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Abstract: The lymphatic vasculature, along with the blood vasculature, is a vascular system in
our body that plays important functions in fluid homeostasis, dietary fat uptake, and immune
responses. Defects in the lymphatic system are associated with various diseases such as lymphedema,
atherosclerosis, fibrosis, obesity, and inflammation. The first step in lymphangiogenesis is determining
the cell fate of lymphatic endothelial cells. Several genes involved in this commitment step have
been identified using animal models, including genetically modified mice. This review provides an
overview of these genes in the mammalian system and related human diseases.
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1. Introduction

The lymphatic vascular system is essential for fluid homeostasis, dietary fat uptake, and immune
responses [1–3]. The lymphatic vasculature is a one-way drainage system that transports lymph
collected from the tissues to the venous vascular system. Defects in the lymphatic vascular system
are associated with various types of human diseases such as lymphedema, obesity, atherosclerosis,
inflammation, and fibrosis [1–3]. The lymphatic vasculature develops at embryonic day (E) 9.5 in
mice and at the end of the 5th week of gestation in humans, which occurs after the establishment of a
primitive cardiovascular system [4–6]. In mice, lymphatic endothelial cells derived from the cardinal
and intersomitic veins sprout to form the primitive lymphatic sac [6–10]. The primary lymphatic
plexus produced by the proliferation of lymphatic endothelial cells in the lymphatic sac is remodeled
and matured into the functional lymphatic vasculature [7–12]. In addition to venous endothelial
cells, non-venous endothelial cells contribute to the formation of the lymphatic vasculature in various
organs [13–16]. Many genes are involved in the development of the lymphatic vascular system.
Phenotypic analyses of knockout mouse strains of these genes and lineage tracing experiments using
reporter mouse strains provide valuable information to this field.

Most lymphatic endothelial cells are derived from venous endothelial cells [6]. Therefore, it is an
important question as to how venous endothelial cells are committed to the lymphatic endothelial cell
fate. This review focuses on the genes involved in the cell fate determination of lymphatic endothelial
cells of mouse embryos. Mutations in these genes are associated with several human congenital and
adult-onset diseases.

2. Origins of Lymphatic Endothelial Cells

The origin of lymphatic endothelial cells has been debated for more than 100 years. In 1902, Sabin
proposed that the lymphatic sac was derived from venous endothelial cells based on an ink injection
experiment using porcine embryos [17]. However, Huntington and McClure proposed in 1910 that
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mesoderm-derived endothelial precursor cells, independent of venous endothelial cells, formed the
lymphatic sac and then connected to the venous vascular system [18]. Lineage tracing experiments
using genetically modified mice by Srinivasan et al. showed that most lymphatic endothelial cells were
derived from the cardinal and intersomitic veins, which strongly supported Sabin’s theory [6]. There
is no doubt that veins are the main source of lymphatic endothelial cells [6]. However, recent studies
have identified other progenitor cells that contribute to the formation of lymphatic vessels in specific
tissues. During the development of mouse mesenteric lymphatics, mesenteric lymphatic endothelial cells
are derived from cKit+-hemogenic endothelium-derived cells as well as venous endothelium-derived
cells [14]. This dual source mechanism is observed in other tissues using lineage-tracing experiments in
mice. Lymphatic endothelial cells in the cervical and thoracic skin originate from the venous-derived
lymphatic sac, while some lymphatic vessels in the lumbar region are produced by vasculogenesis with
non-venous endothelial cells [15]. Klotz et al. proposed that the cardiac lymphatic vessels were composed
of lymphatic endothelial cells with heterogeneous cellular origins, venous- and non-venous cells [16].
Hemogenic endothelial cells in the yolk sac were suggested as the origin of the non-venous cells [16].

3. Specification of Lymphatic Endothelial Cells

3.1. Transcription Factor Prospero Homeobox 1 (PROX1)

PROX1 is a homeobox-containing transcription factor and the mammalian homolog of the
Drosophila prospero gene with the consensus binding motif, C(A/T)(C/T)NNC(T/C) [19,20]. This gene
is the master switch that determines the fate of lymphatic endothelial cells and also maintains their
identity [4,7,21–26]. In mice, the biased expression of Prox1 in endothelial cells of the cardinal vein in
the jugular region specifies a subset of venous endothelial cells as lymphatic endothelial progenitor
cells at around E9.5 [6,7,21]. Prox1−/− embryos die around E14.5 and lack lymphatic vessels [7]. Loss of
Prox1 at early developmental stages (in the venous lymphatic endothelial progenitors) causes scattered
blood-filled lymphatic vessels and cutaneous edema [22]. Overexpression of Prox1 in endothelial cells
leads to dermal edema and anemia at E14.5 and reprogramming of the identity of venous endothelial
cells [26]. In addition to these in vivo experiments, ectopic overexpression or knockdown of PROX1 in
blood vascular endothelial cells or lymphatic endothelial cells disturbs the expression of lymphatic
endothelial cell markers and blood vascular endothelial cell markers in these cells. Ectopic expression
of PROX1 in primary human dermal microvascular endothelial cells increases the expression of many
lymphatic endothelial cell markers such as PDPN and FLT4/VEGFR3 [23,27]. Ectopic expression
PROX1 also decreases the expression of many blood vascular endothelial cell markers, such as NRP1,
ICAM1, STAT6, and AXL [23,27]. Knockdown of PROX1 expression by siRNA in primary human
lymphatic endothelial cells results in the downregulation of lymphatic endothelial cell markers, PDPN
and CCL21/SLC, and in the ectopic expression of blood vascular endothelial cell markers, such as ENG
and CD34 [22]. These in vitro and in vivo data demonstrate that PROX1 is necessary and sufficient for
the cell fate determination of lymphatic endothelial cells. PROX1 expression is regulated by several
transcription regulators, including SRY-Box Transcription Factor 18 (SOX18) [28], Nuclear Receptor
Subfamily 2 Group F Member 2 (NR2F2/COUP-TFII) [6], Hematopoietically Expressed Homeobox
(HHEX) [29], Yes-Associated Protein 1 (YAP1) [30], and Tafazzin (TAZ) [30].

3.2. Transcriptional Regulators of PROX1

The transcription factor SOX18 is a member of the SOX (SRY-related HMG-box) family and
has the consensus binding motif AACAAAG [31]. SOX18 binds directly to the Prox1 promoter
and activates its transcription [28]. Sox18−/− mice die around E14.5 with a complete blockade of
the differentiation of lymphatic endothelial cells from endothelial cells in the cardinal vein [28].
Overexpression of Sox18 in blood vascular endothelial cells induces expression of lymphatic endothelial
cell markers such as Prox1, Efnb2, and Flt4/Vegfr3 [28]. The RAS-RAF1-MEK-ERK signaling cascade
induces SOX18 expression, and thus this signaling is important for the cell fate determination of
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lymphatic endothelial cells [32,33]. Endothelial cell-specific expression of human RAF1 S259A mutant
(RAF1S259A), which induces constitutive activation of ERK, causes embryonic lethality at E15.5, enlarged
lymphatic sacs and vessels, subcutaneous edema, cardiac defects, and induction of Sox18 and Prox1
expression [32]. SOX18 is necessary for Prox1 expression, although on its own it is not sufficient [34].
NR2F2, an orphan nuclear receptor transcription factor, is required to activate Prox1 expression in
the cardinal vein by direct binding to the Prox1 promoter [6,34]. Nr2f2−/− mice die before E11.5 with
defects in heart development and angiogenesis including malformations in the cardinal vein [35].
Endothelial cell-specific disruption of Nr2f2 using Tek-cre causes ectopic expression of arterial markers
in the veins and reduction of the number of Prox1+ cells in and around the cardinal vein [6,34,36].
NR2F2 specifies the fate of lymphatic endothelial cells by physically interacting with PROX1 in the
lymphatic endothelial cells [24,37]. Recent studies have identified other transcriptional regulators
of PROX1. HHEX is a member of the homeobox family of transcription factors and is expressed in
endothelial cells of the cardinal vein [29]. Embryonic lethality caused by disruption of Hhex begins
around E11.5 showing growth retardation, pericardial edema, vascular patterning defects, blood-filled
lymphatic vessels, and a reduced number of Prox1+ cells within the cardinal vein [29,38]. Similar
phenotypes are also observed in Hhexflox/flox;Tek-cre embryos [29]. Disruption of Hhex from E10.5 using
Prox1-CreER leads to lymphatic defects, such as edema, blood-filled lymphatic vessels, and shorter,
wider, and fewer branched lymphatic vessels [29]. Blood vessels, however, are not affected in these
Hhexflox/flox;Prox1-CreER embryos [29]. Chromatin immunoprecipitation analysis indicates the direct
binding of HHEX in the Prox1 promoter [29]. YAP1 and TAZ are downstream effectors of the Hippo
signaling pathway [39]. They translocate into the nucleus where they bind to TEAD/TEF transcription
factors and function as transcriptional co-regulators [39]. In the cardinal vein, YAP1 and TAZ are in
the cytoplasm of most Prox1+ lymphatic endothelial cells, whereas in blood vascular endothelial cells,
YAP1 can be found in the nucleus and TAZ in the nucleocytoplasm [30]. Hyperactivation of YAP1 and
TAZ in Prox1+ lymphatic endothelial progenitors results in a reduced number of Prox1+ lymphatic
endothelial cells and decreased width of lymphatic sac [30]. Furthermore, hyperactivation of YAP1
and TAZ in Cdh5+ whole endothelial cells, including lymphatic endothelial progenitors, shows similar
defects [30]. Hyperactivation of YAP1 in primary cultured human dermal lymphatic endothelial cells
leads to the dedifferentiation of lymphatic endothelial cells to blood vascular endothelial cells [30].
In human dermal lymphatic endothelial cells, YAP1 and TAZ negatively regulate PROX1 expression [30].
YAP1 may directly inhibit PROX1 transcription through the recruitment of the NuRD complex and
TEAD-mediated binding to the PROX1 promoter [30].

3.3. Post-Transcriptional Regulators of PROX1 and Post-Translational Modification for PROX1

MicroRNAs (miRNAs), which are non-coding RNAs, are involved in the regulation of PROX1
expression [40,41]. Mir181a binds directly to the 3′-untranslated region of Prox1, causing degradation
of Prox1 transcripts and inhibition of Prox1 translation [40]. Ectopic expression of Mir181a in primary
lymphatic endothelial cells leads to reduced Prox1 mRNA and protein levels and reprogramming
of lymphatic endothelial cells to endothelial cells with blood vascular endothelial cell identity [40].
Conversely, knockdown of endogenous Mir181a in primary blood vascular endothelial cells increases
Prox1 expression [40]. Another miRNA, MIR31, which is identified as a blood vascular endothelial
cell-specific miRNA, inhibits the translation of PROX1 [41]. Post-translational modifications enable
the functional diversity of the target protein. PROX1 is a target for small ubiquitin-like modifier 1
(SUMO1), and inhibition of the PROX1 sumoylation reduces the DNA binding and transcriptional
activities of PROX1 [42].

3.4. FMS-Like Tyrosine Kinase 4 (FLT4)/Vascular Endothelial Growth Factor Receptor 3 (VEGFR3) Signaling

FLT4, also known as VEGFR3, is a member of receptor tyrosine kinases and is a receptor of the
lymphangiogenic growth factor Vascular Endothelial Growth Factor C (VEGFC) that induces the
budding-off of lymphatic endothelial cells from the cardinal vein [12]. Vegfc−/− embryos die after E15.5
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and show edema [12]. In Vegfc−/− embryos, Prox1+ lymphatic endothelial cells fail to bud from the
cardinal vein and remain trapped in veins [10,12]. The number of lymphatic endothelial progenitor cells
in the cardinal vein is reduced in Vegfc−/− embryos [25]. FLT4 is expressed in blood vascular endothelial
cells until around E10.5, and its deficiency results in embryonic death after E10.0, severe cardiovascular
defects, yolk sac vasculature defects, pericardial edema, and growth retardation [43]. Moreover, its
expression in blood vascular endothelial cells is decreased, and in lymphatic endothelial cells, it is
increased during lymphangiogenesis [21,43,44]. Flt4 is a direct transcriptional target of PROX1 [25].
FLT4 signaling is required to maintain Prox1 expression in lymphatic endothelial progenitor cells,
which maintain the identity of lymphatic endothelial progenitor cells [25]. Ligand binding induces
autophosphorylation of FLT4, which leads to the activation of downstream signaling pathways
involved in the growth and survival of blood vascular endothelial cells and lymphatic endothelial
cells [45,46]. The interaction between β1 integrin (ITGB1) and FLT4 is vital for the activation of FLT4
signaling [47–49]. A recent study has shown that integrin–linked kinase (ILK), a mechanosensitive
regulator of FLT4, interferes with the interaction between β1 integrin and FLT4 [50]. The inhibition
of MIR126 in human lymphatic endothelial cells leads to the downregulation of KDR/VEGFR2 and
FLT4, as well as an inadequate response to VEGFA and VEGFC [51]. Two Mir126−/− mouse strains
with different genetic backgrounds show distinct embryonic phenotypes [51,52]. One of them shows
partial embryonic lethality, edema, hemorrhage, and growth retardation [52]. Although the other is
generally normal, loss of Mir126 in Flt4+/− causes embryonic lethality and severe edema [51].

3.5. NOTCH Signaling

NOTCH signaling is an evolutionary conserved pathway and is important for various biological
processes such as cell fate determination, proliferation, differentiation, and homeostasis in both
embryonic and adult stages. NOTCH signaling is essential for the tip/stalk cell selection and
arterial specification during angiogenesis [53,54]. Ligand binding induces two sequential proteolytic
cleavages in NOTCH and results in the release of NOTCH intracellular domain (NICD) from
the membrane [55]. NICD translocates into the nucleus and interacts with recombination signal
binding protein for immunoglobulin kappa J region (RBPJ) to regulate transcription of downstream
targets [55]. NOTCH signaling is also involved in the cell fate determination of lymphatic endothelial
cells and their cellular activities. NOTCH and NR2F2 mutually inhibit their expression [36,56,57].
In human dermal lymphatic endothelial cells, NOTCH downregulates PROX1 and NR2F2 expression
through Hairy/enhancer-of-split related with YRPW motif 1 (HEY1) and HEY2, NOTCH-downstream
transcription factors, whereas PROX1 and NR2F2 attenuate the FLT4 signaling that suppresses NOTCH
signaling [56]. Chen et al. have shown that NR2F2 has a direct and negative regulatory effect on the
expression of Neuropilin 1 (NRP1) and Forkhead box C1 (FOXC1), which are upstream activators of
the NOTCH signaling [57]. In the cardinal vein of E9.75 mouse embryos, the NOTCH1 expressed
region is on the opposite side of the PROX1 expressed region [58]. At E10.5, NOTCH1 and PROX1
show distinct and overlapping expression patterns in the posterior cardinal vein [58]. Disruption
of Notch1 in Prox1+ cells at E9.75 leads to mild edema, bold-filled lymphatic vessels, and enlarged
lymphatic sac in E14.5 embryos [58]. The mutant embryos have an increased number of Prox1+ cells
within the cardinal vein, as well as an increased number of Prox1+ cells emerging from the cardinal vein
due to defects in the cell fate determination of lymphatic endothelial cells [58]. They have lymphatic
vessels that are not correctly connected to the cardinal vein, causing blood-filled lymphatic vessels [58].
Another group has reported enlarged lymphatic vessels, and increased proliferation and survival
of lymphatic endothelial cells in mutant embryos, in which Notch1 is disrupted in Prox1+ cells at
E10.5 [59]. In contrast, the expression of constitutively active NOTCH1 in Prox1+ cells downregulates
the expression of Prox1 and lymphatic endothelial cell markers [58]. Ectopic expression of constitutively
active NOTCH1 in Prox1+ cells at E10.5 forms numerous small and disorganized lymphatic sac-like
structures beside the cardinal vein, instead of at the jugular lymphatic sac [58]. Laminar flow-induced
shear stress reduces NOTCH1 activity in lymphatic endothelial cells [60].
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3.6. Bone Morphogenetic Protein (BMP) Signaling

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β)
superfamily. In the canonical BMP signaling pathway, the BMP ligand–receptor complex phosphorylates
receptor-regulated SMADs (R-SMADs) by the Ser/Thr kinase activity of activated type I receptors [61].
Activated R-SMADs translocate into the nucleus with the common SMAD (SMAD4) and regulate
downstream targets [61]. An experiment using BMP response element (BRE)-reporter mice shows that
BMP-SMAD signaling is active in endothelial cells of the cardinal vein and lymphatic endothelial cells
budding from the cardinal vein [61]. BMP2-SMAD signaling negatively regulates PROX1 expression
through induction of MIR181a and MIR31 expression [62]. Bmp9−/− embryos and neonates show
enlarged lymphatic vessels and defective lymphatic valve formation [63,64]. In primary cultured
human dermal lymphatic endothelial cells, BMP9 treatment directly downregulates PROX1 expression
through ACVRL1, a TGF-β type I receptor, and reduces the number of lymphatic endothelial cells [64].

3.7. Transmembrane Protein 100 (TMEM100)

TMEM100 is identified as a downstream target of the BMP9/10-ACVRL1 pathway by my and
other groups [65–67]. Expression of TMEM100 is highly induced by BMP9 treatment in the human
umbilical artery and vein endothelial cells [66,68]; it is reduced in Acvrl1-deficient embryos and
adults [65–67]. Tmem100−/− embryos die between E10.5 and E11.5 with severe cardiovascular defects
due to downregulated NOTCH and AKT signaling [65–67]. Recently, we have revealed that TMEM100
is essential for the cell fate determination of lymphatic endothelial cells by regulating NOTCH
signaling [69]. Deletion of Tmem100 in whole embryos at E10.5 leads to mild edema, blood-filled
lymphatic vessels, lymphatic vessel dilation, and an increased number of Prox1+ lymphatic endothelial
cells in the cardinal vein [69]. These defects are associated with a decreased NOTCH activity in
endothelial cells of the cardinal vein [69]. Overexpression of TMEM100 in Tek+ endothelial cells results
in embryonic lethality around E15.5, severe lymphedema, and small and disorganized lymphatic
vessels [69]. In these overexpression embryos, the number of Hey2+ endothelial cells is increased in the
cardinal vein, which is the exact opposite phenotype of Tmem100-deficient embryos [69].

4. Human Diseases Associated with Genes for the Cell Fate Determination of Lymphatic
Endothelial Cells

Abnormal lymphangiogenesis is the cause of several congenital human diseases. The null
mutations of genes that are highlighted in this review may cause human embryonic death. However,
heterozygous mutations, missense mutations, or single-nucleotide polymorphisms (SNPs) in these
genes can lead to human diseases. Hypotrichosis-lymphedema-telangiectasia syndrome (HLTS,
OMIM #607823) and hypotrichosis-lymphedema-telangiectasia-renal defect syndrome (HLTRS,
OMIM #137940) are caused by mutations in SOX18. HLTS is characterized by unusual associated
symptoms, hypotrichosis, lymphedema, and telangiectasia [70]. HLTRS patients show renal defects
as well as symptoms that overlap with HLTS [71]. Noonan syndrome 5 (NS5, OMIM #611553) and
LEOPARD syndrome 2 (LPRD2, OMIM #611554) are caused by heterozygous mutations in RAF1 [72–78].
Noonan and LEOPARD syndromes are caused by increased RAS signaling and show overlapping
clinical features such as cardiac abnormalities, short stature, and facial dysmorphia [72,73]. Lymphatic
dysplasia is also common in patients with Noonan syndrome [79,80]. Lymphatic malformation-1
(LMPHM1, OMIM #153100), also known as primary congenital lymphedema, is usually caused
by heterozygous mutations in FLT4. In an LMPHM1 patient, Ghalamkarpour et al. reported
a homozygous missense mutation (c.2563G.A; p.A855T) in FLT4 [81]. Lymphatic malformation-4
(LMPHM4, OMIM #615907) is caused by heterozygous mutations in VEGFC [82]. Primary lymphedema
is a chronic swelling of body parts due to malformations in the lymphatic system. Moreover, it has
been elucidated that these diseases are caused by mutations in several genes including GJC2, PIEZO1,
EPHB4, CALCRL, FOXC2, SOX18, GATA2, CCBE1, PTPN14, KLF11, and two genetic loci, as well
as VEGFC and FLT4 [83,84]. Most of the genes are upstream or downstream genes of PROX1-FLT4
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signaling [84]. In addition to these human congenital diseases, PROX1 mutation or SNPs are associated
with adult-onset obesity or type 2 diabetes [85–90]. Although most Prox1+/- pups die shortly after birth,
some can survive to adulthood and show adult-onset obesity [85]. In humans, several studies have
shown reduced PROX1 expression in hyperlipidemia, obesity, and type 2 diabetes patients [86–94].
Genome-wide association studies have indicated that SNPs linked to the PROX1 locus, such as
rs1704198 and rs340874, are associated with these metabolic disorders [87,88,90–94].

5. Conclusions

This review focuses on important genes and signaling pathways involved in the cell-fate
determination of lymphatic endothelial cells, based on studies using genetically modified mice
(Figure 1, Table 1). Although our knowledge of lymphangiogenesis has improved, there are still
many points to be elucidated in disease conditions, even under normal development conditions.
Since the function of PROX1 that determines the cell fate of lymphatic endothelial cells during early
development has been elucidated, the functions of various genes related to PROX1-FLT4 signaling
have been reported, and thus our understanding of this biological process has deepened. However,
the identification of new genes such as HHEX, YAP, TAZ, ILK, MIR126, and TMEM100, which are
involved in the cell fate determination of lymphatic endothelial cells, suggests that many important
genes have not yet been identified in this field. If we better understand the cell fate determination of
lymphatic endothelial cells during the development of lymphatic vessels in various organs as well as
in early embryos, this would give us an opportunity for therapeutic intervention.
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Figure 1. Genes and signaling pathways involved in the cell fate determination of lymphatic endothelial
cells. PROX1 is the master regulator to determine the fate of lymphatic endothelial cells. Several
genes act as transcriptional activators (NR2F2, SOX18, and HHEX) or repressors (YAP1 and TAZ).
RAF1/ERK signaling activates SOX18 and PROX1 expression. MiRNAs, Mir181a and Mir31, are
post-transcriptional regulators of PROX1. The sumoylation of PROX1 by SUMO1 modulates the
DNA binding and transcriptional activities of PROX1. BMP2 signaling negatively regulates PROX1
expression through an increase of Mir181a and Mir31 expression. NOTCH and NR2F2 mutually
inhibit their expression, and NOTCH downregulates PROX1 and NR2F2 expression via HEY1 and
HEY2. BMP9/ACVRL1 signaling inhibits PROX1 expression. TMEM100, a downstream target of
BMP9/ACVRL1 signaling, activates NOTCH signaling. VEGFC is a lymphangiogenic growth factor
and the ligand of FLT4. VEGFC-FLT4 signaling that is a main downstream effector of PROX1 is essential
for the budding-off of lymphatic endothelial cells from the cardinal vein. Downregulation of Mir126
attenuates FLT4 signaling. Interaction between FLT4 and ITGB1, which is interfered with by ILK
(integrin-linked kinase) is important for the activation of FLT4 signaling.

Studies using genetically modified animals, especially mice, have provided us with a great
deal of information about lymphangiogenesis. The production of genetically modified mice was a
time-consuming and labor-intensive task in the past. However, the recently developed CRISPR/Cas9
system can reduce these efforts. CRISPR/Cas9 can also enable the production of more precisely designed
mice [95]. In the future, these mice will not only provide a better understanding of lymphangiogenesis
but will also help find therapeutic solutions for related diseases.
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Table 1. Mouse models of genes involved in the cell fate determination of lymphatic endothelial cells.

Gene Roles in Lymphangiogenesis Viability and Gross Morphology of Knockout (KO) Embryos Human Diseases 1

Prox1 Specification and maintenance of
lymphatic endothelial cells

KO mice [7,21]
die ~E14.5; lymphedema; lack of lymphatics
cKO mice (Tek-cre) 2 [6]
lymphedema; compromised lymphangiogenesis
cKO mice (CAGGCreER, E8.5~E10.5, E12.5 and E13.5) 3 [22]
lymphedema; blood-filled lymphatics
OE mice (tie1 tTA:tetOS prox1) 4 [26]
lymphedema; anemia

Human SNP rs1704198
located in the proximity of PROX1
associated with a larger waist circumference
Human SNP rs340874
located in the 5′-UTR of PROX1
associated with fasting glycemia and
type 2 diabetes

Sox18 Activation of Prox1 expression KO mice [28]
die ~E14.5; lymphedema; lack of lymphatics

Hypotrichosis-lymphedema-telangiectasia
syndrome (OMIM #607823)
Hypotrichosis-lymphedema-telangiectasia-renal
defect syndrome (OMIM #137940)

Raf1 Activation of Sox18 and Prox1 expression
through ERK signaling

KO mice [96,97]
die after E11.5 (until E16.5); growth retardation; defects in several
organs including the skin, eyelids, lung, placenta, and liver
OE mice (VE-cadherin-tTA/RAF1S259A) 4 [32]
die at E15.5; lymphedema; enlarged lymphatics; heart defects;
induction of Sox18 and Prox1 expression

Noonan syndrome 5 (OMIM #611553)
LEOPARD syndrome 2 (OMIM #611554)
Cardiomyopathy, dilated, 1NN (OMIM #615916)

Nr2f2 Activation of Prox1 expression
Inhibition of NOTCH signaling

KO mice [35]
die before E11.5; heart defects; angiogenesis defects
cKO mice (Tek-cre) [6,34,36]
die at E11.5; compromised lymphangiogenesis; ectopic expression of
Notch1

46, XX sex reversal 5
(OMIM #618901)
Congenital heart defects, multiple types, 4
(OMIM #615779)

Hhex Activation of Prox1 expression KO mice [29,38]
die after E11.5; pericardial edema; blood-filled lymphatics; growth
retardation; vascular patterning defects
cKO mice (Tek-cre) [29]
die after E11.5; pericardial edema; growth retardation; vascular
patterning defects; blood-filled lymphatics; lymphedema; defects in
lymphatic vessels
cKO mice (Prox1-CreER, E10.5~E12.5) [29]
blood-filled lymphatics; lymphedema; defects in lymphatic vessels

Yap1 and
Taz

Inhibition of Prox1 expression Double cKO mice (Prox1-CreER, E11.5 and E13.5) [30]
lymphedema; defects in lymphatic vessels

YAP1: Coloboma, ocular, with or without hearing
impairment, cleft lip/palate, and/or mental
retardation (OMIM #120433)
TAZ: Barth syndrome (OMIM #302060)

Vegfc Ligand for FLT4
Budding-off of lymphatic
endothelial cells

KO mice [10,12,25]
die after E15.5; lymphedema; failure of the budding-off of lymphatic
endothelial cells from the cardinal vein

Lymphatic malformation 4 (OMIM #615907)
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Table 1. Cont.

Gene Roles in Lymphangiogenesis Viability and Gross Morphology of Knockout (KO) Embryos Human Diseases 1

Flt4 Receptor for VEGFC
Budding-off of lymphatic
endothelial cells

KO mice [43]
die after E10.5; severe cardiovascular defects; yolk sac vasculature
defects; pericardial edema; growth retardation

Lymphatic malformation 1 (OMIM #153100)
Congenital heart defects, multiple types, 7
(OMIM #618780)
Hemangioma, capillary infantile, somatic
(OMIM #602089)

Ilk Inhibition of the interaction between β1
integrin and FLT4

cKO mice (Kdr-cre) [50]
die after E13.5; lymphedema; head bleeding; enlarged lymphatics;
lymphatic and blood vascular sprouting defects

Mir126 Control of FLT4 signaling KO mice 1 [51]
No obvious defects
KO mice 2 [52]
partial embryonic lethality; edema; hemorrhage; growth retardation
Mir126-/-; Flt4+/- [51]
Die before birth; lymphedema at E14.5

Notch1 Inhibition of Prox1 and Nr2f2 expression cKO mice (Prox1-CreER, E9.75) [58]
mild lymphedema; bold-filled lymphatics; enlarged lymphatic sacs
cKO mice (Prox1-CreER, E10.5) [59]
enlarged lymphatic vessels
OE mice (Prox1-CreER, E10.5) [58]
numerous small and disorganized lymphatic sac-like structures

Adams-Oliver syndrome 5 (OMIM #616028)
Aortic valve disease 1 (OMIM #109730)

Bmp9 Downregulation of Prox1 expression
through ACVRL1

KO mice [63,64]
enlarged lymphatic vessels; defective lymphatic valve formation

Telangiectasia, hereditary hemorrhagic, type 5
(OMIM #615506)

Tmem100 Inhibition of NOTCH signaling cKO mice (ROSA26-CreER, E10.5) [69]
die around E16.5; lymphedema, blood-filled lymphatic vessels;
lymphatic vessel dilation
OE mice (Tek-cre) [69]
die around E15.5; lymphedema, small size and number of
lymphatic vessels

1 Human diseases associated with each gene are listed with OMIM number [83]. 2 The cre mouse strains that are used for Cre/loxP recombination in conditional knockout (cKO) or
overexpression (OE) mice are listed in the parentheses. 3 Tamoxifen is treated at indicated embryonic day(s) for inducible Cre-loxP recombination in cKO or OE mice. 4 Overexpression
mice using doxycycline-induced Tet-off system.
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Abbreviations

BMP Bone morphogenetic protein
E Embryonic day
HLTRS Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome
HLTS Hypotrichosis-lymphedema-telangiectasia syndrome
LMPHM1 Lymphatic malformation-1
LMPHM4 Lymphatic malformation-4
MiRNA MicroRNA
NICD NOTCH intracellular domain
R-SMAD Receptor-regulated SMAD
RAF1S259A RAF1 S259A mutant
SNP Single-nucleotide polymorphism
TGF-β Transforming growth factor-β
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