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Abstract

The green cocoon shell of  a novel variety of  silkworm, Bombyx mori, is rich in two types of  quercetin and 
kaempferol flavonoids. The aim of  this study was to identify these flavonoids in the ethanolic extract (EE) 
from green cocoons and develop EE applications in healthy foods. The experimental results indicated that 
the amount of  total amino acids in EE was 27.06%. The flavonoids in EE are presented in quercetin and 
kaempferol glycosides. The total amount of  the two aglycones was 33.42 ± 0.08 mg/g. The IC50 values of 
2,2-diphenyl-1-picrylhydrazyl (DPPH), 1,2’-azino-bis (3-ethylbenzthiazoline-6-sulphonicacid) (ABTS), 
and hydroxyl radical scavenging abilities were 296.95 ± 13.24 μg/mL, 94.31 ± 9.13 μg/mL, and 9.21 ± 
0.15 mg/mL, respectively. The IC50 values of  the inhibitory activities of  α-amylase and α-glucosidase 
were 37.57 ± 6.45 μg/mL and 212.69 ± 22.94 μg/mL, respectively. EE also reduced the level of  reactive 
oxygen species (ROS) and oxidative stress in L02 cells induced by high glucose levels. It also effectively 
decreased the content of  8-hydroxyl deoxyguanosine (8-OHdG), nuclear factor κB (NF-κB), and tumour 
necrosis factor alpha (TNF-α) in cells with a good dose effect. These results clearly indicated that the 
flavonoid-rich EE with excellent antioxidant and glucosidase inhibition abilities significantly reduced 
the damage to cells caused by oxidative stress and inflammatory reactions. It is suggested that EE might 
serve as useful functional foods for the treatment of  related diseases induced by oxidative stress such as 
diabetes mellitus.
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The cocoon shell from the silkworm B. mori is com-
posed of 70% silk fibroin fibre surrounded by 25% 
sericin and the other 5% comprising non-sericin 

components (1). The 5% non-sericin ‘impurities’ consist of 
pigment, wax, carbohydrates, flavonoids, and free amino 
acids, which have high scientific and commercial value.

Sericin is a type of colloidal spherical protein that acts 
as an adhesive to join two fibroin filaments to form a 
solid ellipsoidal cocoon shell (2). Both in vitro and in vivo 

studies have demonstrated that sericin, which is immu-
nologically inert (3, 4), has ultraviolet radiation resistant 
(5, 6), skin whitening (7), antioxidant (8), and anticancer 
activities. Food and Drug Administration (FDA) has 
already included sericin and its derivatives in the ‘Gen-
erally Recognized as Safe – GRAS’ list (9). As a dietary 
food, the main characteristic is its antioxidant func-
tion. Sericin can be added to bread and drinks or other 
kinds of food (10) and is demonstrated to be useful for 

Popular scientific summary
Here, we choose a new green cocoon variety (caoyuan × shenyun) which combines the  
advantages of  Daizo cocoon and normal white cocoon as material to identify the flavonoids in 
the ethanolic extract from green cocoons and develop the applications of  ethanolic extract in 
healthy foods.
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treatment of constipation, and can suppress the incidence 
and number of colon tumors (11–13). Therefore, sericin is 
safe and widely applicable in food and cosmetic industries 
and applications in biomedicine, such as cryopreserva-
tion, wound healing, various metabolic effects in organic 
systems, and as a vehicle for drug delivery (14–16).

It is worth noting that studies mentioned above often 
use mixtures of sericin peptides of wide-ranging molec-
ular masses as starting materials. Few experiments were 
carried out using pure sericin samples that were free of 
non-sericin components. Our previous study compared 
the bioactivities of pure sericin with those of non-sericin 
components from different cocoons. The results demon-
strated that the ethanol extracts, which mainly contained 
flavonoids and free amino acids, possessed greater inhib-
iting activities of tyrosinase and scavenging activities of 
2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. In 
addition, the ethanol extracts showed strong inhibition of 
α-glucosidase, while the purified sericin had no such activ-
ity. In addition, the ethanol extracts from Daizo cocoons 
contained more flavonoids (17).

Flavonoids have been found as pigments in the cocoon 
shells of some silkworm species (18–20). The separation, 
purification, identification, and bioactivities of flavonols 
in cocoons have attracted increasing attention. The yellow 
green Irodori cocoon harvested in Saitama Prefecture is 
a flavonol-rich cocoon. After extraction in 80% methanol 
and boiling in hot water to separate sericin and fibroin frac-
tions, the flavonol content in the three fractions, that is, the 
free flavonol fraction, sericin fraction, and  fibroin fraction, 
were found to be 2,227, 132, and 226 μg/g cocoon shells, re-
spectively (21). Kurioka et al. isolated two kaempferol gly-
cosides (kaempferol 7-O-β-D- glucoside and kaempferol 
5-O-β-D-glucoside) and three quercetin glycosides (quer-
cetin 4’-O-β-D- glucoside, quercetin 5-O-β-D-glucoside 
and quercetin 7-O-β-D- glucoside), along with their agly-
cones, kaempferol and quercetin from an ethanolic extract 
(EE) of Sasamayu cocoon shells (22). Even though mul-
berry leaves are the silkworm’s only food, scientists have 
found that there are flavonoid glucosides in cocoons that 
are not present in mulberry leaves. Therefore, the flavonoid 
glucosides extracted from cocoons are not only from the 
mulberry leaves, and some may be metabolites produced 
by the silkworm (23). In addition to the flavonoid agly-
cones, kaempferol and quercetin, two flavonoids contain-
ing the L-proline moiety were found in cocoons, which is 
the first time that flavonoids with an amino acid moiety 
have been found as naturally occurring compounds. How-
ever, these compounds are also not found in the mulberry 
leaves, suggesting that these flavonoids are metabolites of 
the silkworm (24).

Sericin has been proved to have antidiabetic activity 
(25). Hyperglycaemia is the classic symptoms of diabe-
tes. Persistent hyperglycaemia will cause the excessive 

production of ROS and induce oxidative stress, which 
 results in DNA damage and a cascade of other reactions 
including inflammation. NF-κB, a major target of ROS, 
can be activated by excessive ROS and the activation of 
NF-κB-dependent genes triggers several pathways, that 
is, the production of proinflammatory cytokine tumour 
necrosis factor alpha (TNF-α) (26). 

The liver is the main target of insulin and the key organ 
for glucose metabolism. Besides, the liver is also the major 
organ prone to be damaged by oxidative stress. Here, for 
a better study of the antidiabetic activity of EE, a new 
green cocoon variety (caoyuan × shenyun) which com-
bines the advantages of Daizo cocoon and normal white 
cocoon was chosen as the material. The antioxidation, 
glucosidase inhibition, and protective effects on L02 cells 
of EE were measured in vitro.

Materials and methods

Chemicals
DPPH, α-amylase, α-glucosidase, and 4-Nitrophe-
nyl-β-D-lucopyranoside substrate were purchased from 
Sigma (America). The amylose was purchased from Shang-
hai green leaf Biotechnology Co., Ltd. (Shanghai, China). 
1, 2’-Azino-bis(3-ethylbenzthiazoline-6-sulphonicacid) 
(ABTS) was purchased from Shanghai Aladdin Biochem-
ical Polytron Technologies Inc. Kaempferol standard 
products were purchased from Yunnan Xili Biotechnol-
ogy Limited by Share Ltd. (KunMing, China). Querce-
tin was purchased from Shanghai Chemical Reagent Co. 
Ltd. (Shanghai, China). All of the other chemicals and 
solvents used were of analytical grade except acetonitrile 
and methanol (HPLC grade).

Preparation of EE from the cocoon layer
Green cocoons (Caoyuan × Shenyun), a new flavo-
noid-rich cocoon of silkworm, were obtained from 
the Soochow University Sericulture Institute (Suzhou, 
China). The green cocoons were collected in the Spring 
of 2017. This green cocoon of the silkworm bred by Pro-
fessor Yu Xiao-Hua from Soochow University is a hybrid 
between Daizo and the commercially common silkworm 
hybrid (Jingsong × Haoyue) (27). 

Sericin was achieved after boiling (20 min × 2) in 
a 0.025% calcium hydroxide solution. The alkaline 
degumming water containing sericin was neutralized 
by sulphuric acid. Then, a crude sericin solution was 
obtained after centrifugation. After filtration, the result-
ing crude sericin solution was mixed with ethanol to give 
a final concentration of 70%. The precipitate was washed 
repeatedly with a 70% ethanol solution. The supernatant 
was collected, evaporated, and freeze-dried. The result-
ing powdered extract was further used for the following 
experiments.
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Analysis of amino acid and flavonoids in EE
EE and sericin were hydrolysed in 6 mol/L HCL at 110 °C 
for 24 h. Then, the amino acid was measured by an auto-
matic amino acid analyser.

Liquid chromatography-tandem mass chromatography 
(LC-MS/MS) analyses were performed using an Ultra 
High Pressure Liquid Chromatography (UHPLC) system 
(1290, Agilent Technologies) with a UHPLC BEH Amide 
column (1.7 μm 2.1 × 100 mm, Waters) coupled to Triple-
TOF 5600 (Q-TOF, AB Sciex). The mobile phase con-
sisted of 25 mM NH4OAc and 25 mM NH4OH in water 
(pH = 9.75) (A), and acetonitrile (B) was carried with an 
elution gradient as follows: 0 min, 95% B; 7 min, 65% B; 
9 min, 40% B; 9.1 min, 95% B; 12 min, 95% B, which was 
delivered at 0.5 mL min-1. The injection volume was 4 μL. 
The Triple TOF mass spectrometer was used for its ability 
to acquire MS/MS spectra in an information-dependent 
basis (IDA) during the LC/MS experiment. In this mode, 
the acquisition software (Analyst TF 1.7, AB Sciex) con-
tinuously evaluates the full scan survey MS data as it 
collects and triggers the acquisition of MS/MS spectra de-
pending on preselected criteria. In each cycle, 12 precur-
sor ions with an intensity greater than 100 were chosen for 
fragmentation at a collision energy (CE) of 30 V (15 MS/
MS events with a product ion accumulation time of 50 
msec each). ESI source conditions were set as follows: ion 
source gas 1 as 60 psi, ion source gas 2 as 60 psi, curtain 
gas as 35 psi, source temperature 650°C, ion spray voltage 
floating (ISVF) 5,000 or −4,000 V in positive or negative 
modes, respectively.

MS raw data files were converted to the mzXML for-
mat using ProteoWizard and processed by R package 
XCMS (version 3.2). The pre-processing results generated 
a data matrix that consisted of the retention time (RT), 
mass-to-charge ratio (m/z) values, and peak intensity. The 
R program package was used for peak annotation after 
XCMS data processing. An in-house MS2 database was 
applied for metabolite identification.

Assay of total flavonoids by the hydrolysis-assisted method
A previously reported method was slightly modified for 
hydrolysis and high-performance liquid chromatography 
(HPLC) analysis (28). EE was dissolved in ethanol–hy-
drochloric acid–water (7/2/1, v/v/v) solution and at 75°C 
by ultrasound (40 kHz) for 60 min. Then, the supernatant 
was used in the following analysis.

HPLC was conducted by using a Shimadzu HPLC 
system (Shimadzu, Japan), which consisted of  a pump 
(LC-20AT), diode array detector (DAD, SPD-M20A), 
C18 column (Agilent 250 × 4.6 mm), and LC-solu-
tion system manager program. The mobile phase com-
prised methyl alcohol–water–acetic acid in a ratio of 
500/500/0.4 (v/v/v). The flow rate was 1 mL/min, and 
the eluate absorbance was monitored at 370 nm using a 

scanning range of  200–600 nm. The injection volume of 
the extract was 10 μL.

Antioxidant assays

1,1-diphenyl–2 picrylhydrazyl (DPPH) free radical scavenging 
ability
The DPPH radical scavenging activity of EE was mea-
sured using the method proposed by Zhao (18).

1,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonicacid) 
radical scavenging ability
The ABTS radical scavenging ability of EE was measured 
using the method of Olabiyi (29).

Hydroxyl radical (HO·) scavenging activity
The scavenging activity of HO· was determined accord-

ing to a previous method (30).

α-Amylase inhibition assay
The method described by Fuwa (31) based on the starch- 

iodine test was adopted for evaluating α-amylase inhibition.

α-Glucosidase inhibition assay
The α-glucosidase inhibition was measured using the 

method proposed by Tibbot (32).

Cell culture
L02 hepatocytes were obtained from the Chinese Acad-
emy of  Sciences (China) and were cultured in Roswell 
Park Memorial Institute (RPMI)  1640 media supple-
mented with 10% fetal bovine serum (FBS) and 0.5% 
antibiotic–antimycotic (penicillin–streptomycin–am-
photericin B mix) at 37°C in a humidified atmosphere 
containing 5% CO2. Cells at 80% confluence were used 
for all experiments.

Cell viability assay
The cytotoxicity of the extract was determined using the 
CCK8 assay (Beyotime Biotechnology Co. Ltd. Shanghai, 
China). The cells were trypsinized and seeded in 96-well 
plates (7 × 103 cells per well). After attaining 80% conflu-
ence, the cells were treated with different concentrations 
of EE for 24 h. After incubation, the cells were treated 
with CCK8 reagent (10 µL/well) and incubated for 1 h. 
Then, the absorbance was measured at 450 nm.

Determination of the effect of EE on the viability of L02 cells 
cultured in high glucose
The cells were trypsinized and seeded in 96-well plates 
(7 × 103 cells per well). Cells in the normal group (normal 
medium), model group (normal medium + 30 mmol/L 
glucose), and EE-treated groups (normal medium + 
30  mmol/L glucose + different concentrations of EE) 
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were cultured for 24 h. Then, the CCK8 assay was used to 
estimate the viability of L02 cells.

Determination of the effect of EE on the content of ROS in L02 
cells cultured in high glucose
The cells were trypsinized and seeded in 96-well plates (7 × 
103 cells per well). Cells in the normal group (normal me-
dium), model group (normal medium + 30 mmol/L glu-
cose), and EE-treated groups (normal medium + 30 mmol/L 
glucose + different concentrations of EE) were cultured for 
24 h. The effect of EE on intracellular ROS levels was mea-
sured using 2’,7’-Dichlorofluorescin diacetate (DCFH-DA) 
as per the manufacturer’s instructions (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China.).

Quantitative estimation of cytokine levels by ELISA
The cells were trypsinized and seeded in 96-well plates 
(7 × 103 cells per well). Cells in the normal group (normal 
medium), model group (normal medium + 30  mmol/L 
glucose), and EE-treated groups (normal medium + 
30  mmol/L glucose + different concentrations of EE) 
were cultured for 24 h. The cells were collected, and 
TNF-α, NF-κB, and 8-OHdG levels were evaluated using 
ELISA  kits (Shanghai Yuanye Biotechnology Co., Ltd. 
Shanghai, China).

Statistics
The experimental data are expressed as the mean ± stan-
dard deviation (SD). Significant differences between 
two sets of  data were assessed using one-way ANOVA 
(Origin 8.5 version). A value of  P < 0.05 was considered 
statistically significant.

Results

The amino acid and flavonoids in EE
Sericin is a spherical protein composed of 18 amino acids. 
The amount of total amino acids in the EE from the seri-
cin layer was 27.06%, and the composition was similar to 
sericin. Serine, proline, aspartic acid, and glycine were the 
most abundant amino acids, accounting for 13.91, 12.88, 
12, and 8.19% of the total amino acid in EE, respectively. 
Human essential amino acids account for 27.07% of total 
amino acids (Table 1).

Flavonoids are commonly present in their glycosylated 
forms and mostly exist as quercetin and kaempferol glyco-
sides in the sericin layers of green cocoons. Rutin, astrag-
alin, quercetin, kaempferol, kaempferol-5-O-glucoside, 
quercetin-3-O-galactopyranoside, quercetin-3-O-ruti-
noside, quercetin-3-O-glucoside, quercetin-4’,7-2-O-glu-
coside were identified by UHPLC-QTOF-MS using R 
program package and internal MS2 data (total ion chro-
matogram, Figs. 1 and 2).

As our previous research mentioned (28), the hydro-
lysis-assisted extraction method is specific to the co-
coon and is far superior to the colorimetric method. 
The total  flavonoids were estimated through the 
determination of  their aglycones, quercetin, and kae-
mpferol. From Fig. 3, we can see that after hydrolysis, 
the contents of  quercetin and kaempferol increased 
substantially. The linear regression equations for the 
two standard samples were as follows: quercetin, 
y = −300056.18 + 2074344.21x, R2 = 0.996; kaempferol 
y = −223316.69 + 2816223.82x, R2 = 0.999. The contents 
of quercetin and kaempferol were 25.66 ± 0.07 mg/g and 
7.76 ± 0.02 mg/g in EE. Therefore, the total flavonoid 
aglycones were 33.42 ± 0.08 mg/g in EE.

Antioxidant activity of EE in vitro
Dietary antioxidants can play a major role in the preven-
tion of oxidation by scavenging free radicals and reducing 
oxidative stress. DPPH and ·OH radical scavenging activ-
ities are the basic methods used to evaluate antioxidant 
activity in vitro. From Figs. 4 and 5, we can see that the 
DPPH and ·OH radical scavenging activities of EE in-
creased as the concentration of EE increased. The IC50 
values of EE for DPPH and ·OH radical scavenging activ-
ities were 296.95 ± 13.24 μg/mL and 9.21 ± 0.15 mg/mL. 
The results indicated that EE showed excellent radical 
scavenging activity, especially for DPPH.

Table 1. The amino acid compositions of EE and sericin

Amino acid EE EE Sericin*

ASP 3.25 12.00 3.27

THR 1.63 3.03 6.71

SER 3.76 13.91 20.52

GLU 1.86 6.86 5.45

GLY 2.22 8.19 22.89

ALA 1.38 5.10 12.25

CYS 0.12 0.44 <0.22

VAL 1.72 6.36 3.99

MET 0.23 0.85 0.21

ILE 0.70 2.58 1.30

LEU 1.64 6.07 1.58

TYR 1.74 6.44 6.02

PHE 0.70 2.58 1.45

HIS 1.12 4.14 0.10

LYS 0.70 2.60 0.91

ARG 0.80 2.96 7.28

PRO 3.59 12.88 6.06

Total 27.06# 100 100

EE, ethanolic extract.
*The proportion of total amino acids in sericin; #The proportion of total amino 
acids in EE.
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The ABTS assay measured the relative antioxidant 
ability to scavenge the radical ABTS+ and is commonly 
used to detect the total antioxidant capacity of traditional 
Chinese medicine components. Fig. 6 shows the scaveng-
ing effects of EE on ABTS free radicals. When the EE 
concentration was 150 μg/mL, the corresponding ABTS 
inhabitation reached 62%. The IC50 value of ABTS scav-
enging activity was 94.31 ± 9.13 μg/mL. The data indi-
cated that EE could effectively scavenge ABTS radicals.

α-amylase and α-glucosidase inhibition of EE in vitro
The inhibitor of α-amylase and α-glucosidase can impede 
the hydrolysis and digestion of carbohydrates and reduce 
the absorption of sugar. The inhibition of EE on α-amy-
lase and α-glucosidase were both dose-dependent (Fig. 7). 
The inhibition of α-amylase increased rapidly when the 
concentration of EE was raised from 10 to 25 μg/mL. The 
IC50 value of EE for α-amylase and α-glucosidase inhibi-
tion assays were 37.57 ± 6.45 and 212.69 ± 22.94 μg/mL, 

Fig. 1. Total ion chromatogram in negative ion mode.

Fig. 2. Total ion chromatogram in positive ion mode.
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Fig. 3. HPLC chromatogram of the standard samples and the ethanol extract of the sericin layer and its hydrolysate.
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respectively. The results indicated that EE exhibited 
potential inhibition of α-amylase and α-glucosidase.

Effect of EE on the viability of L02 cells
A CCK8 assay was performed to analyse the cytotoxicity 
of extracts on cells. The concentration range of EE was 
determined as 10–300 μg/mL (Fig. 8), and the cell viability 
did not change during EE exposure for 24 h. In addition, 
300 μg/mL of EE may enhance cell viability to a certain 
degree.

Viability and ROS levels of L02 cultured with high glucose
To determine the protective effect of EE against high glu-
cose, L02 cells were treated with 30 mmol/L glucose to 
simulate a high sugar environment. As shown in Fig. 9, 
cell viability decreased significantly after glucose treat-
ment. However, the cell viability obviously increased after 
the treatment of EE, and when the concentration of EE 
was 200 μg/mL, the cell viability reached 97.86% of the 
normal group.

High glucose can increase the level of ROS and cause 
oxidative stress. The level of ROS in the model group was 
1.77 times the level in the normal group (P < 0.01). After 
treatment with different concentrations of EE, the ROS 
levels decreased significantly (Fig. 10). The ROS level in 
the 200 μg/mL EE group was close to the normal group, 
only 1.14 times as much. These results indicated that EE 
could protect L02 cells and reduce the intracellular oxida-
tive stress induced by high glucose.

8-OHdG, NF-κB, and TNF-α content in L02 cells cultured with 
high glucose
8-OHdG is a sensitive marker of DNA damage. In 
Fig. 11a, the level of 8-OHdG (161.21 ± 23.08 ng/gprot) 
in the model group was significantly higher than that in 
the normal group (P < 0.01). High-glucose treatment 
can cause oxidative stress in cells, resulting in DNA dam-
age. However, the level of 8-OHdG in the 200 μg/mL EE 
group decreased to two-thirds of that in the model group. 
High-glucose treatment also significantly increased the 

Fig. 6. The scavenging effects of EE on ABTS free radicals.
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level of NF-κB (P < 0.01), reaching 1243.30 ± 40.66 ng/gprot 
in the model group, which was about double that of the nor-
mal group level (Fig. 11b). NF-κB levels decreased to 71.07, 
59.81, and 50.82% of that in the model group in the three 
EE-treatment groups, respectively. TNF-α is a cell signalling 

protein involved in systemic inflammation and plays an im-
portant role in immune regulation and the defence system. 
The level of TNF-α increased to 236.32 ± 10.87 ng/gprot 
after high-glucose induction, which was significantly higher 
than that in the normal group (P < 0.01). However, after 

Fig. 8. Effect of EE on the viability of L02 cells.
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treatment with three concentrations of EE, the levels of 
TNF-α dropped to 164.44 ± 16.83 ng/gprot, 145.05 ± 5.86 
ng/gprot, and 118.10 ± 4.89 ng/gprot (Fig. 11c). These 
data indicated that EE may have the potential to alleviate 
DNA damage and the inflammatory reaction in L02 cells 
induced by high glucose.

Discussion
Sericin, a natural macromolecular protein derived from 
the silkworm Bombyx mori has been demonstrated to have 
a variety of bioactivities. Sericin demonstrated high cells 
cryoprotective effect (33). It also had the abilities to inhib-
ite tyrosinase and lipid peroxidation (34), suppress mouse 
skin colon tumorigenesis (35), and reduce oxidative stress 
(36). In recent decades, the antidiabetic activities of seri-
cin have been developed. Okazaki et al. (25) examined the 
effect of sericin on the carbohydrate and lipid metabolism 
in high-fat diet rats. They firstly found that the consump-
tion of sericin remarkably reduced the levels of serum and 
hepatic lipids in high-fat diet rats. Besides, supplemental 
sericin could also improve glucose tolerance and elevate 
the concentration of serum adiponectin in high-fat diet 
rats. Notably, sericin can not only reduce the blood glu-
cose levels in diabetic rats but also has significant ther-
apeutic effects on treating complications occurring due 
to diabetes. Intragastrical perfusion of sericin for 35 days 
could protect sciatic nerve and related nerve cells against 
diabetes-induced injuries (37).

However, the sources or the procession methods of seri-
cin are usually overlooked. The studies mentioned above 
often used mixtures of sericin peptides of wide-ranging 
molecular masses as starting material. The sericin layer 
has many small amounts of non-sericin ‘impurities’. The 
non-sericin components mainly contain free amino acids 
and flavonoids. It is well-known that flavonoids have a 
wide range of biological activities, including antioxidant 
(38), hypoglycaemic (39), and anti-tumour (40). Our pre-
vious study indicated that the EEs of green cocoon shells 
(Daizo cocoon) possessed stronger antioxidant activity 
and inhibitory activity of glucosidase compared to pure 
sericin in vitro (17). 

Therefore, we choose a new green cocoon variety (caoy-
uan × shenyun) which contains abundant flavonoids as 
material. A hydrolysis-assisted extraction method which is 
specific to the cocoon and far superior to the colorimetric 
method was used to analyse the flavonoids in sericin. The 
flavonoids in extracts of green cocoons are presented in 
quercetin and kaempferol glycosides. The total amount of 
the two aglycones was 33.42 ± 0.08 mg/g. Besides, the eth-
anol extracts showed strong antioxidant activity, as well 
as α-amylase and α-glucosidase inhibition activities. The 
results will provide the basis for a better use of sericin.

Chronic hyperglycemia can directly promote the expres-
sion of inflammatory factors. The levels of IL-6, IL-18, 
IL-1, TNF-α, and NF-κB were very high in the blood of 
diabetic mice (41). Ramesh et al. found that high-glucose 

Fig. 10. Effect of EE on ROS content in L02 that cultured with high glucose. **P < 0.01 VS the normal control group; #P < 0.05, 
##P < 0.01 VS the model group.
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environment would cause oxidative damage to DNA in 
liver and kidney cells. And the level of 8-OHdG, a sen-
sitive DNA damage marker, would increase (42). Our 
research found that the high glucose treatment caused the 
increase of 8-OHdG level in L02 cells, while the EE treat-
ment significantly reduced the 8-OHdG level (P < 0.01). 
The 8-OHdG level in 200 g/mL treatment group was even 
reduced to one-third of it in the model group. This indi-
cates that EE may have the ability to reduce DNA damage 
induced by high glucose. NF-κB is a key transcription fac-
tor that regulates the expression of immune-related genes. 
It is involved in transcriptional regulation of various cyto-
kines. Over expressed ROS can activate the expression of 
NF-κB. Activated NF-κB will initiate the transcription of 
its downstream genes, leading to an overexpression of a 
range of inflammatory factors including IL-6 and TNF-α 
(26). Excessive TNF-α can lead to the breakdown of fat 

particles in fat cells, resulting in an increase of free fatty 
acid content, which eventually leads to insulin resistance 
(43). Therefore, the levels of NF-κB and TNF-α in L02 
cells were tested in this study. The results showed that EE 
could significantly inhibit the over expression of NF-κB 
and TNF-α induced by a high sugar environment.

In summary, a new green cocoon (caoyuan × shenyun) 
containing high active ingredients was first used to 
obtain the ethanol extracts here. The extract was com-
posed of  amino acids and abundant flavonoids. The eth-
anol extracts showed strong antioxidant activity, as well 
as α-amylase and α-glucosidase inhibition activities. In 
addition, EE had no toxicity to L02 cells and reduced 
the intracellular oxidative stress in L02 cells induced by 
high glucose. In addition, EE also alleviated DNA dam-
age and inflammatory reactions in L02 cells induced by 
high glucose.
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