation coefficient value was 0.65481, indicating a low relationship between
the studied weights. For this comparison, the largest value discrepancy occurred for the
weight w3. A final comparison of the local weights when excluding alternative A5 with the
global weights was presented in Figure 3e. The correlation between these weights, as with
the other cases considered, is low. The largest differences between the values occurred for
the weights w1, w8 and w9.

The next study related to the sensitivity analysis of the proposed approach was to
change the criteria values by a threshold value of α. This study was designed to test how a
minimal change in the criteria values affects the final evaluations of the alternatives. The
PFN µ values were increased by a given threshold value, while a given threshold value
decreased the PFN ϑ values. Small values of α parameters such as 0.001, 0.002, 0.005, and
0.01 did not demonstrate a significant effect, so it was decided to use a α parameter of 0.05.
The evaluations of alternatives from the COPRAS method using this application of the
approach for each criterion are presented in Table 13. No differences were observed in
the evaluation of alternative A2, which always obtained the last ranking. Although the
evaluations of alternatives A1 and A4 changed with the threshold value for the set criteria,
their positions were the same in all cases considered. The greatest differences were observed
for alternatives A3 and A5. For the change in the value of the criteria C1, C4, C5, C6, C8 by
the given threshold value α, the alternative A3 was ranked second, and the alternative A5
was ranked 3rd. On the other hand, for changing the value of criteria C2, C3, C7, C9, C10, C11
by a given threshold value α, alternative A3 obtained the 3rd ranking and alternative A5
obtained the 2nd ranking.
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Figure 3. Global weights relative to local weights formed on the sets at the inclusions of alterna-
tives A1–A5. (a) Without the alternative A1; (b) Without the alternative A2; (c) Without the alternative
A3; (d) Without the alternative A4; (e) Without the alternative A5 (Blue line means y = x).

Table 13. Evaluations of alternatives A1–A5 from the COPRAS method for a threshold value of
α = 0.05 for criteria C1–C11.

Ci A1 A2 A3 A4 A5

C1 100.57 100 113.63 118.44 113.59
C2 101.79 100 116.46 121.66 116.65
C3 102.53 100 116.37 121.45 117.17
C4 101.48 100 116.94 120.50 116.37
C5 103.67 100 119.59 123.14 118.23
C6 105.23 100 120.15 123.04 119.70
C7 107.57 100 122.57 128.01 124.13
C8 105.80 100 122.46 126.96 122.05
C9 106.53 100 118.20 127.93 124.23
C10 105.25 100 119.85 129.51 125.47
C11 105.72 100 123.23 133.01 129.19

Using Figure 4, the Pearson’s coefficient values for the obtained scores from the
COPRAS method when changing the threshold value α = 0.05 for criteria C1–C11 are
shown. The Pearson correlation values are in the range [1.00, 0.97], indicating highly
similar scores from the given approaches. The smallest correlation values were obtained
by the approach in which criterion a threshold value modified C9. On the other hand,
the highest correlation values were obtained by the approach in which a threshold value
modified criterion C11. The lowest correlation with reference scores was obtained with
the approach where criterion C5 was modified by a value of 0.05. On the other hand, the
highest correlation with reference scores was obtained with the approaches where the
threshold value α was included in criterion C10 and C11.
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Figure 4. Pearson correlation coefficient values between scores obtained from modified C1–C11

criteria values by a threshold value of α = 0.05 (darker colors mean a higher correlation value).

5. Conclusions

In this paper, we presented a new Pythagorean fuzzy entropy and its use in group
decision-making. It was used to determine the relevance of criteria in an aggregated
decision maker preference matrix. It was created because of the benefits of Pythagorean
fuzzy sets on better modeling of uncertainty in data. Another aspect addressed in the
paper was sensitivity analysis, which confirmed the validity and accuracy of the method
used. The results confirmed this approach’s applicability in problems related to crop field
evaluation using domain experts’ subjective opinions.

In the future, the presented Pythagorean fuzzy sets method can be used in additional
applications. For example, the presented strategy can be used in future analyses by applying
different fuzzy systems in decision matrices and solving various multi-criteria decision
problems with unknown weights. Another research direction could be to use the proposed
Pythagorean fuzzy entropy along with other MCDA approaches such as TOPSIS or VIKOR.
Additionally, future research would need to address the aspect related to reference models
of weights and their reflection by the proposed entropy.
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18. Więckowski, J.; Dobryakova, L. A fuzzy assessment model for freestyle swimmers-a comparative analysis of the MCDA methods.
Procedia Comput. Sci. 2021, 192, 4148–4157. [CrossRef]

19. Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. A new approach to eliminate rank reversal in the mcda problems. In Proceedings
of the International Conference on Computational Science, Krakow, Poland, 16–18 June 2021; pp. 338–351.

20. Chen, P. Effects of the entropy weight on TOPSIS. Expert Syst. Appl. 2021, 168, 114186. [CrossRef]
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