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Purpose of review

Soil-transmitted helminths (STH) are endemic in 120 countries and are associated with substantial morbidity
and loss of economic productivity. Although current WHO guidelines focus on morbidity control through
mass drug administration (MDA), there is global interest in whether a strategy targeting disease elimination
might be feasible in some settings. This review summarizes the prospects for switching from control to an
elimination strategy.

Recent findings

STH control efforts have reduced the intensity of infections in targeted populations with associated
reductions in morbidity. However, adults are not frequently targeted and remain important reservoirs for
reinfection of treated children. Recent modeling suggests that transmission interruption may be possible
through expanded community-wide delivery of MDA, the feasibility of which has been demonstrated by
other programs. However, these models suggest that high levels of coverage and compliance must be
achieved. Potential challenges include the risk of prematurely dismantling STH programs and the potential
increased risk of antihelminthic resistance.

Summary

Elimination of STH may offer an opportunity to eliminate substantial STH-related morbidity while reducing
resource needs of neglected tropical disease programs. Evidence from large community trials is needed to
determine the feasibility of interrupting the transmission of STH in some geographic settings.
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INTRODUCTION

Soil-transmitted helminths (STH) are a group of
neglected tropical diseases (NTDs) that include
hookworm (Necator americanus and Ancylostoma
duodenale), roundworm (Ascaris lumbricoides), and
whipworm (Trichuris trichiura). STH are endemic
in at least 120 countries and are estimated to
account for over 5 million disability-adjusted life
years (DALY) [1

&

,2] and substantial productivity loss
[3,4] in endemic countries. The WHO Roadmap for
NTDs [5] and 2012 London Declaration on
Neglected Tropical Diseases [6] focus on the control
of STH morbidity through mass drug administration
(MDA) to school-age (SAC) and preschool-age
(PSAC) children. There has been increasing interest
in moving beyond morbidity control toward elimi-
nation of many NTDs, including STH [7–10]. We
review recent literature relevant to the prospects for
switching from a control to an elimination strategy
for STH.
© 2017 Wolters Kluwer 
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MORBIDITY CONTROL

The current WHOendorsed strategy for the controlof
STH aims to eliminate STH as a public health prob-
lem, definedby the WHOasa reduction inprevalence
to less than 1% of moderate or high intensity infec-
tion [11]. This target is based on evidence that
Health, Inc. All rights reserved.

Volume 30 � Number 5 � October 2017

mailto:walson@uw.edu


KEY POINTS

� Mathematical modeling indicates that interrupting the
transmission of STH may be possible through MDA of
albendazole expanded from child-targeted to
community wide, even without universal access to
water and sanitation.

� New opportunities to pursue transmission interruption are
emerging because of pursuit of elimination strategies for
other neglected tropical diseases, demonstrated
feasibility of community-wide MDA, reductions in
prevalence of STH through current morbidity control
efforts, and advances in molecular diagnostics.

� Challenges to an MDA-based STH transmission
interruption strategy include the need for high coverage
and compliance, the definition and accurate
determination of interruption status, and the potential
for anthelminthic resistance.

� A switch from morbidity control to a transmission
interruption strategy for STH has risks, including the
emergence of resistance to antihelminthics and the loss
of resources for morbidity control in the event that
elimination is unsuccessful.
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severity of STH-associated morbidities is highly
associated with an individual’s intensity of infection.
STH infections of moderate-to-high intensity are
associated with diarrhea, anemia, chronic inflam-
mation, and malnutrition and with disrupted growth
and cognitive impairment in children [12,13

&

].
Given that the diagnosis of STH infection

requires laboratory capacity and skilled microscopists
and that treatment with a single dose of albendazole
or mebendazole is inexpensive, well tolerated, and
can be delivered to high-risk groups by nonmedical
personnel in schools or communities, the WHO rec-
ommends presumptive deworming through MDA in
endemic areas [14]. Although there is ongoing debate
about the economic, cognitive, and morbidity
impact at the population level of this strategy
[13

&

,15,16,17
&

,18], it can effectively eliminate infec-
tions of intensities understood to cause morbidity
[19

&

,20
&

]. Specifically, current WHO guidelines focus
on routine empiric deworming of all SAC, PSAC, and
women of childbearing age without reliance on diag-
nostic testing of individuals before treatment [11].
The WHO recommends deworming of SAC annually
in areas where pre-MDA prevalence is between 20 and
50%, and twice annually where pre-MDA prevalence
is greater than 50% [5].

The WHO NTD Roadmap has set a target of
achieving 75% coverage of SAC and PSAC in all
endemic countries by 2020 [5]. The success of the
this ambitious strategy in treated populations is evi-
dent [14,21,22]: despite recent coverage estimates
 Copyright © 2017 Wolters Kluwe
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suggesting that only about half of all populations
in need of treatment are being treated, global pre-
valence and intensity of infection in children have
decreased significantly and school-based deworming
has resulted in substantial reductions in STH-associated
morbidity in many settings [2,19

&

,23].

THE CASE FOR COMMUNITY-WIDE MASS
DRUG ADMINISTRATION FOR SOIL-
TRANSMITTED HELMINTHS

Despite these gains, pediatric reinfection rates post-
treatment are high [24,25

&

,26], and school-based
deworming has limited impact on overall communi-
ty-wide prevalence [27] and intensity [28] of infec-
tion. When left untreated, adults continue to serve as
reservoirs of STH infection in the community, ensur-
ing continued reinfection of treated children, and
sustaining transmission [29]. This is especially true in
communities where hookworm is the predominant
infection, asprevalenceofhookworm infection peaks
in adulthood [30]. Modeling of STH transmission
under repeated rounds of MDA suggests that due to
continued transmission at the community level,
PSAC-targeted and SAC-targeted deworming pro-
grams will need to continue indefinitely – or at least
until economic development, access to adequate
water and sanitation, and other sociodemographic
changes occur – to maintain benefit [10,31].

Expanding treatment with MDA to all individua-
ls in a community has been shown to result in greater
reductions in STH prevalence, even among children,
than SAC-targeted and PSAC-targeted MDA [32

&

].
Models (and some empiric data) suggest that trans-
mission interruption may be possible through
chemotherapy alone, provided that the treated
population is expanded to all age groups and high
coverage is achieved [8–10,31,33,34]. Experience
from the Global Alliance to Eliminate Lymphatic
Filariasis, which provides community-wide MDA
with a package of drugs, including albendazole, has
demonstrated that achieving high treatment cover-
age through community delivery of MDA is possible
[35]. In fact, a substantial proportion of albendazole
treatment worldwide is currently provided by MDA
programs targeting lymphatic filariasis (LF), not by
STH programs [9]. However, as LF programs achieve
successful LF elimination and transition to post-MDA
surveillance, community-wide MDA through the LF
platform will cease. As a result, many populations in
formerly LF and STH coendemic areas stand to lose
the benefit to adults as well as the indirect benefit
to children of community-wide treatment; and an
estimated 14% of children are at risk of losing cover-
age altogether, as SAC-targeted and PSAC-targeted
programs are not in place in all STH endemic areas
covered by the LF program [36

&

].
r Health, Inc. All rights reserved.
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WATER, SANITATION, AND HYGIENE
Although current WHO goals emphasize morbidity
control, case studies of successful interruption of
STH transmission do exist. STH were previously
highly prevalent in the southeastern United States,
South Korea, and Japan, where sustained control
efforts through large-scale screening and MDA
appear to have interrupted transmission [37–39].
It is important to note that though these successful
programs relied heavily on mass chemotherapy,
each of them took place during a time of significant
economic development and improvements in
access to water, sanitation, and hygiene (WASH).
Improvements in WASH are critical from a human
rights perspective [40] and have been advanced as
crucial to the control or elimination of STH
[41,42,43

&

]. However, the evidence is mixed regard-
ing the influence of WASH resources on STH preva-
lence and infection intensity [43

&

,44
&

,45,46
&&

,
47,48]. The impact of WASH is influenced by the
specific intervention(s) used, the quality of the
intervention, consistent WASH usage, and other
individual-level behaviors, as well as contributors
to the environmental reservoir such as WASH usage
and behaviors of other members of the communi-
ty,[44

&

] agricultural activities [49,50], and environ-
mental factors such as precipitation and soil
composition [43

&

,51,52]. Successful WASH interven-
tions are not only challenging to systematically
measure but also costly to implement relative to
MDA, so are rarely provided at sufficient scale; uni-
versal access remains a distant target [40,53]. Most
available data on the effect of WASH interventions
on STH prevalence or incidence come from observa-
tional and/or cross-sectional studies and there is
limited high-quality trial evidence [54], although
several randomized trials are ongoing or results
pending publication [55].
THEORETICAL POSSIBILITIES: WHAT DO
THE MODELS TELL US?

Models of STH transmission under repeated rounds
of community-wide MDA suggest that transmission
interruption in a variety of transmission settings
may be possible through chemotherapy alone
[31,34]. STH species cannot autoinfect, meaning
that successful reproduction requires at least one
male and one female worm within a single human
host [56]. At very low prevalence and mean intensity
of infection, there is low likelihood of a single host
being infected with both sexes. Therefore, it is not
necessary for MDA to continue until all worms are
eliminated [57]. The dynamics of STH infection in a
population are defined by three parameters: the
endemic prevalence that existed prior to the
 Copyright © 2017 Wolters Kluwer 
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initiation of MDA, extinction of the parasites, and
an unstable breakpoint – a theoretical threshold at
which MDA may be ceased and where prevalence,
rather than increasing until reaching equilibrium at
pre-MDA levels, will instead decline over time and
eventually reach extinction [58

&

]. The breakpoint of
transmission defines the moment at which repro-
duction cannot occur any longer and the helminth
population collapses without further treatment of
remaining infections.

Mathematical models can simulate this behav-
ior and investigate the impact of MDA on the likeli-
hood of transmission interruption. These models
estimate the feasibility of transmission interruption
and the frequency and the number of rounds of
MDA required to achieve it. Key parameters include
the dominant species of STH in each setting; the pre-
MDA transmission intensity (R0) for the dominant
species; the age profile of infection; effective cover-
age of MDA, a combination of coverage, compli-
ance, and drug efficacy; and immigration of new
hosts and parasites into the community being
treated [31,34,57,58

&

,59
&

]. Each presents challenges
for application to the real-world setting. Species
distribution has implications for the persistence of
infectious material in the environment [57], the age
distribution of hosts and the importance of expand-
ing chemotherapy to include adults [60], and
the efficacy of each round of albendazole [61

&&

].
Pre-MDA data on species-specific STH prevalence
are often unavailable, of low quality, or limited to
SAC, whereas estimating pre-MDA transmission
intensity based on post-MDA prevalence data intro-
duces additional uncertainty [62

&&

].
Despite these challenges, models of STH trans-

mission and the impact of repeated rounds of MDA
have been compared and validated against declines
in prevalence observed in real-world settings
[59

&

,63
&

]. Two models fitted to the same baseline
data obtained from a study of community-wide
treatment in India – one a deterministic and the
other a stochastic model – predicted the short-term
impact of deworming with comparable accuracy
and largely agreed on longer term predictions
including the potential for transmission interrup-
tion despite differences in methodology [59

&

].
CHALLENGES TO INTERRUPTION
THROUGH MASS DRUG ADMINISTRATION
ALONE

There are several foreseeable challenges and risks
to the success of an MDA-based transmission
interruption strategy for STH. Even in moderate
transmission intensity settings, models predict that
high coverage and compliance, perhaps as high as
Health, Inc. All rights reserved.
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90% for SAC and PSAC and 80% for adults, are
needed to achieve treatment interruption with
MDA alone [56,58

&

]. Achievement of high coverage
in other NTD elimination campaigns, including in
ongoing LF programs, is encouraging; however,
compliance with offered treatment is equally impor-
tant [64

&

,65
&

]. Estimates of compliance with MDA
for helminths range from 19.5 to 99% [66

&

] and
highlight the need for more consistent definitions
and longitudinal studies of compliance and cover-
age when MDA is delivered to communities and
directly observed therapy may not always be feasi-
ble. In addition, systematic nonparticipation in
MDA, in which some individuals are less likely to
be offered [67,68] or to accept [69,70] MDA – as
opposed to random distribution of noncompliance
at a given coverage level – is particularly challeng-
ing, increasing the predicted number of rounds of
MDA required to interrupt transmission even at
levels of noncompliance less than 10% [58

&

]. Non-
compliance may increase with treatment fatigue in
the community, particularly as morbidity, and per-
ceived need for intervention is reduced.

Although models can provide estimates of the
coverage and number of rounds needed to break
transmission in a given setting, in practice, deter-
mining whether transmission has been interrupted
presents a significant logistical challenge. The
achievement of interruption can only be verified
by removing drug pressure and ceasing MDA for a
predefined period to monitor for recrudescence
[58

&

]. However, ceasing MDA activities in re-
source-limited settings carries a risk that program
resources will be diverted elsewhere and programs
difficult to restart in the event that recrudescence is
observed [9]. For this reason, a threshold must be
selected to optimally distinguish between areas
where transmission has been interrupted and areas
with continued transmission with a high positive
predictive value (PPV) [58

&

]. In this context, PPV is
defined as the proportion of communities below the
threshold in which prevalence will continue to de-
cline toward elimination rather than bouncing back
to pre-MDA levels. Assessment should ideally be
timed so that programmed MDA activities can go
forward in the event that a community does not
meet the threshold; however, PPV is improved the
longer the interval between MDA and assessment
[58

&

,71]. Modeling to compare several thresholds
suggests that absolute prevalence, rather than
change in prevalence or a prevalence ratio, best
discriminates between communities that proceed
to elimination and those that bounce back, and that
a posttreatment prevalence of less than or equal to
2% has a PPV more than 80% for most pretreatment
transmission intensity scenarios [71,72].
 Copyright © 2017 Wolters Kluwe
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Another logistic consideration is how to accu-
rately determine when the absolute prevalence
reaches the threshold with a high PPV for transmis-
sion interruption. Microscopy-based diagnostic
methods are not sensitive at low intensity [73,74]
and given that prevalence of infection is highly
correlated with infection intensity, mean intensity
is expected to be extremely low as populations
approach the transmission breakpoint [2] and
current microscopic methods would likely be
inadequate for the documentation of transmission
interruption. Although the assessment of novel
diagnostics for STH is somewhat hampered by the
lack of a gold standard [75], in field-based studies,
quantitative polymerase chain reaction (qPCR)
consistently detects more infections than microsco-
py-based methods. Using PCR as a pseudogold
standard, these studies have found sensitivity of
two-stool two-slide Kato-Katz as low as 70% for
Ascaris and 32% for N. americanus relative to multi-
parallel qPCR [73], whereas sensitivity of sodium
nitrate flotation was 83% for Ascaris and 34% for
hookworm relative to multiplex PCR [73,76]. Detec-
tion of DNA by qPCR is possible at concentrations as
low as 1 fg/ml [77] and qPCR appears to have superior
sensitivity [78

&&

] at known concentrations of eggs
corresponding to low-to-moderate intensity of
infection, as well as reduced variability [79] when
compared with Kato-Katz. Recent advances in
molecular diagnostics, including qPCR, may meet
the necessary performance characteristics to be use-
ful for the documentation of an absolute prevalence
2% or less.

Transmission interruption through MDA relies
on the continued efficacy of benzimidazoles. Al-
though the cure rate of a single dose of benzimida-
zoles is as high as 97% for Ascaris [80], the efficacy
against hookworm is variable and may be linked to
nutritional status [25

&

,26]. Albendazole alone has a
low cure rate for Trichuris infection [80,81] and MDA
has only a moderate impact on mean infection
intensity [82], suggesting that transmission inter-
ruption in areas where Trichuris is dominant may
require the use of combination therapy [25

&

,61
&&

].
The potential emergence of resistance to benzi-

midazoles is a major concern when expanding MDA
to the whole community [83,84] particularly given
the lack of availability of second-line treatment
options and the potential for the success of the
STH morbidity control strategy to be undermined.
Anthelmintic resistance, including multidrug resis-
tance [85], is a well documented issue in animal
populations [86] and some mutations associated
with benzimidazole resistance have been identified
in eggs from human stool [87]. Although any large-
scale MDA with benzimidazoles may risk producing
r Health, Inc. All rights reserved.
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resistance [54], in animal husbandry, strategies to
combat resistance include the exclusion of a subset
of the population from deworming to maintain
refugia [88,89]. The exclusion of adults from MDA
mirrors this strategy in human populations, suggest-
ing that expansion of MDA to include all age groups
risks accelerating the emergence of resistance unless
transmission is interrupted within a fairly small
number of rounds.
CONCLUSION

Interrupting the transmission of STH in some geo-
graphic areas could theoretically eliminate substan-
tial morbidity and productivity loss while also the
reducing resource burden that STH programs de-
mand. Transmission interruption would eliminate
the need for continued MDA, freeing up resources
for other public health activities in resource-limited
settings and limiting the need for pharmaceutical
company donation programs which are currently
planned through 2020. An elimination strategy
through MDA only, while requiring substantial in-
vestment, is nevertheless potentially more achiev-
able in many settings than universal WASH
improvement. However, there are many foreseeable
challenges to such a strategy, and most evidence for
its feasibility comes from mathematical models.
Although these provide crucial information to in-
form a roadmap of the strategy and its requirements,
given the risks to existing morbidity control efforts,
assumptions must be tested in well conducted
population-based trials before the merits of such a
strategic shift can be determined.
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