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Abstract: Fetal alcohol spectrum disorder (FASD) results from prenatal ethanol exposure. The ze-
brafish (Danio rerio) is an outstanding in vivo FASD model. Early development produced the three
germ layers and embryonic axes patterning. A critical pluripotency transcriptional gene circuit of
sox2, pou5f1 (oct4; recently renamed pou5f3), and nanog maintain potency and self-renewal. Ethanol
affects sox2 expression, which functions with pou5f1 to control target gene transcription. Various
genes, like elf3, may interact and regulate sox2, and elf3 knockdown affects early development.
Downstream of the pluripotency transcriptional circuit, developmental signaling activities regu-
late morphogenetic cell movements and lineage specification. These activities are also affected by
ethanol exposure. Hedgehog signaling is a critical developmental signaling pathway that controls
numerous developmental events, including neural axis specification. Sonic hedgehog activities are
affected by embryonic ethanol exposure. Activation of sonic hedgehog expression is controlled by
TGF-ß family members, Nodal and Bmp, during dorsoventral (DV) embryonic axis establishment.
Ethanol may perturb TGF-ß family receptors and signaling activities, including the sonic hedgehog
pathway. Significantly, experiments show that activation of sonic hedgehog signaling rescues some
embryonic ethanol exposure effects. More research is needed to understand how ethanol affects early
developmental signaling and morphogenesis.

Keywords: fetal alcohol spectrum disorder; ethanol; zebrafish; development; gastrulation; sox2;
elf3; shh

1. Fetal Alcohol Spectrum Disorder

Alcohol is a common teratogen that causes adverse effects during pregnancy. Fetal
alcohol spectrum disorder (FASD) covers a range of developmental defects and disorders of
prenatal alcohol exposure (PAE), which occur when a woman consumes alcohol during their
pregnancy [1]. The consequences of PAE are dependent on many factors, including, amount
and duration of alcohol exposure, maternal and fetal age and genetics [1]. Premature death
of the fetus also occurs with PAE [1]. Fetal alcohol syndrome (FAS) is the most severe
form of the spectrum for babies born following PAE [1]. FAS is characterized by a set of
craniofacial dysmorphology, neural defects, cardiac defects, sensory dysfunction, motor
disabilities, and learning disabilities [2]. A recent study reported that globally an estimated
1700 babies are born every day with FASD [3]. There is a higher prevalence of FASD
cases in higher-risk populations, such as those with a lower socioeconomic status [3]. A
study conducted by the Center for Disease Control and Prevention (CDC), using data
collected from pregnant women between 2015 and 2017, showed that one in nine women
drank at least one alcoholic drink in the past month while pregnant, and around one third
of these women reported binge drinking (drinking at least four alcoholic drinks in one
sitting) [4]. Due to social biases against pregnant women consuming alcohol, there may be
an underreporting of prenatal alcohol exposure incidences [4].

There is no cure for FASD, although treatments have been developed to help symptoms
and aid in the development of a child with FASD [5]. Although folic acid has been shown to
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lessen the effects of early ethanol exposure in mouse, chicken and zebrafish embryos [5–7],
it is not known whether folic acid protects the human baby from the deleterious effects
of alcohol exposure. The only way to avoid FASD is through prevention, by abstaining
from alcohol during pregnancy. Educating people about the consequences of FASD on a
person’s quality of life may help with prevention [5].

2. Use of Zebrafish as an FASD Model

The zebrafish (Danio rerio) is an established model for developmental studies of ethanol
exposure effects, recapitulating FASD phenotypes [8]. Mammalian models, such as mice,
are more similar to human development, but in utero development is difficult to study,
particularly early developmental stages [8]. Zebrafish can produce hundreds of fertilized
eggs per mating, allowing many embryos to be studied. Zebrafish development is very
rapid. Early development, somitogenesis and establishment of the body plan occurs in
24 h. External fertilization eliminates ongoing parental influence during development and
allows direct observation of embryos. Embryos and larvae are transparent, facilitating
observation. Zebrafish also share extensive genetic evolutionary conservation with humans.
The zebrafish genome has been completely sequenced enabling scientists to create muta-
tions using reverse genetics and study the outcomes. Thus, the zebrafish can model human
development and be used to study effects of teratogenic factors, like ethanol [5,9,10].

3. Early Zebrafish Development
3.1. Blastula Stage

Fertilized zebrafish embryos go through a series of rapid cleavages in the first 3 hours
post fertilization (hpf) [11]. Initially, a blastodisc of 16 cells forms a syncytium with the
yolk cells, and subsequent cleavages produce cells that are no longer connected, as well as
cells that are cytoplasmically connected to the yolk cell (yolk syncytial layer; YSL). Early
cleavage stages are directed by maternal transcripts deposited in the oocyte [12,13]. The
zygotic genome is activated and midblastula transition occurs at the 1000-cell stage at 3 hpf.
Afterwards, cell divisions are slower and asynchronous [11–14].

Zygotic gene expression activation regulates pluripotency and morphogenesis. The
pluripotency gene circuit, its role in zygotic genome activation and pluripotency main-
tenance will be discussed below. The YSL is formed, which interacts with the overlying
embryo and is a critical extraembryonic signaling center [15]. The YSL microtubule and
actin cytoskeleton drives blastoderm spreading over the yolk cell. This spreading occurs by
thinning and expansion of this cell layer in a process called epiboly [16]. Three processes
combine to produce epiboly movements: (i) The blastoderm cells migrate toward the
vegetal pole; (ii) Microtubules within the yolk cell pull on the membrane-actin junction
with the enveloping layer at the germ ring, dragging this junction toward the vegetal pole;
and (iii) Radial intercalation thins the blastoderm cell layers, which expands the cell sheet,
spreading it over the yolk cell [16].

Epiboly starts around 4 hpf and is the first morphogenetic event in zebrafish develop-
ment. As the epiboly process begins, the blastula is patterned by extraembryonic signals
from the yolk cell [16]. This patterning establishes a pre-gastrulation fate map and is also a
prelude to extensive morphogenesis that occurs at the onset of gastrulation [16,17].

The yolk cell is an extraembryonic tissue that lies beneath the blastoderm. The deep
cells are a mass of cells that make the embryo proper. The enveloping layer is one cell thick
sheet, enclosing the deep cells [13]. The YSL is a multinucleated syncytium within the yolk
cell that forms during the blastula stage and matures by the 10th cell cycle [17]. It does not
contribute cells or nuclei to the developing embryo, but the YSL secretes signaling factors
that induce germ layer specification, embryo patterning, epiboly, and plays an important
role in directing cell movements during gastrulation [13,16–18]. The yolk cell also provides
critical nutrients during development. An array of genes control signaling from the YSL
during embryogenesis, including Nodal and its related proteins, which are required for
mesoderm induction and dorsal patterning of the blastoderm [13,18].
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3.2. Gastrulation

When epiboly reaches the yolk cell equator (50% epiboly), mesoderm and endoderm
precursors involute at the cell margins. The endoderm forms a ventral layer, and the
mesoderm will populate the space between the endoderm and the ectoderm, which remains
at the embryo surface. The embryo continues to elongate by epiboly progression to the
vegetal pole, while the germ layer precursors converge on the midline and extend along
the anterior-posterior axis, in a process called convergence and extension. These massive
cell rearrangements, establishing the body axes, require a series of carefully orchestrated
cell movements. Zygotic transcription drives morphogenesis, but the critical genes and
activities are only partially understood. Axis specification is coupled with convergence and
extension, and thus, the transcriptional mechanisms that specify the anterior-posterior and
dorsal-ventral axes work in coordination with the morphogenetic movements that organize
the body plan. These gastrulation events are preludes to full establishment of the body
plan and organogenesis [16].

3.3. Pluripotency Circuit

Previously, zygotic genome activation was thought to be abrupt at midblastula transi-
tion. New evidence indicates that there is a progressive series of zygotic genome activation
events. In addition to regulating morphogenesis, zygotic genome activation induces and
maintains pluripotency [11,14]. One important result of zygotic genome activation is the
expression of the pluripotency transcriptional gene circuit: sex-determining region Y-box
containing gene 2 (sox2), octamer-binding protein 4 (oct4) also known as POU domain
class 5 transcription factor 1 (pou5f1, recently renamed pou5f3) in zebrafish, and nanog
q50 homeobox [14,19–22]. These transcription factors activate their own and each other’s
gene transcription, which produces a self-maintaining, feed-forward circuit that maintains
pluripotent stem cell self-renewal and represses differentiation [17,23,24].

Pou5f1 and Sox2 proteins dimerize and work together to activate nanog and other
pluripotency genes [17]. These genes also participate in the zygotic genome activation,
while activating the pluripotency transcriptional program [14,25]. Sox2 has a high mobility
group (HMG) DNA-binding domain and a transactivation domain [19]. Sox genes are
grouped based on their homology within HMG domains. In the zebrafish, sox2, along with
sox1, sox3, and sox19a/b are part of the SoxB1 group expressed in the early embryo that
share a similarity in sequence and are functionally redundant to one another [24]. During
early embryogenesis, maternally provided sox19b activates transcription, and sox2 is one of
the first zygotic genes to be transcribed [24,26]. Pou5f1 has two DNA binding domains, a
low-affinity POU-specific domain and a higher affinitiy POU-homeodomain [19]. Nanog
functions through its one homeodomain that binds to DNA [19]. These factors cooperate to
accurately control a critical transcriptional program prior to gastrulation. At gastrulation,
this transcriptional circuit is interupted, allowing specification of the 3 germ layers and the
initation of appropriate differentiation programs [11,17,19].

4. Consequences of Ethanol Exposure during Early Zebrafish Development

Embryos treated with ethanol starting from 2 hpf display defects at early stages,
including reduced epiboly progression, which is due to defects in cell adhesion, microtubule
organization, and radial intercallation cell movements [6,16,25]. Effects of early ethanol
exposure lead to signaling defects that persist and influence later embryogenesis stages [25],
but mechanisms remain unclear. Epiboly cell movements are coupled to morphogenesis
during gastrulation, and cell adhesion regulation orchestrates these morphogenetic events,
particularly convergence and extension of the body axis [6,16]. Cadherin adhesion responds
to developmental signaling during gastrulation [16,27]. When E-cadherin was measured,
there was little or no change in its expression levels. However, cells in ethanol exposed
embryos showed adhesion reduction and morphogenesis changes characteristic of reduced
adhesion (radial intercallation and cell migration defects). Convergence and extension
gastrulation cell movements also depend on cell intercallation and cell migration events [6].
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Morphogenesis defects arise from ethanol exposure. Morphogenesis defects may be
caused by ethanol effects on early zygotic gene expression, which regulates some of the
earliest morphogenetic events. It is also possible that ethanol has direct biochemical effects
on the cytoskeleton, developmental signaling machinery or other components. Ethanol
exposure at 2 hpf leads to gastrulation defects due to cell adhesion and microtubule defects,
which begin during the blastula stage [6,25]. Ethanol exposure also dysregulates genes that
are evolutionarily conserved in the vertebrates and regulated during gastrulation like the
reduction in sox2 expression [6,25].

4.1. Pluripotency Gene Expression Defects
4.1.1. sox2

Gene expression analysis showed that expression of numerous genes are affected
by ethanol exposure. A study on ethanol effects on mouse embryonic stem cell proteins
reported that ethanol effects the stoichiometry of SOX2 and OCT4, and it skews the normal
functional balance of the two [20]. Pluripotency regulator sox2 was reduced in the pre-
gastrulation zebrafish embryo, which then reduced sox2 target gene expression [25]. Epiboly
and gastrulation cell movements are reduced by ethanol. The pluripotency gene pou5f1
works with sox2 and also regulates epiboly and gastrulation cell movements. Injecting
small amounts of sox2 mRNA restores gene expression, epiboly and gastrulation cell
movements. A gene-regulatory network affected by ethanol exposure was found that
includes sox2 [25]. It is likely that ethanol produces defects through pleiotropic effects on
this network, and restoration of normal developmental gene expression would require
manipulation of several genes. It could be possible to identify a hierarchy of transcription
regulators, making the manipulation easier by controling a small subset of genes that are at
the top of the gene regulatory network hierarchy.

4.1.2. elf3

The Elf3 (E74 like ETS transcription factor 3) transcription factor is dysregulated by
ethanol exposure in the early (4.5 hpf) zebrafish embryo [25]. Little is known about this
factor’s function in the early embryo. Elf3 is a member of the E26 transformation-specific
family of transcription factors, which play a major role in the development and progression
of various types of cancers. Elf3 is also involved during development. In humans, ELF3
expression was detected in the mid-Carnegie stages [28]. In mice, the expression of Elf3
was detected after fertilization, which remained high until the blastocyst stage [29]. Elf3
knockout led to lethality of mice in utero [30], and the pups that survived had defects
in small intestine epithelial tissue [30]. Studies showed that ELF3 plays role in terminal
differentiation of skin epidermis, epithelia of the cornea, keratinocyte, and T cell differenti-
ation. Our current work on understanding the role of Elf3 during zebrafish development
indicates that it is critical for the development of epithelial, mesenchymal, and nervous
tissues [31]. The elf3 gene was among the most strongly dysregulated by ethanol in the early
embryo, and the Elf3 transcription factor also targets many other genes, which may act as
an important factor in a gene regulatory network dysregulated by ethanol exposure [25].
By dysregulating sox2 and elf3 and other ethanol sensitive transcription factors, ethanol
exposure may disrupt the crucial balance between pluripotency and differentiation.

The interaction of human ELF3 with the pluripotency regulators SOX2, OCT4, and
NANOG has been detected. ELF3 knockdown reduced SOX2 and POU5F1/OCT4 ex-
pression, whereas overexpression of ELF3 increased SOX2 and POU5F1 expression in
high-grade serous ovarian cancer cells [32]. Human embryonic carcinoma NCCIT cell
studies showed that ELF3 is a negative transcriptional regulator of OCT4 and NANOG.
ELF3 controls the expression of those genes by directly binding to the promoters of OCT4
and NANOG [33]. The interaction of ELF3 with the pluripotency factors varies depending
on the cell- and tissue types. A study manipulating sox2 and elf3 during development in
the embryos with and without ethanol exposure may shed light on the roles of these genes
in the FASD pathogenesis.
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4.1.3. pou5f1

Maternal and zygotic pou5f1 mutant (MZspg) embryos showed defects in epiboly
progression and in all three embryonic lineages [34,35]. Studies have shown, at this
stage of development, pou5f1 determines pluripotency, and then, pou5f1 facilitates cellular
reorganization, cytoskeletal reorganization, migration, and cell adhesion [27,34,35]. The
pou5f1 mutants have defects in the enveloping layer, deep layer cells, and the YSL [27].
Pou5f1 activates Rab5c-mediated endocytosis and recycling, which controls E-cadherin
(Cdh1) dynamics during cell migration [36]. Cdh1 loss-of-function produces epiboly
defects [37,38], and this phenotype resembles ethanol-treated embryos [6].

4.2. Epiboly Defects

The epiboly defect induced by ethanol exposure raised the hypothesis that ethanol re-
duced Cdh1 expression in the early embryo. However, measuring mRNA and protein levels
showed no difference between control and ethanol-treated embryos [6]. We next examined
known mechanisms of epiboly: yolk cell microtubule cytoskeleton; radial intercalation cell
movements; and cell migration of deep cells [6].

Yolk cell microtubules connect with the leading edge of the embryo (germ band)
where the enveloping layer and deep cells adhere to the yolk cell via cadherins. The yolk
cell microtubules produce forces that drag this adhesive connection toward the vegetal
pole during epiboly. Ethanol exposure from 2–3 hpf fragmented the yolk cell microtubule
network, which may affect the forces pulling the embryo toward the vegetal pole as
illustrated by the shapes of enveloping layer cells at the adhesive border [6].

Radial intercalation of deep cells occurs when cells at the interior move from the
interior layers to the inner and outer surfaces of the deep cell layer, intercalating interior cells
between the surface cell layers. These cell movements reduce the deep cell layer thickness
and expand the dimensions of this cell sheet, spreading over the yolk cell during epiboly.
Ethanol exposure reduced the frequency of radial intercalation events and increased the
number of failed intercalation events, where cells move to the surface and then moved back
to the interior, reducing epiboly [6].

Directed cell movements toward the vegetal pole and involution during gastrulation
are coupled with epiboly and promoting normal convergent extension of the body axis.
We tracked cell movements in time-lapse and measured their directionality. Calculating
the meandering index showed that cells in ethanol-exposed gastrulating embryos had
increased meandering. Furthermore, the shape of the embryonic axis (axial mesendoderm
stained using ntl probe in situ hybridization) was shorter, wider, and wedge-shaped in
ethanol exposed embryos at mid-gastrulation (8 hpf). These data indicate that directed
cell movements and convergent-extension cell movements were affected by ethanol expo-
sure [6].

These effects on epiboly (radial intercalation cell movements; and cell migration
of deep cells) and gastrulation (convergent extension) phenocopy Cdh1 loss-of-function
during early zebrafish development, which prompted us to examine Cdh1 expression
levels and distribution. Indeed, we measured a reduced adhesion activity in blastomeres
from ethanol exposed embryos in comparison to untreated embryos. Reduced adhesion
occurred despite our results showing that there was no reduction in mRNA encoding Cdh1
and no reduction in the Cdh1 protein levels. The ratio of cell surface-to-cytoplasmic Cdh1
distribution was not different in the prechordal plate cells between control and ethanol
treated embryos. However, there were cytoplasmic Cdh1 aggregates in the ethanol treated
embryo prechordal plate cells, the significance of with remains unclear. The evidence
indicated that there was no significant difference in Cdh1 levels or distribution [6].

Gene expression analysis comparing 8 hpf embryos treated with ethanol as compared
with control embryos showed numerous ethanol dysregulated genes. One highly dysregu-
lated gene was that encoding protocadherin-18a (Pcdh-18a), being reduced nearly 2-fold.
We validated this gene expression change using quantitative PCR [6]. Protocadherins were
shown to partner with classical cadherins to promote normal cell adhesion [39]. Perhaps
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reduced Pcdh-18a is responsible for aspects of the epiboly and gastrulation defects that
resemble Cdh1 loss-of-function. This was tested by injecting synthetic mRNA encoding
Pcdh-18a into embryos, which restored more normal epiboly and convergent extension
phenotypes in ethanol and mRNA injected embryos that more closely resemble control
embryos [6]. Together, our data showed that adhesion regulation was disrupted in ethanol
exposed early embryos, producing gastrulation defects.

4.3. Sonic Hedgehog

Several studies have implicated sonic hedgehog (Shh) signaling defects in ethanol-
induced birth defects. The hedgehog (Hh) family of proteins are embryonic morphogens
that mediate signal transduction pathways, regulating cell specification, differentiation,
and help maintain stem cells [17,40]. They form a spatial gradient in the tissue environment,
inducing differential gene expressions in a concentration dependent manner [17]. Shh, one
of the three members of the Hh family in vertebrates, plays a critical role in embryonic cell
proliferation, differentiation, and morphological patterning [40].

Shh processing regulates ligand secretion and, thus, signaling. Posttranslational
lipid and cholesterol modification of Shh occurs in the Golgi. Modified Shh forms a
protein complex with caveolin (Cav1), allowing for intracellular vesicular transport to
lipid rafts in the plasma membrane, where it is then secreted [40,41]. In vertebrates,
extracellular modified Shh binds to patched (Ptc), releasing smoothened (Smo) from the
receptor complex. Smo signaling decouples suppressor of fused (SuFu), a negative regulator,
from glioma-associated oncogene (Gli), allowing Gli to enter the nucleus and activate
transcription [17,40].

Ethanol exposure during development can induce holoprosencephaly (HPE) [42,43].
HPE is characterized by defective rostroventral midline patterning of the forebrain with an
array of other abnormalities, including failure of the forebrain to form hemispheres and
cyclopia [44,45]. Disruption to various points in the Shh pathway, with or without exposure
to ethanol, during development, can also lead to HPE [10,40,44,46].

Ethanol treated embryos have a similar phenotype to embryos deficient in shh, leading
to the hypothesis that shh function is affected by ethanol exposure [10,40,46,47]. When
exposed to alcohol, a defective posttranslational cholesterol modification on Shh may lead
to reduced Shh signaling [40]. Studies have also shown that phenotypes produced by
embryonic ethanol exposure such as cyclopia and other midfacial defects can arise from
cell death of neural crest cells. Furthermore, shh developmental signaling was indirectly
displaced by a synergistic interaction between ethanol and cyclopamine, a shh pathway
inhibitor [43]. A rescue experiment using shh mRNA injection into ethanol treated zebrafish
embryos reduced ethanol induced phenotypes, indicating that shh signaling is disrupted in
FAS [47].

4.4. Cdon

In some patients with HPE, a loss of CDON (gene name for cell adhesion associated,
oncogene regulated) function, a cell surface protein that facilitates the Shh pathway, was
identified [45,46]. Cdon is a multi-functional co-receptor for Hh receptor and other receptor
proteins [45,48]. Loss of Cdon in mice results in a mild HPE phenotype, but when coupled
with ethanol exposure, more severe HPE phenotypes develop [49]. Similarly, a zebrafish
study using cdon targeted morpholinos, cdon expression knockout produced mild craniofa-
cial hypoplasia and did not produce and increase in cell death [50]. It was also shown that
manipulation of the Shh pathway in zebrafish affected cdon expression during neural crest
cell migration and epithelial mesenchymal transition, indicating that cdon responds to Shh
signals [50]. Another study looked at the effect of Cdon in zebrafish eye development and
found that Cdon functions as a negative regulator of Hh signaling in proximal-distal eye
patterning [51].

Cdon also physically and genetically interacts with the Nodal pathway in mice, though
the mechanism is still unclear [45]; Nodal signals prechordal plate (PCP) development
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from the anterior primitive streak, and the PCP produces Shh, which initiates forebrain
patterning and rostroventral midline development [45]. Therefore, a defect in Nodal
signaling during primitive streak formation, due to mutation or ethanol exposure, can
exacerbate Hh signaling defects and HPE [45]. This study in mice suggests that Cdon plays
an early role in development, prior its role as an Shh co-receptor.

Cdon may be redundant with other co-receptors like LRP2 [45]. Cdon and Lrp2 were
shown to have similar functions in Nodal signaling. Mouse double mutants in Cdon and
Lrp2 showed similar phenotypes as Nodal pathway mutations [45]. Additional studies are
needed to understand ethanol effects on Nodal pathway and its downstream effects on Shh
signaling during early development. Zebrafish may be useful to dissect the Nodal and Shh
signaling pathway interactions and their interactions with ethanol.

5. Nodal and Bmp Gradients

Nodal and bone morphogenetic protein (Bmp) are transforming growth factor-ß (TGF-
ß) superfamily members that regulate DV axis establishment [52–54]. Nodal and Bmp
together, forming gradients in the DV axis of the zebrafish embryo consistent with the
source/sink signal dispersal model hypothesized by Francis Crick in 1970 [55]. This model
states that a signal is constantly produced at a localized source and diffuses through tissue
where it is then destroyed or inhibited by a localized sink at specific distance away, forming
a gradient signal that regulates morphogenesis [54,55]. Nodal and Bmp fit this model
perfectly. Nodal signaling is concentrated on the dorsal end and Bmp signaling on the
ventral end, both diffusing into the center of the embryo and inhibitors suppress further
activation in distant areas [54,55].

Nodal and Bmp are first expressed from maternal transcripts in the YSL of a devel-
oping zebrafish embryo [13]. Nodal functions through two Nodal related genes, nrd1
and nrd2, and its inhibitor, Antivin, to specify mesoderm and endoderm (mesendoderm)
progenitors [13,52,56]. The ventral mesendoderm is formed receiving Bmp signals on
the ventral-most side of the embryo. Chordin inhibits Bmp and is secreted by the dorsal
organizer on the dorsal-most side of the embryo, which binds directly to Bmp to block
its receptor interaction and signaling [52,54,57]. In zebrafish, the maternal Wnt/ß-catenin
pathway activates the Nodal/Bmp cascade as well as Oct4, Drap1, and FoxH1 targets of
Nodal signaling [56,58,59].

TGF-ß ligands, Nodal or Bmp, in their respective cellular locations, bind to and as-
semble the type I and type II activin transmembrane serine/threonine kinase receptor
complex (Figure 1a) [60,61]. The heteromeric receptor complex, containing two type I and
two type II receptors transduces the signal intracellularly by binding and phosphorylating
receptor-regulated cytoplasmic Smad proteins (R-Smads) (Figure 1b,c). Common mediator
Smad4 (Co-Smad) assembles with R-Smads in the cytoplasm forming heterotrimeric com-
plexes which are then translocated into the nucleus to activate gene expression [54,62–65].
Nodal signaling leads to Smad2/3 phosphorylation, and Bmp signaling activates gene
transcription through Smad 1/5/9 phosphorylation (Figure 1d) [54,62].

The TGF-ß pathway can be inhibited by Antivin or Chordin binding to EGF-CFC (epi-
dermal growth factor- Crypto, FRL1, Cryptic) membrane linked coreceptor glycoproteins,
blocking ligand signaling (Figure 1e) [54,57,66,67]. Inhibitory Smads (I-Smads), Smad6
and Smad7, can also inhibit this pathway by preventing intracellular Smad signaling by
associating with the type I receptor (Figure 1f) [53,68–70].

A 2010 study using a 3% ethanol treatment for 3 h on mid-to late-blastula stage
embryos showed a split axis phenotype starting at 24 hpf [71]. This phenotype resulted
from cell movement disruption during the blastula and gastrulation stages [71]. This
suggests that marginal tissue from the blastopore organize axis formation, but ethanol
exposure delays epiboly progression, allowing a premature marginal axis to form and
producing a split axis phenotype [71].
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Wnt/ß-catenin signals Nodal or Bmp ligands. These ligands bind and assemble the type I and type
II heteromeric receptor complex. EGF-CFC co-receptors are bound to type I receptors. (b) Ligand
binding transduces the signals intracellularly. Type II receptors phosphorylate type I receptors
signaling Smad proteins. (c) R-Smad proteins are phosphorylated by type I receptors. Nodal specific
R-Smads are Smad2 and 3. Bmp specific R-Smads are Smad1, 5, and 9. (d) Two R-Smads complex
with one phosphorylated co-Smad4 and translocate into the nuclease and activate gene transcription.
(e) Antivin or Chordin inhibits Nodal or Bmp, respectively, by binding to the EGF-CFC co-receptor
on the type I receptor blocking ligand binding to the receptor. (f) After receptor phosphorylation,
I-Smad6 or 7 can bind to the receptor complex blocking R-Smad binding and signaling.

6. Conclusions

Ethanol has detrimental effects on a developing embryo, and the zebrafish is a useful
model for a developing human exposed to ethanol in utero (FASD) [8,25]. The range of
defects depend on the concentration of ethanol and the timing of exposure, which produce
developmental delays, brain defects, heart defects, craniofacial abnormalities, and potential
lethality [1,2,9]. Ethanol affects transcriptional activity, but there may be independent
effects within cells on proteins, protein complexes, lipid membrane structures and other
effects. For example, our laboratory showed effects on the microtubule cytoskeleton in
the yolk cell that occurred within 1 h of ethanol exposure at or prior to zygotic genome
activation [6].

Our lab has previously studied the effects of embryonic ethanol exposure from the
pre-gastrulation and mid-gastrulation stages, using Affymetrix GeneChip microarray gene
expression analysis [6,25]. Ethanol exposure during embryogenesis alters the expression
of important developmental genes. Sox2, Elf3, and their transcriptional targets produced
potential ethanol dysregulated gene regulatory network changes [25]. Additional study is
needed to understand the consequences of this gene regulatory network dysregulation.

A study by Hong et al., examined ethanol exposure effects on Nodal signaling using
a Cdon mutation in a mouse model, showing ethanol effects on the interactions and
trafficking of signaling proteins instead of directly disrupting early gene expression [49].
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Many important early development activities are expressed from maternal transcripts in
the early embryo [13]. If ethanol is altering these signaling activities, it could help explain
the FASD phenotype that includes effects on the neural and body axes.

Pleiotropic effects of embryonic ethanol exposure make it difficult to sort out mech-
anisms. Furthermore, there are relatively few studies of ethanol exposure on the early
embryo. The zebrafish is a particularly useful model for studying early development, like
the experiments characterizing ethanol effects on cell adhesion and gene expression during
zebrafish epiboly and gastrulation.
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