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Abstract: Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset
Alzheimer’s disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor
protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin process-
ing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may
play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More
than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these
mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly
present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment.
In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The
pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines;
however, some mutations could not be categorized because they were detected only in a single case,
and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play
a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review
introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and
possible significant residues of the protein.
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1. Introduction

Neurodegenerative dementia is classified as a major health issue, with more than
50 million people around the world affected by some form of dementia. Most affected
patients (almost two-thirds) are diagnosed with Alzheimer’s disease (AD), followed by
frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), and vascular demen-
tia [1]. AD is an irreversible and progressive form of dementia associated with the loss of
memory and cognitive function. Age has been verified as the strongest risk factor for AD,
as disease prevalence increases with age. The number of patients with AD increases rapidly
after 65–70 years of age [2]. AD has different neuropathological hallmarks, including
extracellular amyloid plaques, intracellular neurofibrillary tangles (NFTs), and the loss of
neurons and synapses. Additional atypical neuropathological phenotypes, such as cerebral
amyloid angiopathy (CAA), cotton wool plaques, Lewy bodies or Pick’s bodies may also
co-occur in patients with AD [3]. Although the majority of cases are associated with the
late-onset form of the disease, several cases develop a disease phenotype at a younger age.
Early-onset AD (EOAD) represents 1–5% of all AD cases and can occur under 65 years
of age. The majority of patients present with disease phenotypes in their 40s or 50s, but
disease onset at a young age (in their 20s and 30s) is also possible [4]. EOAD is usually
characterized by an autosomal dominant inheritance pattern; however, autosomal recessive
inheritance may also be possible [5]. Three genes have been identified as causative factors
for EOAD: amyloid precursor protein (APP) on chromosome 21, presenilin-1 (PSEN1) on
chromosome 14, and presenilin-2 (PSEN2) on chromosome 1 [4]. These mutations are rare,
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as only 1% of patients carry APP mutations, 6% of patients carry PSEN1 mutations, and less
than 1% of patients carry PSEN2 mutations [4]. Mutations in PSEN1 have been identified
as the most common causative factor for EOAD, and patients with these mutations may
present with a rapidly progressive disease [4,6]. To date, more than 300 mutations have
been identified in PSEN1 [https://www.alzforum.org/mutations/psen-1, accessed on
1 July 2022]. In this review, we discuss the functions of PSEN1 in Alzheimer’s disease and
its possible impact on other diseases. Additionally, we introduce PSEN1 mutations with
their clinical phenotypes and the functional studies performed on these mutations.

1.1. PSEN1 Structure and Functions

The PSEN1 protein contains 467 amino acids and shows 65% homology to the PSEN2
protein. PSEN1 is a transmembrane protein with nine transmembrane domains connected
to hydrophilic loops in either the extracellular area or the cytosol. The N-terminal fragment
and the large hydrophilic loop are located in the cytosol region, while the C-terminal
fragment is located in the extracellular space. The large hydrophilic loop also contains a
membrane-associated area. PSEN1 is a member of the γ-secretase complex that plays a key
role in APP processing and amyloid peptide generation [7]. PSEN1 contains two catalytic
aspartic acids (Asp275 and Asp 385, located on TM6 and TM7, respectively), that play
key roles in both PSEN1 endoproteolytic activity and γ-secretase activity [8]. Additional
critical residues were found in TM, located between positions 95 and 98. Mutations in
these residues can inhibit or abolish PSEN1 proteolysis and γ-secretase activity [9]. An
additional important residue could be Asp345, which is located in the loop between TM6
and TM7. A caspase cleavage site was located next to this amino acid, which plays a
crucial role in the interaction between PSEN1 and its binding partners [8]. As part of
the γ-secretase complex, PSEN1 or PSEN2 forms a complex with nicastrin (Nct), PSEN
enhancer 2 (PEN2), and anterior pharynx 1 (APH-1). Furthermore, the γ-secretase complex
is known to interact with various other proteins, including ubiquitin, protein-folding related
proteins or adhesion molecules [10]. PSEN1 is involved in the C-terminal transmembrane
region of APP and the production of amyloid-β peptide (Aβ42) by γ-secretase, after APP
processing α-and β-secretases. PSEN1 may not be an enzyme itself, but a crucial regulator
protein in γ-secretase cleavage. PSEN1 could also play a role in the transport of C-terminal
APP fragment to the gamma secretase complex. A deficiency in PSEN1 function may
impair APP processing, resulting in altered amyloid peptide production [11]. Several
presenilin domains may be important for protein functions. The C-terminal fragment
interacts with Nct protein. Additionally, it can control γ-secretase activity through ATP
binding via its nucleotide binding site. Furthermore, the C-terminal fragment interacts
with TM1 and binds to APP [12]. The N-terminal region of PSEN1 (TM1, HL1, and TM2)
plays a crucial role in the catalysis of substrates of the γ-secretase complex. Additionally,
these domains may impact PSEN1 endoproteolysis and the coordination of substrate
docking to the enzyme [13]. TM2 and TM3 interaction may impact the conformation of
γ-secretase (either “semi-open” or “fully open”), and their interaction could control the
availability of the enzyme’s active site. The “semi-open” conformation of the enzyme
could be ideal for the production of short amyloid, while the mutations may induce
the “open” conformation of the enzyme and longer amyloid peptide production [14].
TM5 and TM6 may be responsible for endoproteolysis and the maturation of the PSEN1
protein by controlling the “gate-plug mechanism” [15]. The TM4 domain of PSEN1 directly
interacts with PEN2, enhancing the endoproteolysis of PSEN2 and the impact of γ-secretase
activation [16]. The N-terminal fragment of PSEN1 and the large loop between TM6 and
TM7 may not be essential for amyloid cleavage. The TM6 and TM7 domains contain two
catalytic aspartates [17]. A water-containing cavity was identified inside the membrane
between TM6 and TM7, enabling hydrolysis inside the lipid bilayer [12]. In the following
section, the roles of PSEN1 domains and probable significant residues are introduced
in detail.

https://www.alzforum.org/mutations/psen-1
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Along with the APP, the γ-secretase complex can splice several additional substrates;
PSEN1 (and PSEN2) can also impact Notch signaling through the cleavage of Notch
receptors [18]. Notch signaling has been verified to determine cellular fate and control
cell differentiation and division. PSEN1 is essential for cleavage of Notch receptors within
their TM domains. PSEN1 controls the release of the Notch receptor intracellular domain
(NICD) and allows its entry into the nucleus [19]. PSEN1 may also be involved in Wnt
signaling by controlling β-catenin stability. PSEN1 can promote the phosphorylation
of β-catenin and inhibit cyclin D1, CDK6, and c-Myc molecules, as well as cell-cycle
progression [20,21]. PSEN1 mutations may impair Wnt signaling either directly or indirectly.
PSEN1-mediated amyloid-β toxicity may result in downregulation of Wnt signaling and
neuronal death. Contrastingly, PSEN1 mutations could possibly upregulate Wnt signaling,
leading to abnormal cell cycle events and neuronal loss [21,22]. PSEN1 regulates epidermal
growth factor receptor (EGFR) trafficking and turnover. PSEN1 loss or dysfunction has
been suggested to reduce EFGR1 turnover. This process impairs EFGR trafficking from
endosomes to lysosomes [23]. PSEN1 may impact phospholipase C (PLC) and protein
kinase C (PKC) activation. In terms of PSEN1 (and PSEN2) knockout, the expression of
most PKC and PLC isoforms was reduced. However, PKC delta levels were higher in
PSEN1 knockout cells, resulting in a higher degree of apoptosis and reduced mitochondrial
membrane potential. Through different PLC and PKC isoforms, PSEN1 may be involved
in the regulation of calcium signaling [24]. Through calcium homeostasis, PSEN1 (and
PSEN2) may affect synaptic homeostasis. PSEN1 deficiency may be related to impaired
calcium transport and synaptic dysfunctions [25]. Taken together, PSEN1 may play a role
in multiple molecular pathways (Figure 1).
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Figure 1. Pathways, in which PSEN1 may be involved.

PSEN1 and PSEN2 share 66% homology in their sequences, and both are members
of γ-secretase. However, PSEN1 seems to have a stronger impact on AD progression
than PSEN2. Through Alzforum, PSEN1 and PSEN2 mutations are known to occur in
300 and 87 mutations, respectively. Most studies seem to focus on PSEN1, while sim-
ply overlooking PSEN2 [26]. Another explanation could be that PSEN1 and PSEN2 may
be involved in different aspects of the γ-secretase process. Expression levels of PSEN1
were higher in both mouse and human brains during development, compared to those
of PSEN2 [27,28]. Even though both proteins have endopeptidase and carboxypeptidase
activities, PSEN2-type γ-secretase complexes were revealed to have lower levels of both
activities, compared to those of the PSEN1 type. Mouse models revealed that germline
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PSEN1 knockout may result in serious dysfunctions; for example, it may disturb skeletal
and brain developments [29]. Meanwhile, knockout for PSEN2 may also result in dys-
functions, but less aggressive ones [30]. The γ-secretase functions seemed to be different
depending on whether it assembles with PSEN1 or PSEN2 [31]. A study by Yonemura et al.
examined the γ-secretase activity of PSEN1 and PSEN2 in yeast models. PSEN1-related
γ-secretase presented significantly higher activity compared to PSEN2 related γ-secretase
in the β-galactosidase assay. Amyloid peptide production resulted in higher amyloid
production in the case of the PSEN1-related γ-secretase complex. However, this study
also compared the PSEN1 and PSEN2 activity per one γ-secretase complex, and suggested
that PSEN1 and PSEN2 may have a similar degree of activity. Co-immunoprecipitation of
PSEN1 and PSEN2 with other γ-secretase proteins revealed that PSEN2 concentration was
lower in the complex, compared to PSEN1, suggesting that PSEN1 and PSEN2 may have
different affinity to the other γ-secretase component proteins [32]. ThePSEN1-γ-secretase
complex presented significantly higher activity in comparison to PSEN2-related γ-secretase
in the β-galactosidase assay. The amyloid peptide production was also higher in the case
of the PSEN1-related γ-secretase complex [33]. However, no significant differences were
detected in the production of the APP intracellular domain (AICD) and Notch intracellular
domain (NICD) [33]. Watanabe et al. (2021) analyzed the PSEN1 and PSEN2 functions
in induced pluripotent stem cells (iPSC) cell lines. This study revealed that the PSEN1-
related γ-secretase complex was able to cleave the N-cadherin, but not the PSEN2-related
γ-secretase complex. Both defective PSEN1- and PSEN2-related γ-secretase may impair
amyloid cleavage. The distribution of PSEN1- and PSEN2-related γ-secretase may also be
different. PSEN2 may direct the γ-secretase process toward the late endosome-lysosome
system. Meanwhile, PSEN1-related γ-secretase could be distributed more broadly inside
the cell. The different localizations of PSEN1 or PSEN2 may result in different mechanisms
of substrate processing of γ-secretase [31]. Taken together, additional studies are needed
to establish why PSEN1 mutations more commonly impact EOAD, but not PSEN2. Either
PSEN2 is less extensively studied than PSEN1 or PSEN1 may have higher impact on APP
cleavage compared to PSEN2.

1.2. PSEN1 Mutations and Their Classification

As mentioned before, PSEN1 contains nine transmembrane domains with hydrophilic
loops, including a long loop between TM6 and TM7. These PSEN1 domains can catalyze
the cleavage of γ-secretase substrates, including APP and Notch proteins. To date, more
than 300 mutations have been described in PSEN1 (Figure 2, Supplementary Table S1). The
majority of these have been associated with EOAD, but they may also be connected with
other disease phenotypes, such as frontotemporal dementia (FTD) or Parkinson’s disease
(PD) [19,34]. New sequencing techniques, such as next-generation sequencing (NGS),
whole-genome sequencing (WGS) and whole-exome sequencing (WES) reduce the time
and cost of genetic analysis and accelerate the discovery of novel, probably disease-related
mutations [35].
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The pathogenic nature of PSEN1 (and PSEN2) mutations may be categorized into four
categories, as established by Guerreiro et al. (2010): not pathogenic (or risk variants), pos-
sibly pathogenic, probably pathogenic, or definitely pathogenic. This algorithm suggests
several aspects that may predict the impact of a mutation on the disease. First, the mutation
should segregate with the disease. If the mutation is found in several affected family mem-
bers (but not in the unaffected), it leads to strong evidence that the mutation is pathogenic.
Second, mutations should not appear in the control group. If the mutation appears in dis-
ease cases, but not in more than 100 controls, it may also be probably or possibly pathogenic.
If the mutation was found in the controls, the pathogenic nature of the mutation may be
refuted. In addition, the residue properties may also be important. Therefore, if a mutation
affects a conserved residue between PSEN1 and PSEN2, there is a strong chance of it being
pathogenic. It may also be important to determine whether any pathogenic mutations were
found in the affected residue or if the mutation followed the helix rule. Finally, mutations
should be associated with a higher Aβ42/40 ratio compared to controls [36]. The most re-
cent analyses re-evaluated the pathogenic nature of EOAD-associated mutations following
the guidelines of the American College of Medical Genetics and Genomics and the Asso-
ciation for Molecular Pathology (ACMG-AMP). This algorithm categorizes mutations as
pathogenic, likely pathogenic, benign, likely benign, or variant with uncertain significance
(VUS). The first study of the ACMG-AMP guidelines was introduced by Richard et al. in
2015 for all Mendelian diseases [37]. They designed an evidence framework based on differ-
ent criteria including population data, in silico analyses, functional studies, and segregation
data. This study suggests that variants may be null mutations, frameshifts, START codon-
affecting variants, splice site mutations, stopgain, or stoploss variants, and could be treated
as potential strongly pathogenic variants. Furthermore, positive family history, additional
mutations in the same residue, functional studies, and higher prevalence in patients than
in controls also suggest as strong proof that the mutation may be pathogenic. Additional
strong proof could be that the mutation may occur in more than one independent disease
case. Moderate proof of the pathogenic nature of the mutation could be its absence or very
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low frequency in reference databases (gnomAD; https://gnomad.broadinstitute.org or
1000Genome; https://www.internationalgenome.org, all accessed on 1 July 2022). Fur-
thermore, variants may affect a mutation hotspot, or a functional or conserved/critical
residue. In silico tools may also be useful for prediction; for example, variants with CADD
(https://cadd.gs.washington.edu/snv, accessed on 1 July 2022) scores over 20 were pre-
dicted to be damaging. Possible benign variants may appear at a higher frequency among
the control in comparison to that in the patients with the disease. Functional and in sil-
ico studies did not reveal any damaging effects from the benign variants. Furthermore,
putative benign variants may not segregate with the disease [37–39]. Table 1 summarized
ACMG-AMP classification criteria for the PSEN1 (APP, PSEN2) mutations. Among the
PSEN1 mutations included in Alzforum (https://www.alzforum.org/mutations/psen-1,
accessed on 1 July 2022), six missense mutations were categorized as benign or likely
benign. Several mutations could not be classified by Alzforum, as the available data on
them may be limited. These mutations were found in a single patient. Furthermore, no
segregation could be made since no data were available on family members or relatives
of proband patients refused the genetic test. The majority of PSEN1 variants in Alzforum
were categorized as pathogenic or likely pathogenic, as mutations fulfilled several criteria
of the ACMG-AMP guidelines for pathogenic variants [38,39].

Table 1. Categorizing EOAD-related (including PSEN1) mutations based on the ACMG-AMP guide-
lines [37–39].

Criteria Weighting Proof

Pathogenic

Strong

• Mutation was found in several unrelated disease cases
• Functional (in vivo or in vitro) studies are well established, and revealed damaging

mechanisms
• Prevalence is higher in patients than controls
• De novo case of mutation, both parents confirmed as non-carriers
• Mutation segregates with disease, which is confirmed

Moderate

• Mutation is located in a “hot spot” residue, or functional domain/affects a critical
residue

• Missing or very rare in reference database (GnomAD, 1000Genomes)
• Novel variant in a residue where pathogenic variant was reported before
• De novo variants, but parents were not confirmed as non-carriers
• Mutation segregates with disease, but cannot be confirmed

Supporting

• Mutation found in a gene, where missense variants are common in diseases
• In silico predictions confirm it as damaging—for example, CADD scores more than

20.
• Phenotype of patient is specific for a disease, no other pathogenic mutations

appeared in proband. Mutation may affect a conserved residue (among vertebrates)
• Frameshift variant/indel in non-repeat region, stopgain or stoploss variant

Benign

Supporting
• Mutation frequency is more than 5% in reference databases
• Structure predictions revealed the mutations to be non-damaging (CADD scores

lower than 20). Residue may not be conserved

Strong

• Other disease-associated mutations were found in the patients
• Mutation frequency in controls may be higher than in patients
• Mutation does not segregate with disease
• Observed in at least one healthy age matched individual
• Multiple functional studies did not reveal increased Aβ42/40 ratio or any

pathogenic mechanisms

Protective (?) • Functional studies revealed reduced Aβ42/40 levels, compared to controls

https://gnomad.broadinstitute.org
https://www.internationalgenome.org
https://cadd.gs.washington.edu/snv
https://www.alzforum.org/mutations/psen-1
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1.3. PSEN1 Mutations and Significant Residues at Each Domain

Twelve mutations were found in the N-terminal fragment, although their pathogenic
natures remain unclear. Two mutations, Asp40del (delGAC) and Ala79Val, were suggested
to have the strongest impact on the disease onset [39–42]. Asp40del has been identified in
individuals with AD and FTD. The deletion (delGAC) was introduced into mouse neurob-
lastoma cells, and the mutation was suggested to increase amyloid-β (Aβ) 42 production,
but it did not impact the production of Aβ40 [39]. Furthermore, this variant was also associ-
ated with reduced levels of long amyloid peptides (Aβ43, Aβ42) in the cerebrospinal fluid
(CSF); however, it may not affect the level of short amyloid peptide (Aβ40) [41]. Ala79Val
has been observed in several cases in Europe and the USA, and the disease phenotypes
may be variable. EOAD with a positive family history is prominent in several cases [42–44].
PSEN1 Ala79Val is also associated with late-onset AD (LOAD), either with a positive or a
negative family history [45]. Furthermore, other disease phenotypes may also be possible
among mutation carriers, including PD [46], FTD [47] or vascular AD [41]. Functional
studies have revealed that mutations appearing in GnomAD may be significant in disease
onset. Carriers of mutations are associated with reduced amyloid levels in the CSF. In
HEK293 cells, Ala79Val reduced Aβ40 levels, resulting in a higher Aβ42/40 ratio [48]. In
mouse fibroblasts with this mutation, Aβ42 levels were elevated, but Aβ40 levels and total
Aβ levels were not changed [44]. The remaining variants were suggested to be benign
variants or variants with unclear significance (VUS), even though they may impact the
disease risk. The majority of these mutations, including Asn24Ser [49], Arg35Glu [50,51]
or Arg42Leu [52], were observed in EOAD patients, but other clinical hallmarks were also
observed, including FTD in Glu15His [52], Pick’s disease in case of Pro49Leu [41] or PD
with non-amnestic MCI in case of Arg41Ser [53]. It has been suggested that the N-terminal
fragment may not play a significant role in amyloid peptide generation; however, the
presence of probable pathogenic mutations in this region suggests that it may have some
impact on disease mechanisms [16].

Several mutations appeared in the TM1 region of PSEN1, the majority of which were
confirmed to affect AD. The first TM domain contains several residues that could greatly
impact the γ-secretase cleavage. Residues in TM1 are highly conserved [54]. Further-
more, TM1 is located in proximity to critical motifs of γ-secretase, such as GxGD and
PALP, in TM7 and TM9, respectively. Mutations in TM1 may result in stress during the
interactions between TM1 and TM7 (or TM9). Mutations in TM1 may also increase the
distance between these helices [13,55–59]. Several residues were found to reduce or even
completely abolish the γ-secretase activity, or impact other mechanisms (Figure 3). The
N-terminal domain of TM1 (residues between 87–90) was suggested to play a role in the
γ-secretase process, while the C-terminal motif of TM1 (residues between 95 and 98) could
impact both γ-secretase and presenilinase activity. Val96 has been suggested to play an
extremely critical role in the binding of APP and Notch proteins. In addition to the elevated
Aβ42/40 ratio, mutant Val96 may also impair the autoproteolytic endopeptidase activity of
PSEN1 [9]. Cryo-electron microscopy analysis revealed that Leu85 may impact the APP
binding [60]. Mutant Pro88 was suggested to impair the secretion of apolipoprotein E
(APOE), since the Pro88Leu mutation was associated with reduced blood APOE levels [61].
The majority of TM1 mutations were associated with disease onset in patients in their
40s or 50s; however, disease onset at a young age was also prominent in several cases.
Patients with Leu85Pro [62,63] or Pro88Leu developed their first disease symptoms in their
20s [64–69]. Additional mutations were associated with disease onset at a young age; for
example, Val89Leu with G>C exchange [64] or Ile83_Met84del [65] or Val97Leu [66] carriers
may develop disease phenotypes in their 30s. Most patients with the above mutations
developed EOAD, but other symptoms may also be prominent. For example, patients with
Ile83_Met84del developed spastic paraparesis, and neurological findings revealed cotton
wool plaques, mostly present in the neocortex, hippocampus, or striatum [65]. One of
patients with Met84Val demonstrated spastic paraparesis with ideomotor apraxia as the
disease progressed [67,69]. Behavioral changes (depression, irritability, aggression, anxiety,
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or hallucinations) appeared in different mutations, including Ile83Thr [68], Met84Val [69],
Val89Leu (G>T) [59], Val96Phe [54]. PSEN1 Leu85Pro was associated with an atypical form
of AD in both patients. Both cases reported disease onset at a very young age, and the
disease course was aggressive. A Japanese patient presented with spastic paraparesis along-
side visual dysfunctions (visuospatial agnosia, simultaneous agnosia, and optic ataxia),
suggesting that this case was related to a visual variant of AD [62]. The second patient
with Leu85Pro developed corticobasal syndrome. Although she initially presented with
memory and mood impairments, she also developed Parkinsonism and myoclonus [63].
The patient with Pro88Leu initially developed myoclonus in her 20s, followed by memory
decline at 41 years of age. Additional atypical features, including Parkinsonism, ataxia,
spasticity, and dystonia, also appeared in the patient [64]. The patients with Cys92Ser
were diagnosed with atypical EOAD. In addition to memory decline, patients presented
several atypical Parkinson’s-like features, including extrapyramidal signs, rigidity, and
bradykinesia. Psychiatric symptoms, hallucinations, and delusions may also be present [70].
One member of a Tunisian family with the Ile83Thr [68,71] mutation developed refractory
epilepsy. At the age of 32, the patient developed deficits in attention and memory as well
as depression. Although epilepsy may be associated with different PSEN1 mutations, this
case presented an atypical early-onset epilepsy. Additionally, other family members with
Ile83Thr mutation did not present epilepsy. Further studies are required to elucidate this
mutation and its relationship with epilepsy [71].
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Several pathogenic mutations were found in the HL1 loop, located between TM1
and TM2, and this region was verified as a hot spot for pathogenic mutations involved in
EOAD [72]. Among them, 28 mutations were categorized as missense and three as indels in
this region. HL1 was verified to play a critical role in the stepwise processing of γ- secretase.
Furthermore, HL1 can also impact the γ-secretase modulation. Several residues were
identified to be critical in γ-secretase processing (Figure 4). For example, Phe105, Leu113,
Tyr115, Thr116, and Pro117 impact the carboxypeptidase activity, which can result in the
cleavage of shorter amyloids. At least three pathogenic mutations were identified in these
residues, which were verified to impact the longer amyloid peptide production [73–75]
Furthermore, Glu120 may also be a significant residue in HL1, since four variants were
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described for this amino acid. Mutant Glu120 in iPSC cells was associated with increased
phosphorylated Tau levels and enhanced mitochondrial dysfunctions [73,76]. The ma-
jority of these mutations were related to disease phenotype, resulting in typical EOAD
presentation [72]. However, other neurodegenerative disease phenotypes were also re-
lated to PSEN1 HL1 mutations. For example, Leu113Pro, Thr122Ala, and Ser132Ala were
found in patients diagnosed with FTD [52]. Furthermore, Ser132Ala was also found in
a family presenting with DLB [77]. Arg108Pro was observed in a patient with cognitive
degermation and myoclonic jerks [78]. Leu113Gln was associated with early-onset de-
mentia, spasticity, and myoclonic jerks. Several mutations were related to EOAD and
behavioral impairment (for example, depression, mood swings, apathy, stereotyped be-
havior, abulia, or delusion), including Pro117Leu [79,80], Pro117Ser [81], Thr119Ile [82–84],
Glu120Lys [85] and Glu123Lys [85]. Four mutations resulted in language impairment,
including Thr116_117delSer, Thr [86], Thr119Ile [83,84], Glu120Lys [84]. Furthermore,
mutations such as Leu113indel [87], Tyr115His [77], Thr116indel [86], Pro117Ala [88]
Pro117Leu [79], Pro117Ala [88] or Glu120Lys [84] were associated with motor impairments,
such as myoclonic jerks, ataxia, gait impairment. Mutations in residue 113 [89], residue
117 [88], Glu120Asp [90] and Glu120Gly [91] and His131Arg [92] were associated with
epilepsy and seizures. Two mutations, Thr116indel [87] and His131Arg [92] were also
associated with headaches. Cotton wool plaques seem to be uncommon with mutations in
HL1, since only one family with Thr116Asn presented cotton wool plaques [93].
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In the second TM domain, 32 mutations appeared, all categorized as missense muta-
tions. In the second HL loop, three missense mutations and one indel were found. Three
mutations were described with at least two different codon combinations—Met139Ile,
Met146Ile, and Met146Leu. Similar to TM1 and HL1, TM2 may have a strong impact
on γ-secretase cleavage. Deletion in the region of the first two TM domains (TM1, HL1,
and TM2) may result in abnormal activity of γ-secretase. Several residues in TM2 may
impact the endoproteolytic process of PSEN1 protein. Furthermore, these residues may be
involved in regulating the interaction of substrate docking site and the γ-secretase catalytic
core (Figure 5) [13]. Several residues, including Met139, Ile143, and Met146, suggested to
be located near the APP helix, may impact the formation of substrate binding core. Met146
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and Thr147 may have close contact with the APP helix. Val151 and Tyr159 may play a sig-
nificant role in the stabilization of APP and PSEN1 hybrid through a β-sheet formation and
thus initiate the γ-secretase cleavage [60]. Tyr154 mutations may result in dysfunctions of
endopeptidase activity [94]. Besides γ-secretase impairments, additional dysfunctions were
also related to mutations in Ala136, Met139, and Met146. Mutations in residue 139 could
have mild effect on endoproteolytic cleavage of Notch3 [95]. Variants in Ala136 (Ala136Gly)
and Met146 (particularly, Met146Leu) could also be involved in calcium metabolism by ac-
celerating cleaving of the calcium sensor STIM1, resulting in impaired calcium influx [92,96].
Furthermore, Met146 mutations (Met146Ile) could impair the autophagy and lysosomal
function, resulting in abnormal lysosomal proteolysis and autophagosome clearance [97]
A third mutation in Met146, Met146Val, could result in reduced neuroprotection by al-
tering the trophic factor functions, for example BDNF or eB1 [98]. The mutation could
also alter cerebral blood flow and reduce new blood vessel formation from the cleavage
of ephrinB2 by the γ-secretase [99]. Disease onset at a young age may be commonly as-
sociated with mutations found in TM2, and in addition to the typical AD phenotypes,
these mutations may result in atypical symptoms as well, such as motor-, personality-, or
visual impairments [4]. Four mutations were associated with FTD or an FTD-like disease
phenotype: Ala137Thr [52], Met139Val [100] and Met146Val [92,101] and Met146Leu [97].
Personality changes and language impairment were common among patients with differ-
ent TM2 mutations, for example, Asn135Ser [98], Met139Val [101], Val142 [102,103], and
Met146Ile [104]. Patients with Thr154Asn were initially diagnosed with spastic paraparesis
in their 30s, and they developed AD phenotypes in their 40s [105]. Motor symptoms were
also frequently associated with mutations in TM2. Furthermore, ten mutations, including
mutations in Asn135 [89,106,107], Met139Val [100,108], Leu153Val [109], Ile143 [110–112]
or Met 146 [113] were associated with myoclonus or myoclonic jerks. Spasticity was found
to be associated with six TM2 mutations, including Asn135 [89,107,109], Met139Val [114],
Thr147Ile [115], and Tyr154Asn [116]. Tyr159Cys was associated with Parkinsonism [84].
Seizures or epilepsy also frequently occurred among patients with TM2 mutations, for exam-
ple, Asn135Ser [89], Met139Thr [117], Met139Val [108], Met143Ile [96], or Leu153Val [118].
Visuospatial impairment was associated with four mutations, including Met139Leu [119],
Met139Val [101], Tyr159Cys [84], and Tyr159Pro [120]. Lewy bodies may not be common
among patients with TM2 mutations, since they were only associated with Leu153Val
mutation [107,109,118,121]. Additional rare symptoms included akinetic mutism and
hallucinations, which were found in patients with Met139Val [101,108] and Ile143Val,
respectively [122].
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In TM3, to date, 44 pathogenic or probable pathogenic mutations have been reported,
suggesting that this region may be critical in γ-secretase cleavage [123]. Among them, four
were deletions and the rest were missense mutations. Two missense mutations, Trp165Cys
and Leu173, were reported with two different codon combinations. TM3 was verified to
impact the hydrophilic pore formation and to regulate the trimming activity of γ-secretase
by interacting with other domains, including TM7. The distance between TM3 and TM7
may be critical in proper γ-secretase function [124]. Several residues were predicted to
impact the γ-secretase or other processes (Figure 6), while many were suggested to be in
proximity to the APP helical structure and impact the formation of substrate-binding pores,
including Trp165, Leu166, Leu173 Trp165, Leu166, and Leu173 [60]. Ser169 may play a role
in anchoring the interaction between APP and PSEN1 by forming hydroxyl and carbonyl
groups. Leu174 could directly impact the substrate binding [60]. Few residues in TM3 may
impact pathogenic mechanisms other than APP cleavage. Mutations in His163 (particularly,
His163Arg) may result in the disruption of neurexin processing by γ-secretase and cell
adhesion [125]. Furthermore, His163 may also have a high impact on the formation of
mitochondria-associated endoplasmic reticulum membrane (MAM). Mutations of His163
may accelerate the process of MAM formation and impair different mechanisms, such as
calcium transport, mitochondrial homeostasis, or phospholipid synthesis [126]. In addition
to their strong impact on APP cleavage, mutations in Leu166 (particularly, Leu166Pro)
could also have a high impact on endosome dysfunctions (enlarged endosomes) by induc-
ing the accumulation of APP β-C-terminal fragments [121]. Leu166 may also be related
to calcium balance, since Leu166Pro was suggested to disrupt the ability of PSEN1 to
function as a calcium channel and transport calcium to endoplasmic reticulum [127–129].
Furthermore, an adjacent mutation, Ser170Phe, seemed also to impair the neuroprotection
by disrupting the interactions between trophic factors and GLUN1 receptor [98,130]. Few
residues in the region were suggested to impact Notch signaling, including Ser169 [131],
Phe176 or Phe177 [60]. Splice site mutations were also found in TM3, since mutations
in Gly183 and Glu184 are located in the 3′ end of exon 6 and 5′ end of exon 7, respec-
tively [123,132]. The majority of mutations caused the disease phenotype in patients with
the age ranges of the 30s, 40s, or 50s [4]. However, patients with Leu166Pro [127,133],
mutations in residue 170 [134,135], and Ser169Leu [131] developed the disease phenotype
in their 20s. Three mutations were associated with later disease onset (over 70s), includ-
ing Ala164Val [136], Ile168Thr [137] or Phe175Ser [138]. EOAD was the main phenotype
among patients, but other disease phenotypes also occurred. Patients with Leu166Pro
were diagnosed with spastic paraparesis, epilepsy, or ataxia [127,133]. Even though a
patient with Leu173Phe (G>C) was diagnosed with EOAD, the initial symptoms were
depression and seizures [139]. Gly183Val was associated with frontotemporal dementia
without amyloid plaques [132], while one case with Glu184 was also diagnosed with frontal
variant AD [140]. FTD-like AD was also observed in patients with Leu174Arg [141]. The
family with Glu184Asp had DLB and primary progressive aphasia [142]. Val191Ala in
HL3 may not be a pathogenic variant, since it was observed in an individual without any
kinds of neurodegenerative diseases [39]. Regarding behavioral changes, psychosis was
common among patients, while mutations in residue 163 were related with anxiety [91],
delusions [143,144], or psychosis [134]. Additionally, Leu166Val [145], Leu166Arg [77],
Phe176Leu [146], Phe177Val [147] were also related with personality dysfunctions. Motor
impairments, including myoclonus, tremor or seizures, were also observed among patients
with TM3 mutations, for example His163Pro [144], Ser163Pro or Ser170Phe [84].
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In the fourth TM domain of PSEN1, 26 mutations have been found. The majority of
them were missense mutations, while one indel was reported in this region. The TM4
and TM5 domains face intramembranous hydrophilic milieu and impact the formation
of catalytic pores. It was suggested that mutations in the TM4 may impair the Aβ42
generation by altering the intra-and intermolecular interactions. For example, mutations
may change the distance between TM4 and TM7 [148]. Furthermore, TM4 may highly
impact the intermolecular interactions, since it contains a WNF (Trp203-Asn204-Phe205)
sequence, which could impact the presenilin enhancer-2 (PEN2) binding (Figure 7) [16].
Two conservative glycine residues were discovered near the WMF sequence, Gly206 and
Gly209 [148,149]. Mutations in Gly206 may directly impact the substrate binding ability of
PSEN1 [60]. For example, Gly206Asp was found to lower the PSEN1–PEN2 interaction,
resulting in impaired γ-secretase activity and a reduced level of PSEN1 transport from
endoplasmic reticulum (ER). Furthermore, mutations in Gly206 may also result in dys-
functions in calcium homeostasis by elevating the calcium levels in ER [150]. Similarly
to Gly206, mutations in Gly209 may also directly impact the substrate binding affinity of
γ-secretase [60]. Furthermore, Gly209 mutations (especially Gly209Val) could result in
abnormal endoproteolytic processing of PSEN1 [94]. Met210 and Ile213 were also found as
conserved residues, located at the cytosolic site, impacting the formation of the catalytic
core of γ-secretase [149]. Similar to Ile213, His214 was also in proximity to the APP helix
and could possibly impact the substrate binding pore formation [60]. Ile213 mutations
were associated with reduced neuroprotection by inhibiting several neurotrophic factors,
including BDNF [151]. Mutations in Pro218 may impact the PSEN1 splicing [49]. Mutations
in TM4 were found in typical EOAD patients, where disease occurred in their 30s, 40s,
or 50s [4]. The silent mutation in Pro218 was found in a family over 65 of age, but its
pathogenic nature was also questioned [49]. Gly206Ala, found in a large Puerto Rican
family, was associated with a wide age range of disease onset. Some patients developed
AD as their disease phenotype in their 40s, while some carriers were only diagnosed with
AD in their 70s [52]. It may be possible that in the case of Gly206Ala, other genetic factors
may impact the disease age onset, including phosphatase synaptojanin-1 (SYNJ1) [152].
Besides EOAD, other disease phenotypes may be associated with mutations in TM4. A
patient with Trp203Cys developed bulbar onset ALS without any family history of neurode-
generation [153]. Several patients with Gly206Asp [154] and His214Asn [155] were initially
diagnosed with FTD. Additional mutations were associated with behavioral changes, in-
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cluding Gly209Arg [156], Ile213Phe [104], His214Arg [157] and Gly217Arg [158]. EOAD
with language dysfunctions were associated with Leu202Phe [105] and Leu219Pro [159].
Gly206Val [160], Gly209Glu [161] and Leu219Arg [162] were associated with both language
and behavioral impairment. Motor impairment, including Parkinsonism, gait disturbance,
myoclonus, and bradykinesia, also occurred in patients with certain TM4 mutations, includ-
ing Leu202Phe [163], Ile213Phe [104], His214Asp [36], His214Tyr [155] and Gly217Asp [162].
Among them, Gly217Asp was the only mutation in TM4, which was associated with cotton
wool plaques [164]. The α-synuclein pathology was detected in a patient with Ser212Tyr.
Seizures were rare among patients with the TM4 mutation, but one member from a French
family developed seizures a few years after disease onset [117]. Furthermore, the initial
symptom of a patient with Pro218 was visual impairment [165].
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In TM5 and HL5, 32 mutations were found; 30 of them were missense variants, while
2 were indels or frameshifts. As mentioned before, along with TM4, TM5 could play a role
in the formation of a γ-secretase catalytic site. Furthermore, TM5 could also be involved in
PEN2 binding [16]. Two residues in TM5, Met233 and Ile238 were revealed to be located
near to Phe177 (in TM3). Residues in TM5 may form a hydrophilic environment around
Phe177, and they may play a role in regulating the production of Aβ42 [124]. Mutations in
Met233 were related to the accumulation of APP β-C-terminal fragments, which may im-
pair endosomal functions [128]. Furthermore, mutations in Met233 (especially Met233Val)
may result in abnormal carboxypeptidase-like cleavage of γ-secretase, but they may not
impact the endoproteolytic activity [166]. Phe237 may be involved in the formation of
γ-secretase substrate binding pores by generating a hydrophobic pocket [60]. Besides the
potential role in amyloid production, Leu235 may also have a critical role in pathogenic
mechanisms. Mutations in this residue (particularly, Leu235Val) may impact the neuro-
transmitter metabolism. Leu235Val was found to accelerate the monoamine-oxidase-A
(MAO-A) production, resulting in lower serotonin and noradrenalin expression, leading to
depression [167]. Leu235Pro resulted in reduced levels of presynaptic synaptophysin in
transgenic mice, suggesting that Leu235 may also impact the appropriate synaptic func-
tions [168]. Mutations in Lys239 resulted in reduced expression of trophic factors involved
in cell survival [94]. The frameshift mutation in Pro242 does not impact APP cleavage but
may play a role in Notch signaling [169,170]. Furthermore, it may activate the production
of several cytokines and chemokines in the case of lipopolysaccharide stimulation. Further-
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more, it may activate the production of several cytokines and chemokines in the case of
lipopolysaccharide stimulation [170] (Figure 8). TM5 mutations, for Met233Val [171,172],
Ser237Cys [173], and Met233Ile [140] were also associated with juvenile disease cases
(under 30). The diagnosis was initially FTD in some patients with Leu226Phe [174] or
Met233Leu [175]. Behavioral or language impairment occurred in patients with differ-
ent mutations, such as Gln223Arg [176], Ser230Asn [177], or Leu235Arg [178]. Motor
impairments were also quite common among affected patients. The Azeri family with
Met233Val initially developed ataxia; later, memory impairments appeared in affected
individuals [172]. The affected patients from an American family developed motor skill
delay in their childhood, encephalopathy in their 30s, and later they developed AD phe-
notypes [174]. Parkinsonism was observed in a Spanish family with Leu226Phe [91] and
in a Chinese patient with Met233Val [179]. Corticobasal syndrome was also present in
a Spanish family with Met233Leu [180], and Lewy bodies appeared in one family with
Met233Val from the USA [181]. Interestingly, there was one mutation, Pro232fs (located
on HL5), which was not associated with AD or any other neurodegenerative phenotypes.
This frameshift mutation resulted in familial acne inversa in Chinese families. The patients
displayed hair follicle inflammation and several skin abnormalities, such as abscess in the
skin, sinus drains, or scars [169,170].
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PSEN1 TM6 is a conserved domain, which contains one of the catalytic aspartate
residues (Asp257), that plays a critical role in γ-secretase function and also in endopro-
teolytic process of PSEN1 [17,182]. Even though no mutations were observed in Asp257,
several pathogenic variants (currently 42) were found in the TM6 and its C-terminal loop
(HL6). All these mutations were reported as missense mutations. Functional studies pre-
dicted that besides Asp257, several residues may also play an important role in PSEN1
function and γ-secretase cleavage. [60]. Ala246 was predicted to be in proximity to the APP
helix, and to impact the formation of substrate binding pores. Ala246 may also play a criti-
cal role in γ-secretase cleavage-related mechanisms. Mutations in this residue may impair
the APP C99 cleavage, resulting in abnormal β-CTF accumulation, and disrupt the endo-
somes [128,183]. Mutations in Tyr256, Ala260, and Val261 may also impact the C99 cleavage
of γ-secretase along with long amyloid production, due to their proximity to Asp257 [184].
Cys263, Pro264, Gly266, Pro267, and Arg278 were suggested to play a role in stabilizing the
structural re-arrangement of the PSEN1 protein so as to allow its appropriate binding to the
APP helix [184]. Leu271 and Thr274 may play a role in APP binding [60]. Functional studies
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revealed that mutations in Ala246 (particularly, Ala246Glu) could impair several cellular
functions, which are associated with reduced cell differentiation and survival [185]. Mu-
tant Ala246 could disrupt the Notch-Wnt pathways and impair the mitophage, lysosome,
and autophage-related pathways [186,187]. Mutations in Pro267 (particularly, Pro267Ser)
could also impact pathways, for example by abolishing the cyclophilin B recognition site,
resulting in reduced maturation of PSEN1 and abnormal mitochondrial activity [188]. Mu-
tant Leu271 may impact the splicing of PSEN1 exon 8, which could possibly impact the
γ-secretase-related mechanisms [189]. Mutations in Ala246 and Glu273 were related to
abnormal calcium dynamics and reduced calcium flow to endoplasmic reticulum [129]. Mu-
tations in Pro264 and Glu273 were found to reduce the APOE secretion [61]. Mutant Arg278
(particularly, Arg278Ile) could also result in significant disturbances besides affecting APP
cleavage. It may disturb the lipid metabolism by generating disturbances in ApoER2
receptor processing, which could lead to abnormal neuronal migration [190]. This mutation
could also result in abnormal Notch cleavage and protein differentiation [94]. Furthermore,
the Arg278 mutations may reduce the α-secretase activity by lowering ADAM10 expression
(Figure 9) [191]. In terms of disease phenotypes, a few atypical disease cases were associated
with TM6 mutations. Mutations were associated with a later onset of disease compared to
mutations in the other TM regions. The majority of patients with TM6 mutations developed
disease symptoms in their 50s [4]. For example, an American case of Ile249Leu developed
an ALS phenotype [153], a patient with Ala275Ser from New Zealand was initially diag-
nosed with DLB [192], and a family from Germany with Leu272Asp initially developed
psychosis [193]. Frontal symptoms (personality changes, language impairment) occurred in
patients with Leu262Val [155] and Pro264Leu [194], leading to the initial diagnosis of FTD.
Additional AD cases may be associated with behavioral and/or language impairments,
including Tyr256Asn [157], Pro264Leu [195] or Arg269Gly [196]. Parkinsonism appeared in
patients with Cys263Trp [197] and Leu272Ala [198]. Spasticity and spastic paraparesis may
be associated with several mutations, including mutations in Arg278 residue [199–201],
Gly266Ser [198] or Val261Leu [91]. Myoclonus occurred in patients with several mutations,
for example Ile250Val [202], Ile250Ser [203] or Pro264Leu [204]. Cotton wool plaques were
observed only in a family with Leu271Val [189].
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The large cytosolic loop of PSEN1 can be found between TM6 and TM7. One third
of this loop contains a “hydrophobic stretch” (Glu280-Glu299), where several pathogenic
mutations were observed. These residues were observed to be highly conserved between
the PSEN1 homologues. The region contains sites for PSEN1 endoproteolytic cleavage
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(near Met292) [205] (Figure 10). Mutations near this region may result in impaired or
abolished PSEN1 endoproteolysis. [205]. However, involvement of mutations located in
the residues between Gly300 and Gly371 in AD has been questioned. These mutations
were found to be weakly conserved among PSEN1 homologues. This region includes a
caspase cleavage site at Asp345, which may interact with several PSEN-related proteins,
for example β-catenin, members of armadillo protein family, or p0071 proteins. This region
may also include PSEN1 phosphorylation sites. However, the large cytosolic loop may not
play a significant role in γ-secretase activity, as the deletion of this loop did not impair the
production of long amyloid peptides [8,17]. Among the residues in the hydrophobic stretch,
Glu280 was suggested to play a key role in APP cleavage. A mutation in this residue may
stabilize the interaction between PSEN1 and APP by forming a β-sheet prior to γ-secretase
cleavage [60]. Glu280 forms hydrogen bonds with two residues in TM2 (Tyr154 and Tyr159).
Mutations in Gly280 may disrupt this contact and reduce the PSEN1 protein production.
The altered conformation could result in abnormal APP cleavage and production of long
amyloid peptides [206]. Mutations in Glu280 could also impair several cellular processes,
resulting in defects in mitochondrial functions, such as calcium homeostasis [207]. It may
also be possible that mutant Glu280 may impact Tau phosphorylation [208]. Similar to
Arg278, Leu282 may also impact the lipid metabolism, since Leu282Val was found to reduce
the surface levels of apoER2 [190]. Leu286 affects substrate binding pore formation of γ-
secretase [184]. Furthermore, it may impact calcium dynamics, since Leu286Val was found
to disrupt the intracellular calcium metabolism [209]. Similarly to Glu280, Tyr288 may also
impact the stabilization of the APP–PSEN1 hybrid. Mutations in residues near the border of
exon 8–9 (Ser290, Thr291) of PSEN1 could highly impact PSEN1 splicing and the deletion of
exon 9 or exons 9–10 [210]. The abnormal PSEN1 splicing and missing exon 9 could prevent
endoproteolytic process of PSEN1, resulting in accumulation of PSEN1 derivatives [211].
The deletion of exon 9 could also impact the APP cleavage and long amyloid peptide
generation [212]. Lack of exon 9 could also result in other impairments, such as blocking
of ion channels and calcium metabolism [213], lipid metabolism dysfunctions [214] or
increasing autophagy (Figure 10) [215]. Patients with mutations located in the N-terminal
“hydrophobic stretch” region could develop EOAD, mostly in their 40s or 50s. Mutations in
this region, for example Glu280Gly [216], Pro284Leu [217], Leu286Pro [218], c.869-22_869-
23ins18 [219], or splice site mutations at Ser290 [219–222], commonly resulted in EOAD
with spastic paraparesis and cotton wool plaques. Mutations which were located in the C-
terminal region of the large loop presented a larger scale of phenotypic variability. Trp294Ter
mutation occurred in a Chinese family, with patients presenting atypical symptoms, such
as retinitis pigmentosa, and acute symptoms resembling viral meningoencephalitis. Visual
impairment development began in the teenage years of the affected patients [223]. Most
family members with Asp333Gly presented aggressive heart dysfunction, called dilated
cardiomyopathy, between the age of 24 and 69. Even though one family member developed
AD at the age of 71, it remained unclear whether the Asp333Gly mutation could act as a
contributor for the AD phenotype [224]. A patient with the Ser357Ter mutation developed
cerebral amyloid angiopathy (CAA), but its disease involvement may not be certain due
to the co-existence with a probable pathogenic Arg377Trp mutation [225]. Patients with
Pro293Leu [52], Arg352dup [226] and Pro355Ser [227] were diagnosed with FTD or frontal
variant AD. Lys311Arg [51] and Glu218Gly may not be fully involved in AD progression,
but could act as potential risk factors [228]. The pathogenic nature of Ser365Tyr may also
be questioned, since it co-existed with the pathogenic Met146Val mutation [229].
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The TM7 domain is also quite sensitive towards mutations, as 27 probable pathogenic
mutations appeared in this domain. The majority of them were missense variants, but one
frameshift mutation, Gly378fs, was also observed. PSEN1 contains the second catalytic
aspartate residue, Asp385. Even though no mutations for Asp385 were found in patients,
introduced Asp385 (and Asp257) mutations resulted in elevated levels of CTF-amyloid-β
fragments [17,182]. Along with TM6, TM7 could play a critical role in the formation of γ-
secretase and in the PSEN1 endoproteolytic process. Besides Asp385, other residues may
also play a significant role in γ-secretase activity. Gly378 and Leu381 may impact the APP
binding via the formation of three stranded β-sheets prior to APP cleavage [60]. Leu381
may impair the carboxypeptidase-related γ-secretase cleavage, leading to enhanced long
amyloid production [167,168,230]. Due to the proximity to Asp385, Gly384 and Phe386
could also be significant in γ-secretase activity. Mutations of these residues may affect the
conformation and intramolecular interactions of Asp385 and could result in disturbances
inside the active site of γ-secretase. Along with Gly382, Gly384 was found to be part
of the conserved GxGD sequence motif, which was suggested to interact with any kind
of γ-secretase substrate, including APP or Notch proteins. This domain is sensitive to
any kinds of alteration and could result in significant impairment in γ-secretase mecha-
nisms [231,232]. The abnormal enzyme–substrate interactions due to any mutations in the
GxGD motif could result in the elevated production of long amyloid peptides 78]. Gly384
was suggested to disturb the carboxypeptidase-like cleavage [168]. Phe388 may impact
the APP–PSEN1 interactions by forming a shallow hydrophobic pocket in PSEN1. This
pocket may be involved in binding the C-terminal helix of APP [60]. Based on functional
studies, some mutations may result in other impairments beyond APP processing. Muta-
tions in Leu381 and Leu392 enhance not only long amyloid production but also PSEN1
endoproteolysis, resulting in lower PSEN1 NTF and Notch processing by γ-secretase [230].
Mutant Gly384 may impair APOE secretion and its localization in cytoplasm [61]. Fur-
thermore, this residue may impact the calcium metabolism, since Gly384Ala may abolish
the functions of passive calcium leak channel activity (Figure 11) [61,233]. In terms of
phenotypes, the majority of mutations were related to typical EOAD. Young onset disease
cases also occurred, with disease symptoms developing under 30 years of age, for example
in cases of Leu381Val [230], or Val391Gly [234]. Additional symptoms, such as behavioral
disturbances, were relatively common among patients with TM7 mutations, for exam-
ple in cases with Arg377Trp [235,236], Gly378Glu [237], Tyr389His [143], Ser390Asn [50],
Leu392Val [238] or Ala396Thr [155]. Language impairment was less common, occurring
in patients with Gly378Arg [238,239] and Pro388Leu [240]. Motor issues, such as Parkin-
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sonism, occurred among patients with Val391Gly [234] and Thr389Ser [84]. Spasticity
was reported among patients with Leu381Val [241], or Asn405Ser [242]. One patient with
Arg377Trp presented cognitive impairment and cerebral amyloid angiopathy (CAA). This
patient had a compound heterozygous mutation of Arg377Trp and Ser357Trp [225]. Pa-
tients with Gly378Val had EOAD and corticobasal syndrome [243]. Furthermore, affected
members of an American family with Leu381Phe were initially diagnosed with Kufs disease
and soon after developed EOAD with ataxia [244].
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The TM8 and TM9 domains are located in the C-terminal region of PSEN1. In TM8,
15 mutations were detected. Two (Ala431Val and Ala431Glu) and one (Met457Val) muta-
tions were detected in the HL8 loop and CTF loop, respectively. Crypto-electron microscopy
analysis suggested that residues in TM8 (either Cys410 or Cys419) may form disulfide
contact with TM1 (Cys92), which may be essential for the γ-secretase function. The TM8
domain contains a conserved AXXXAXXXG domain between Ala409 and Gly417, which
could highly impact the catalytic activity of PSEN1. Residues in this motif play a key role
in the appropriate conformation of γ-secretase [245,246]. Ala431, located on HL8, could
have a putative impact on γ-secretase cleavage. This residue may be in proximity to the
β-sheet APP–PSEN1 hybrid and may play a role in APP cleavage [60]. The roles of Leu424
and Ala426 in γ-secretase have not been defined yet, but both residues were verified to
be conserved [60]. Furthermore, Leu424 binds several dementia-related mutations, sug-
gesting that it may be a critical residue in γ-secretase processing [247]. Leu418 and Leu420
residues have been suggested to affect APOE secretion, since patients with Leu418Trp and
Leu420Arg mutations were associated with lower amyloid production with reduced ApoE
levels in the blood compared to non-carriers. These mutations were suggested to abolish
the ApoE secretion ability of PSEN1 [61]. Besides the promotion of impaired γ-secretase
cleavage, mutant Cys410 (particularly, Cys410Tyr) may also result in abnormal cleavage
and transport of Notch-1 [248,249]. Mouse experiments suggested that Cys410 residue
may also impact the β-neurexin processing [125]. Mutations in Ile416 and Gly417 residues
may also impact the splicing of PSEN1 transcript [250,251]. Ala431 mutations (particu-
larly, Ala431Glu) may play a role in depression by modulating the monoamine oxidase-A
(MAO-A) pathway (Figure 12) [167]. Among mutations in TM8, several cases were related
with young disease onset—for example, patients with Gly417Ala [251], Leu418Phe [252],
Leu424His [171], and Leu424Arg [253] may develop the disease in their 30s. Furthermore,
patients with Gly417Ser [254] and Leu418Trp [255] began to show neurodegenerative phe-
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notypes in their 20s and at age 18, respectively. Ile408Thr was related to late disease onset,
where the affected family had developed AD in their 70s [256]. Besides typical EOAD,
these mutations may be associated with atypical phenotypes; for example, patients with
mutations in Gly417 [251,254] and Leu420Arg [257] and Ala31Glu [258] had Parkinsonism.
A patient with Val412Ile was diagnosed with FTD [259], while personality changes, lan-
guage impairment were prominent in patients with Leu418Trp [255] and Leu424Val [260].
An additional atypical case of a Polish patient with the Leu424His mutation, who mainly
presented with EOAD but also showcased both DLB and FTD-like symptoms, was ob-
served [174]. One of the cases from the Netherlands with Leu424Arg developed EOAD with
CJD and an FTD-like disease course [261]. Interestingly, one patient carrying Ala431Glu had
a homozygous form of the mutation. Phenotypes of homo- and heterozygous Ala431Glu
seemed to be different. The heterozygous form was related to EOAD with motor and
language impairment and seizures, where the affected patients experienced disease in their
40s [258]. The homozygous patient had earlier disease onset (33 years), and experienced
learning difficulties and sleep dysfunctions [262]. Cotton wool plaques may not be common
among mutations in TM8, since they appeared only in cases with Leu420Arg [257,263].

Int. J. Mol. Sci. 2022, 23, 10970 19 of 36 
 

 

Gly417Ala [251], Leu418Phe [252], Leu424His [171], and Leu424Arg [253] may develop 
the disease in their 30s. Furthermore, patients with Gly417Ser [254] and Leu418Trp [255] 
began to show neurodegenerative phenotypes in their 20s and at age 18, respectively. 
Ile408Thr was related to late disease onset, where the affected family had developed AD 
in their 70s [256]. Besides typical EOAD, these mutations may be associated with atypical 
phenotypes; for example, patients with mutations in Gly417 [251,254] and Leu420Arg 
[257] and Ala31Glu [258] had Parkinsonism. A patient with Val412Ile was diagnosed with 
FTD [259], while personality changes, language impairment were prominent in patients 
with Leu418Trp [255] and Leu424Val [260]. An additional atypical case of a Polish patient 
with the Leu424His mutation, who mainly presented with EOAD but also showcased both 
DLB and FTD-like symptoms, was observed [174]. One of the cases from the Netherlands 
with Leu424Arg developed EOAD with CJD and an FTD-like disease course [261]. Inter-
estingly, one patient carrying Ala431Glu had a homozygous form of the mutation. Phe-
notypes of homo- and heterozygous Ala431Glu seemed to be different. The heterozygous 
form was related to EOAD with motor and language impairment and seizures, where the 
affected patients experienced disease in their 40s [258]. The homozygous patient had ear-
lier disease onset (33 years), and experienced learning difficulties and sleep dysfunctions 
[262]. Cotton wool plaques may not be common among mutations in TM8, since they ap-
peared only in cases with Leu420Arg [257,263]. 

 
Figure 12. Significant residues located in TM8 and HL8. 

Ten and one mutations were found in TM9 and CTF fragments, respectively. TMD9 
may also impact the γ-secretase cleavage. This domain is highly water-accessible and is 
located near the catalytic center. Along with TM1, TM6, and TM7, TM9 may play a critical 
role in forming the hydrophilic catalytic pore. TM9 showed high flexibility and could 
therefore be crucial in the “gate-open” movement of TM2 and TM6, which could be im-
portant to providing accessibility to catalytic aspartates. The TM9 contains a conserved 
“PALP motif”, which includes the Pro433, Ala434, Leu435, and Pro436 residues. This mo-
tif could impact the conformational changes of TM6 and activate the γ-secretase complex 
[58,59,264]. The PALP domain could act as an APP recognition site by binding residues 
718-721 in APP. This binding may stabilize the APP–PSEN1 hybrid prior to proteolytic 
cleavage [60,265]. Mutations in this area or full deletion of this motif could result in ab-
normal cleavage of the APP-C83 fragment, leading to increased long amyloid peptide pro-
duction [60,206]. Mutations in some residues in TM9 including Pro433 and Thr440 may 
result in abnormal or abolished endoproteolysis and autoproteolysis, respectively 

Figure 12. Significant residues located in TM8 and HL8.

Ten and one mutations were found in TM9 and CTF fragments, respectively. TMD9
may also impact the γ-secretase cleavage. This domain is highly water-accessible and is
located near the catalytic center. Along with TM1, TM6, and TM7, TM9 may play a critical
role in forming the hydrophilic catalytic pore. TM9 showed high flexibility and could there-
fore be crucial in the “gate-open” movement of TM2 and TM6, which could be important to
providing accessibility to catalytic aspartates. The TM9 contains a conserved “PALP motif”,
which includes the Pro433, Ala434, Leu435, and Pro436 residues. This motif could impact
the conformational changes of TM6 and activate the γ-secretase complex [58,59,264]. The
PALP domain could act as an APP recognition site by binding residues 718-721 in APP.
This binding may stabilize the APP–PSEN1 hybrid prior to proteolytic cleavage [60,265].
Mutations in this area or full deletion of this motif could result in abnormal cleavage of
the APP-C83 fragment, leading to increased long amyloid peptide production [60,206].
Mutations in some residues in TM9 including Pro433 and Thr440 may result in abnormal or
abolished endoproteolysis and autoproteolysis, respectively [94,266]. Mutations in PALP
motif may also reduce or disrupt the Notch-1 proteolysis (Figure 13) [267]. Mutations in
TM9 and CTF were associated with early-disease onset cases, especially mutations affecting
the PALP motif, such as Pro433Ser [266], Ala434Cys [267] or Pro436Gln [268,269]. The
only mutation discovered in CTF (Met457Val) was related to later disease onset, where
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the proband developed behavioral variant AD at the age of 66 [105]. In terms of disease
phenotypes, several atypical cases appeared. One case of Ala434Thr from Korea was
diagnosed with Parkinsonism [270], and the Chinese EOAD case with the same mutation
was initially diagnosed with schizophrenia [271]. The Spanish case with Pro436Gln had the
diagnosis of spasticity and visual agnosia [269]. A family with Thr440del was diagnosed
with EOAD, but also presented Parkinsonism and DLB-like phenotypes [272]. Depression
was relatively common among mutations, affecting the PALP domain. For example, one
patient with Pro433Ser from China [266], a patient with Ala434Thr from Korea [270], a
family with Ala434Cys [267] and a patient with Pro436Gln from Australia [267] all pre-
sented with depression. Interestingly, one case from the UK of Pro436Gln was associated
with mosaicism, since the mutation could not be detected in white blood cells, and instead
appeared when DNA from cells of the cerebral cortex was analyzed. This patient developed
EOAD with spastic paraparesis at the age of 42 [269]. The pathogenic nature of Ile439Val
may be refuted, since it co-existed with the pathogenic Ile413Thr mutation, and did not
alter the Aβ42/Aβ40 ratio [94,229].
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2. Cell Models and Possible Biomarkers of PSEN1 Mutation Pathogenicity

Emerging studies are available on cell models with different PSEN1 mutations [273,274].
Several cell lines can be used, including human embryonic kidney cells 293 (HEK293),
green monkey kidney cells (COS-1), Chinese hamster ovary cells (CHO), neuroblastoma
(N2a), SH-SY5Y, human neuroglioma (H4), fibroblasts, and human induced pluripotent
stem cells (iPSC) [188,274–278]. One of the earliest functional studies on PSEN1 mutations
was performed by Murayama et al. (1999) [276]. They introduced 28 familial EOAD-related
PSEN1 mutations into COS-1 cells using site-directed mutagenesis and measured the
Aβ42 levels and Aβ42/40 ratios. Even though the majority of mutations were associated
with elevated amyloid levels, Aβ42 levels did not correlate with the age of disease onset.
This poor correlation may be explained by the significant biological differences between
COS-1 cells and the human brain. Additional genetic and environmental factors could
also explain the poor correlation of the above biomarkers in CHO cells with expressing
normal or mutant PSEN1 (Asn135Asp, His163Arg, Met239Thr, and Gly384Ala) [276,277].
Mutations were generated using plasmids containing normal PSEN1 (and PSEN2), and
cDNA was used as a template for certain mutations. They measured Aβ42/Aβ40 levels
and analyzed cell-free and intracellular amyloid production. This study revealed the
differences between cell-free and intracellular PSEN1 mutations. Furthermore, some
PSEN1 mutations reduced Aβ40 production, while others did not, and all examined
PSEN1 mutations were related to higher Aβ42 levels. These findings suggest that the
mutations may act through distinct mechanisms [277]. Shioi et al. introduced PSEN1
mutations into CHO cell lines and found that several pathogenic PSEN1 mutations (such
as Val82Leu, Leu250Ser, or Cys263Arg) were not associated with elevated Aβ42 levels or
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Aβ42/40 ratio. This study also suggested that some of the PSEN1 mutations could impact
neurodegeneration through other mechanisms, which may be independent of amyloid
processing, such as Tau phosphorylation or Akt signaling [278]. Houlden et al. (2000)
cloned different mutations (exon 9 deletion, Pro436Gln) that are associated with EOAD
and spastic paraparesis into H4 glioma cells. These findings reveal that mutations, which
also present spastic paraparesis as a disease phenotype, may have large effects on amyloid
production. However, this study did not rule out the potential roles of other genetic and
environmental risk modifiers [61]. Kumar-Singh et al. (2006) co-introduced eight PSEN1
mutations with Swedish APP mutations (Lys670Asn and Met671Leu) into HEK293 cell
lines using plasmid methods. This study revealed a strong correlation between age at
disease onset and an elevated Aβ42/40 ratio, higher Aβ42, and lower Aβ40 levels [48].
Sun et al. (2017) performed an extensive functional study on 138 PSEN1 mutations and
used the CRISPR-Cas9 transfection method to generate N2a mutant cell lines. This study
did not find a correlation between the Aβ42/40 ratio and the age at disease onset. The
majority of mutant cells showed reduced levels of Aβ42 and Aβ40, and approximately
10% of the mutations were related to the Aβ42/40 ratio. This study suggests that the
amyloid hypothesis may not be the only hypothesis in the case of AD onset, and other risk
factors should be examined [94]. Hsu et al. used N2a cell lines to verify several VUS in
EOAD-causing genes, including PSEN1. This study identified 19 mutations (11 PSEN1
mutations) as probable pathogenic variants [39]. Li et al. (2016) analyzed several PSEN1
mutations in HEK293 cell lines, revealing that in addition to the Aβ42/40 ratio, the cleavage
of Aβ43 to Aβ40 and Aβ42 to Aβ40 may be reduced in the case of PSEN1 mutations. Some
PSEN1 mutations could affect the Aβ42/40 ratio through the Aβ49/Aβ40 and Aβ48/38
ratios, whereas some mutations could only affect one of them [166].

The majority of PSEN1 mutations result in an elevated Aβ42/Aβ40 ratio by elevating
Aβ42 production or reducing Aβ40 production. Increased levels of Aβ42 and/or reduced
levels of short Aβ40 in cell and animal models may provide strong proof of the pathogenic
nature of the mutation [273]. In addition to Aβ42 and Aβ40, other products may reflect
the altered γ-secretase process. APP processing may be initiated by β-secretase cleavage,
which results in the release of the N-terminal region of the protein. The membrane-bound
remnant of APP, called C99, is processed by γ-secretase. This process could result in
long amyloid peptides with endopeptidase activity (43–51 bp), which could be cleaved
to Aβ42 and Aβ40 through carboxypeptidase activity [279]. Few mutations may reduce
the endo- or carboxypeptidase activity of γ-secretase, resulting in the generation of long
amyloid peptides, including Aβ43, Aβ46, or Aβ48 [280]. Aβ43 has also been suggested
to act as a toxic peptide, generated regularly by PSEN1 mutations, such as Val261Phe or
Arg278Ile. Production of Aβ43 may be a useful marker, indicating the relation between
the mutation and the impaired endopeptidase activity [184]. Besides Aβ40, other short
amyloids, such as Aβ38 and Aβ37, may also be reduced in the case of PSEN1 mutations
(e.g., PSEN1 Ala97Val or Val89Leu). Reduced levels of short amyloids may also be a marker
of lower amyloid trimming activity and reduced γ-secretase processivity. Furthermore, the
reduced ratio of combined short amyloids vs. combined long amyloids ((Aβ38 + Aβ37 +
Aβ40)/(Aβ42 + Aβ43)) may be a useful marker of disease pathogenicity [73,281].

3. Discussion

PSEN1 has been identified as the most common causative gene for early onset AD.
To date, more than 300 mutations have been reported in PSEN1 that potentially play a
role in neurodegenerative pathways. Most PSEN1 mutations are heterozygous and follow
an autosomal dominant inheritance pattern. However, homozygous forms of PSEN1
mutations, such as Ala431Glu or Glu280Ala, have also been observed. The homozygous
forms of PSEN1 mutations may be associated with a more aggressive disease phenotype
than the heterozygous mutations [262]. A compound heterozygous case of PSEN1 was
also discovered, wherein the patient carried a STOP codon mutation at residue Ser357 and
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the Arg377Trp mutation. However, it remains unclear whether these two mutations affect
disease onset [225].

PSEN1 mutations could result in neurodegeneration through both gain-of-function [282]
or loss-of-function mechanisms [283]. Hardy and Higgins (1992) proposed the amyloid
hypothesis, suggesting that the accumulated amyloid peptides may be the main causative
factors for AD related neurodegeneration. Additionally, mutant PSEN1 mutations (such as
Met84Val, Leu85Pro, His163Arg, His163Pro, Met233Leu) could enhance the APP processing
and amyloid peptide (Aβ42) generation. However, this study also raised concerns about
the amyloid hypothesis. For example, amyloid plaques in the brain may not correlate with
the degree of neurodegeneration. Additionally, amyloid production in cell cultures may not
correlate with the age of onset or disease phenotypes [40,282,284–286]. Later, the amyloid
hypothesis was refuted further. It was revealed that elevated Aβ42 may not be the only
factor leading to PSEN1-related neurodegeneration. For example, PSEN1 mutations may
result in earlier disease onset, compared to mutations in APP, even though Aβ42/40 ratio
may not be as significant as expected [286]. Additionally, amyloid overproduction did not
result in significant neurodegeneration in mouse models [285–287]. These findings suggest
that the loss of PSEN1 functions may play a crucial role in AD progression. PSEN knockout
mice presented a significant degree of neurodegeneration; however, the level of both Aβ42
and Aβ40 was reduced. PSEN knockout could result in an elevated degree of neuroinflam-
mation, reduced neuroprotection and an increased degree of apoptosis [288–290]. Shen and
Kelleher (2007) proposed the presenilin hypothesis of AD, which may provide an alterna-
tive view of disease pathogenesis. The loss of essential PSEN1 (and PSEN2) functions may
result in AD-related neurodegeneration. Several PSEN1 mutations (Gly209Arg, Gly209Val,
Leu235Pro, Cys410Tyr, Leu435Phe) may not significantly impact the Aβ42 levels (or even
reduce it), but they may reduce (or abrogate) the Aβ40 production significantly. Pathogenic
PSEN1 mutations may impair the γ-secretase functions through dominant-negative mecha-
nisms. Elevated amyloid levels may also inhibit further the γ-secretase functions. Loss of
PSEN activity may result in abnormalities in synaptic functions, leading to neuronal loss,
Tau hyperphosphorylation and dementia. Further studies are also needed on the PSEN
hypothesis. For example, APP mutations may not inhibit γ-secretase related pathways.
Additionally, not all PSEN1 mutations could result in a Tau-related pathology [40,283,291].
Besides amyloid and PSEN hypothesis, other AD-hypotheses were also described, such as
the Tau hypothesis, the inflammation hypothesis, and the cholinergic and oxidative stress
hypothesis, confirming that AD is a very complex disease. There is no absolute hypothesis
available on AD progression, but all possible hypotheses could provide an explanation for
AD progression and help drug development [282,291,292].

As mentioned before, PSEN1 mutations may impair γ-secretase mechanisms, result-
ing in impaired amyloid production and elevated long amyloid/short amyloid (typically
Aβ42/40) ratio [6]. Furthermore, PSEN1 could affect other mechanisms, such as calcium
homeostasis or Notch signaling [6]. Compared to APP- and PSEN2-related cases, EOAD
patients with PSEN1 mutations may have an earlier disease onset [293]. Additionally, in
the case of APP mutations, memory decline is the initial symptom, whereas PSEN1 muta-
tions may lead to atypical phenotypes, such as seizures or motor-behavioral or language
dysfunctions. The mutation location may impact the PSEN1 phenotype. With regard to
the atypical symptoms in cases of PSEN1 mutations, the location of the mutation may
be important. Mutations located in the N-terminal region (before codon 200) may more
frequently represent myoclonus, seizures, visuospatial symptoms, or spasticity. Meanwhile,
among patients who carry mutations in the C-terminal area (after codon 200), cotton wool
plaques and amyloid antipathy may be relatively common [292]. Brain imaging has re-
vealed that APP mutations may result in a higher degree of hippocampal atrophy. PSEN1
mutations may also affect other brain areas such as the neocortex or white matter [77].
The phenotypic diversity of PSEN1 mutations may also be related to its involvement in
γ-secretase function. PSEN1 impacts the formation of the γ-secretase catalytic subunit,
and in addition to APP processing, it could impact multiple substrate cleavage (β-catenin,
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Notch). PSEN1 mutations can affect endopeptidase and carboxylpeptidase activities, which
may result in different types of neurodegenerative process [284,294]. Interestingly, patients
with the same PSEN1 mutations may have different ages of onset or clinical course. For
example, EOAD with PSEN1 Thr119Ile has been discovered in multiple patients with a
wide age range of ages of disease onset (between 49 and 71 years); some cases developed
memory decline only, while in others, personality changes and psychological symptoms
were present. It is possible that other genetic factors may impact disease onset and clinical
course, for example, variants in SORL1 or ABCA7 [82,295]. Risk modifiers were also ana-
lyzed in a large Caribbean family with the Gly206Ala mutation. Some variants may result
in a delayed age of onset, for example, variants in SORBS2, SH3RF3 or NPHP1 [296]. The
Paisa mutation (PSEN1 Glu280Ala) is another common EOAD-causing factor, which may
possibly be affected by genetic modifiers. APOE Arg145Ser (or the Christchurch mutation)
was verified to be a neuroprotective factor against EOAD with PSEN1 Glu280Ala [296].
Additional genetic variants may affect the age of disease onset in the case of the Glu280Ala
mutation. For example, variants in SLC9C1, CSN1S1, and LOXL may be associated with
a later disease onset, whereas a homozygous DHRS4L2 variant (rs2273946) may result in
earlier disease onset [297]. These findings reveal that risk modifiers could impact the age of
onset of EOAD related to PSEN1 mutations and may also impact the clinical course of the
disease [298].

Next-generation sequencing technologies reduce the cost and time of gene analysis
and help to accelerate the discovery of disease-related mutations in causative or risk genes
including PSEN1 [35]. However, it may be challenging to determine whether PSEN1
mutations could affect disease onset. Based on the ACMG-AMP guidelines, several PSEN1
mutations could not be classified. Several limitations exist, which may result in challenges
in mutation classification. For example, several mutations (such as His163Pro, Leu232Pro,
Gly417Ala) were present in only one patient. Furthermore, family members often refuse
genetic testing and segregation can, therefore, not be proven. Additionally, mutations
may not be confirmed by in vitro or functional studies [38,39]. Functional analysis is a
promising approach in genetics and drug discovery studies. However, in vitro cell and
in vivo animal studies require special equipment, an appropriate environment, and ethical
approval. Other issues with genetic studies may include potential technical errors or
off-target mutagenesis [273]. However, recent emerging studies on genome editing could
reveal the pathological mechanisms of diseases, including AD [299].

Another issue is that even though several cases of EOAD are related to PSEN1, the
majority of AD cases may not be explained by classical EOAD genes. Emerging studies
have shed light on somatic mutations in brain diseases and brain aging, with one study
particularly focusing on somatic PSEN1 mutations. In one patient with PSEN1 Pro436Gln,
the mutation could not be detected in white blood cells but was found in brain cells [269].
However, to date, only one study has been conducted on somatic PSEN1 mutations. It
has been suggested that somatic APP, PSEN1, and PSEN2 variants are rare in sporadic
EOAD [300]. An additional limitation of studying somatic mutations is the availability of
patient brain tissue [301].

In conclusion, the significance of PSEN1 in EOAD has been verified. As a part of γ-
secretase, the PSEN1 protein can affect the processing of multiple substrates, including APP,
Notch, and β-catenin. PSEN1 mutations could be related to different phenotypes (seizure,
behavioral, language, or motor impairment), which may be related to the impairment
of different mechanisms and the induction of neurodegeneration in different brain areas.
Although rare, cases with PSEN1 mutations should be taken into consideration seriously.
Emerging in vitro and in vivo studies are available to verify the role of PSEN1 mutations
in AD, which could improve disease diagnosis and therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms231810970/s1.
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