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ARTICLE

Tumor Time-Course Predicts Overall Survival in 
Non-Small Cell Lung Cancer Patients Treated with 
Atezolizumab: Dependency on Follow-Up Time

Ida Netterberg1, René Bruno2, Ya-Chi Chen3, Helen Winter3, Chi-Chung Li3, Jin Y. Jin3 and Lena E. Friberg1,*

The large heterogeneity in response to immune checkpoint inhibitors is driving the exploration of predictive biomarkers to 
identify patients who will respond to such treatment. We extended our previously suggested modeling framework of at-
ezolizumab pharmacokinetics, IL18, and tumor size (TS) dynamics, to also include overall survival (OS). Baseline and model-
derived variables were explored as predictors of OS in 88 patients with non-small cell lung cancer treated with atezolizumab. 
To investigate the impact of follow-up length on the inclusion of predictors of OS, four different censoring strategies were 
applied. The time-course of TS change was the most significant predictor in all scenarios, whereas IL18 was not significant. 
Identified predictors of OS were similar regardless of censoring strategy, although OS was underpredicted when patients 
were censored 5 months after last dose. The study demonstrated that the tumor-time course-OS relationship could be identi-
fied based on early phase I data.

Overall survival (OS) is considered gold standard for demon-
strating clinical benefit in oncology.1 Population modeling 
has previously demonstrated usefulness in drug develop-
ment by identifying relationships between predictors, such 
as tumor size (TS) dynamics, treatment related and patient 
characteristics, and OS.2–4 The experience of using such 
extensive modeling framework in cancer immunotherapy is, 
however, limited5–7 and inclusion of longitudinal biomarker 
data (other than TS) has not been reported.

The progress in cancer immunotherapy has expanded the 
therapeutic options for oncology patients and clinical benefit 
has been observed across a range of different tumor types.8–10  
Atezolizumab is an engineered humanized immunoglobu-
lin G1 monoclonal antibody, currently approved in over 50 

countries (including the United States and the European Union) 
for treatment in patients with advanced urothelial carcinoma 
and metastatic non-small cell lung cancer (NSCLC), and re-
cently approved by the US Food and Drug Administration 
(FDA) in patients with triple-negative breast cancer and ex-
tensive-stage small-cell lung cancer. Atezolizumab targets 
the programmed death-ligand 1 (PD-L1), which inactivates 
the T cell response upon binding to its receptor, programmed 
death-1, expressed on activated T cells. Tumor cells may 
express PD-L1 as a mechanism of evading immune de-
struction,11,12 and blocking the interaction between PD-L1 
and programmed death-1 may sustain the T cell response 
and increase the antitumor effect. However, the antitumor 
response is highly heterogenic among patients with cancer 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Cancer immunotherapy with checkpoint inhibitors 
has revolutionized the cancer treatment landscape. 
Improved overall survival (OS) has been observed 
across tumor types, however, the response is highly 
heterogenic, and it is desirable to evaluate predictors of 
survival to select patients who are expected to respond 
to the treatment.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Relationships among OS and circulating biomarkers, 
tumor size, pharmacokinetic metrics, and baseline covari-
ates were studied in a parametric time-to-event analysis 
in 88 patients with non-small cell lung cancer treated with 

atezolizumab. In addition, four different strategies for cen-
soring OS data were explored.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  The tumor-time course was a predictor of OS, regard-
less of censoring strategy. None of the evaluated circulat-
ing biomarker metrics predicted OS. Included predictors 
were similar for all four censoring strategies, and earlier 
data cutoffs could predict survival in longer follow-ups.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  This work shows promise for applying modeling and 
simulation in oncology to evaluate predictors of OS based 
on data from phase I.
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treated with checkpoint inhibitors.13 It is, therefore, desirable 
to evaluate biomarkers that can be related to clinical benefit.  
PD-L1 expression is an extensively studied biomarker for 
treatment with atezolizumab.14 However, PD-L1 alone does 
not explain all observed variability in the response.15–17

IL-18, a proinflammatory cytokine that stimulates re-
lease of interferon-γ from activated T cells,18 was recently 
related to TS changes in a pharmacokinetic (PK)/pharma-
codynamic modeling framework (PK-IL18-TS model) using 
a population-based approach.19 In this analysis, the mod-
el-predicted relative change in IL-18 from baseline at day 21 
(RCFBIL-18,d21) together with the cycle-specific atezolizumab 
concentration area under the curve (AUC), were identified 
as predictors of tumor shrinkage in 88 patients with NSCLC 
treated with atezolizumab every 3 weeks. Tumor shrinkage 
may serve as a marker of clinical benefit in oncology. For  
example, atezolizumab was first granted accelerated  
approval in urothelial carcinoma in May 2016 by the FDA 
based on improved objective response rate.20 However, 
demonstration of beneficial OS is still needed. Patients are 
studied either until death or until the study ends, which may 
include multiple cutoff dates, when OS is the end point. A 
patient who is still alive at any of the cutoff dates will be 
right censored (i.e., the time of death is unknown and will 
occur after the cutoff date). If patients progress before the 
end of the study, they may discontinue the study treatment 
and receive another therapy but remain in the study for OS 
follow-up without further TS evaluation. The results of an OS 
analysis may consequently be confounded by the cutoff date 
(censoring time) as well as deaths from other reasons than 
cancer. It is, therefore, of interest to explore the impact of 
censoring to handle potential confounding factors.

The previously developed PK-IL18-TS model predicted 
sustained tumor suppression for high values of RCFBIL-18,d21.

19 
This relationship can be associated with a slower  on-treatment 
apparent tumor growth rate, which has been related to longer 
survival in patients with NSCLC treated with atezolizumab or 
docetaxel in phase II and III studies.5 The aim of this analy-
sis was, therefore, to evaluate if a relationship between IL-18 
(in combination with other model-predicted variables, such 
as the tumor time course, as well as baseline covariates) and 
OS could be established in the same patient population with 
NSCLC, as previously studied.19 Furthermore, it was inves-
tigated whether the time of censoring had an impact on the 
final conclusions, by performing the analysis on data using 
four  different censoring strategies.

METHODS
Data
The current analysis was performed on data from 88 patients 
with relapsed/refractory NSCLC studied in a first-in-human, 
dose-escalation phase I study, PCD4989g.21 One patient 
received 16 doses of 1 mg/kg, whereas the starting dose 
was 10, 15, and 20 mg/kg in 10, 27, and 50 patients, respec-
tively. Later on, 7 patients among the 88 patients received 
a total of 139 fixed doses of 1,200 mg. TS was assessed 
by Response Evaluation Criteria in Solid Tumors (RECIST) 
1.122 and the sum of longest diameter by computed tomog-
raphy, which was evaluated every 6 weeks for 24 weeks and 
thereafter every 12 weeks until disease progression, death, 

or new systemic treatment. The study was performed in ac-
cordance with the Declaration of Helsinki and participants 
provided written informed consent.

Model development
The previously developed PK-IL18-TS model19 was first re- 
estimated (TS-related parameters only) with updated covari-
ate values (number of metastatic sites at baseline). Parametric 
hazard models were subsequently used to describe the time-
to-event data in each of the four data sets described below. 
The exponential, Weibull, Gompertz, log-normal, and log-lo-
gistic distributions were explored to describe the distribution 
of event times, which was followed by identification of pre-
dictors in three steps. First, baseline covariates (Table S1) 
were evaluated in a stepwise covariate modeling procedure. 
Multiple parameterizations were used for covariates based on 
PD-L1 expression, neutrophil, and lymphocyte count, meta-
static sites, race, and smoking. If any of these were included 
in a forward step, the other parameterizations (Table S1) were 
excluded in the following steps. Second, model-derived vari-
ables (Table 1) were explored on top of the baseline covariates, 
using a sequential PK-IL18-TS-OS model. Interferon-inducible 
T-cell alpha chemoattractant (ITAC) metrics were also ex-
plored using an available PK/pharmacodynamic model for 
ITAC.19 Model-derived variables were also evaluated step-
wise, where the variable that provided the best improvement 
of the model fit was added to the model first and if any vari-
able improved the model fit significantly, it was added to the 
model until no more variables provided statistically significant 
improvement. Third, each included baseline covariate and 
model-derived predictor was excluded from the model, one 
by one, until no more could be excluded without resulting in a 
statistically significant worse model fit. Likelihood ratio tests 
were used to evaluate statistical significance (P value < 0.05 in 
both forward and backward steps, corresponding to a objec-
tive function value (ΔOFV) of 3.84 for one degree of freedom) 
of included predictors. Randomization tests were performed 
to ensure that the actual significance level corresponded to a 
value equal or close to a ΔOFV of 3.84.23 The effect of each 
included baseline covariate and model-derived variable was 
additive to each other and added exponentially to the baseline 
hazard (h0(t)). Continuous covariates were included linearly in 
the exponential domain and centered around the median co-
variate value. Categorical covariates were added as a relative 
change from the mode (reference) covariate value. Missing 
covariate values were imputed with the median covariate 
value (continuous) or the mode (categorical). The hazard (h(t)), 
including one continuous covariate (COVcont.) and one cate-
gorical (COVcat.) baseline covariate and one model-derived 
variable (Variablemodel-der.), can then be summarized with the 
following equation;

where βcont. is a parameter relating COVcont. to h(t) and 
COVcont.,median is the median value of COVcont.. βcat. is a 
parameter relating COVcat. (which has a value of 0 for the 
reference category and 1 for the comparing category for 

(1)

h(t)=h0(t)

×eβcont.×(COVcont.−COVcont.,median)+βcat.×COVcat.+βmodel − der.×Variablemodel − der.
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a dichotomous covariate) to h(t). βmodel-der. is a parameter 
relating Variablemodel-der. to h(t).

To illustrate relationships between included baseline co-
variates and OS, a relative hazard (to the typical patient, 
i.e., assuming median values of included baseline covari-
ates except for the studied covariate) were computed as 
follows:

The relative hazard is, therefore, 1 if the covariate value is 
equal to the median covariate value (continuous covariates) 
or for the reference category (categorical covariates) and 

values below and above 1 are related to better and worse 
prognosis, respectively.

Exploration of censoring time
Four different censoring strategies were investigated to ex-
plore the impact on inclusion of predictors and the size of their 
effects, using (i) all available data (AAD), (ii) data censored 
no later than at a cutoff date set 2 years earlier than in AAD 
(C2YE), (iii) data censored no later than 2 years after start of 
treatment for each individual patient (C2YASOT), and (iv) data 
censored a maximum of 5 months after last dose (C5MALD). 
The explored censoring strategies were selected arbitrarily to 
investigate shorter follow-up and influence of postprogres-
sion treatment. Models developed for AAD, C2YE, C2YASOT, 
and C5MALD will here on be referred to as the AAD, C2YE, 
C2YASOT, and C5MALD models, respectively.

Software
The analysis was performed with NONMEM version 7.424 
together with the Laplacian estimation method. Population 
PK-IL18-TS-related parameters were fixed during estima-
tion while the corresponding data were kept in the data set 
and influenced the estimation of individual PK-IL18-TS 
parameters during estimation of OS-related parameters. 
This estimation method is corresponding to the population 
PK parameters and data method.25,26 The individual PK-
IL18-TS parameters could consequently be affected by the 
OS data. Model execution and evaluation was supported 
by functionalities in Perl-speaks-NONMEM27 version 4.8.9 
and the output was handled using R (https ://www.R-proje 
ct.org) and the R-based packages Xpose version 420 
and ggplot2 version 3.0.0 (www.ggplo t2.org). Pirana was 
used for construction of run-records.27 Model building 
was guided by the OFV (i.e., −2∙log likelihood), where the 
ΔOFVs are nominally χ2 distributed for nested models and 
the additional number of parameters is the degree of free-
dom, as well as reasonable relative standard errors (RSEs). 
RSEs were obtained using the sampling importance res-
ampling approach implemented in Perl-speaks-NONMEM 
(re-estimated PK-IL18-TS model)28 or from the NONMEM 
R covariance matrix (PK-IL18-TS-OS models). Model per-
formance was evaluated with KaplanMeier visual predictive 
checks (KMVPCs) where the observed data were  com-
pared with the 95% confidence interval (CI) computed from 
100 simulations. Patients were simulated from their actual 
date of inclusion until the end of follow-up to account for 
censoring in the simulations. The adequacy of the included 
continuous predictors was assessed with KaplanMeier 
mean covariate visual predictive checks (KMMCVPC),29 
whereas stratified KMVPCs were used to evaluate included 
categorical covariates.

Prediction of the full data set (AAD)
The value of using the whole follow-up time on the current 
data  set (i.e., AAD) in comparison to the applied censor-
ing times resulting in shorter follow-up was explored by 
predicting the AAD given the parameter estimates based 
on final C2YE, C2YASOT, and C5MALD models by setting 
MAXEVAL = 0 (i.e., no re-estimation) in NONMEM and eval-
uating by KMVPCs and KMMCVPCs.

(1a)Relative hazardcont.=e
βcont.⋅(COVcont.−COVcont.,median)

(1b)Relative hazardcategorical=e
βcat.⋅COVcat.

Table 1 Description of evaluated model-derived variables

Variable Descriptiona 

RCFBIL-18,d21 IL-18 relative change from baseline at 
day 21, set to 0 until day 21

RCFBITAC,d21 ITAC relative change from baseline at 
day 21, set to 0 until day 21

AUC0-21-IL-18 IL-18 accumulated change from 
baseline area under the curve, time-
varying until day 21 and then carried 

forward

AUC0-21-ITAC ITAC accumulated change from 
baseline area under the curve, time-
varying until day 21 and then carried 

forward

AUC0-21-Atezolizumab Atezolizumab accumulated area under 
the curve, time-varying until day 21 

and then carried forward

RGrowth Individual estimate of the individual 
growth rate

Log RGrowth Log of the individual estimate of the 
individual growth rate

TSR6 Tumor size ratio at week 6, time-varying 
until week 6, and then carried forward

TSR12 Tumor size ratio at week 12, time-
varying until week 12, and then 

carried forward

TTG Time to tumor growth, time-varying 
until occurrence, and then carried 

forward

RCFB-TS(t) (extrapolated) Time course of tumor size relative 
change from baseline, extrapolated 
based on EBEs after last observed 

tumor size measurement

RCFB-TS(t) (carried forward) Time course of tumor size relative 
change from baseline, carried 

forward 3 weeks after last dose

TS(t)-slope (extrapolated) Current rate of tumor size changes, 
extrapolated based on EBEs after last 

observed tumor size measurement

TS(t)-slope (carried forward) Current rate of tumor size changes, 
carried forward 3 weeks after last 

dose

EBE, empirical Bayes estimate; ITAC, interferon-inducible T-cell alpha 
chemoattractant.
aAll variables were derived based on all available observed data, also for 
parameters that were time-varying until a given time.

https://www.R-project.org
https://www.R-project.org
http://www.ggplot2.org
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RESULTS
Patients and data
Details of the observed PK, biomarker, and TS data have 
been reported elsewhere.19 The median time to death was 
1.4 years. There were 69 AAD deaths, 56 C2YE deaths, 54 
C2YASOT deaths, and 28 C5MALD deaths, and the fol-
low-up times ranged from 16 days to 5.2 (AAD), 3.2 (C2YE), 
2 (C2YASOT), and 4.7 (C5MALD) years for the four differ-
ent censoring strategies. The corresponding KaplanMeier 
curves, together with a risk table, are available in Figure S1. 
The median time between last dose and end of follow-up 
was 32 weeks and 32 patients were followed for > 1 year 
after last dose. Twelve patients still received atezolizumab 
2 years after start of treatment.

Re-estimation of PK-IL18-TS model
The data  set used here included updated information on 
number of metastatic sites (which was a covariate for 
baseline tumor size, sum of longest diameter, in the earlier 
PK-IL18-TS model) for seven patients. The earlier defined 
PK-IL18-TS model parameter-covariate relationships re-
mained statistically significant after the re-estimation. A 
comparison of parameter estimates in the previous and 
re-estimated models is presented in Table S2.

OS models
The exponential distribution (time-constant hazard) was 
used to describe the distribution of event times in the AAD, 
C2YE, and C2YASOT models. The Gompertz distribution 
provided the best model fit for the C5MALD event times. 
KMVPCs of the final models showed, in general, no mis-
specification with respect to the distribution of the event 
times (Figure 1). The survival was, however, slightly over-
predicted between 1 and 2 years after start of treatment 
in the C2YE model. The actual significance level was close 
to the nominal ΔOFV of 3.84, with a minimum ΔOFV = 3.62 
and a maximum ΔOFV  =  4.79 for the explored baseline 
covariates. Baseline lymphocyte count (LYM; AAD) and 
neutrophil/lymphocyte ratio (NLR; C2YE, C2YASOT and 

C5MALD) were included after the first forward step. NLR 
provided the next best improvement of the model fit (AAD) 
in the first forward step, although because NLR was com-
puted partly from LYM, NLR was not included in the next 
forward steps. LYM/NLR was followed by baseline alkaline 
phosphatase (ALP) in the second forward step in all four 
models. PD-L1 expression at baseline (parameterized as 
PD-L1 + immune cells/tumor mass < 5% or PD-L1 + tumor 
cells/tumor mass < 50% vs. PD-L1 + immune cells/tumor 
mass ≥  5% or PD-L1  +  tumor cells/tumor mass ≥  50%, 
here on referred to as low and high PD-L1 expression) was 
included in three models (AAD, C2YE, and C2YASOT) and 
smoking (parametrized as former/never vs. current) was 
included in two models (C2YASOT and C5MALD). Two 
additional baseline covariates (i.e., race (parameterized 
as white vs. other)) and aspartate aminotransferase were 
 included in the C5MALD model. A summary of all covari-
ates providing a P value  <  0.05 at each forward step is 
given in Table S3. No covariate was excluded after the 
backward elimination steps. Lactate dehydrogenase was 
explored both on normal and log-scale, but did not im-
prove the model fit significantly in any of the four models.

Despite the significance of IL-18 and ITAC as predictors of 
TS changes, none of the evaluated IL-18 or ITAC variables, 
or atezolizumab AUC, added predictive value on top of the 
baseline covariates, whereas all TS-related variables (Table 1) 
resulted in P values < 0.05 when tested one at a time. The 
time course of TS relative change from baseline, carried for-
ward 3 weeks after last dose, RCFB-TS(t) (carried forward), 
provided the best model fit in one model (AAD), whereas the 
RCFB-TS(t), extrapolated based on Empirical Bayes estimates 
after last observed TS measurement provided the best model 
fit for the other models (i.e., C2YE, C2YASOT, and C5MALD). 
Introduction of a second model-derived variable resulted in 
model instability and large RSEs. Therefore, only one mod-
el-derived variable was allowed in the final models.

Each included baseline covariate and model-derived 
predictor were subsequently omitted, one at a time, 
from the models in a last backward deletion step. PD-L1 

Figure 1 Kaplan–Meier visual predictive checks of the final models for all available data (AAD; first panel), data censored no later than 
at a cutoff date set 2 years earlier than in AAD (C2YE; second panel), data censored no later than 2 years after start of treatment for 
each individual patient (C2YASOT, third panel), and data censored a maximum of 5 months after last dose (C5MALD, fourth panel). 
The plots illustrate the observed Kaplan–Meier curve (blue line) in comparison to the 95% confidence interval, generated from 100 
simulations (green shaded area). Black vertical lines indicate censored events.
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expression (AAD) and smoking (C2YASOT and C5MALD) 
were removed in this step. Aspartate aminotransferase 
and race were further omitted from the C5MALD model 
to improve model stability because inclusion of these 
covariates was related to numerical difficulties in the 
estimation. No predictors were removed from the C2YE 
model. Included baseline covariates and model-derived 
predictors after each of the three different steps are sum-
marized Table 2. The NONMEM code together with a 
dummy data  set for the final AAD model is provided in 
Supplementary Information. Parameter estimates and 
corresponding RSEs are presented in Table 3. RSEs were 
in the range of 10–40% for half of all estimated param-
eters and above 50% for 7 parameters, with the largest 
RSEs observed in the C5MALD model. The RSEs in-
creased in general the more predictors that were included 
in the models.

The KMMCVPCs of the base and final AAD models revealed 
a clear improvement in the final model by capturing the trends 
(i.e., observed means within the CIs in the final model, as well 
as providing tighter CIs; Figure 2). KMMCVPCs and stratified 
KMVPCs of the base and final C2YE, C2YASOT, and C5MALD 
models also illustrated good performance (Figures S2 and S3, 
respectively) with a tendency of overprediction of the effect of 
RCFB-TS(t) (extrapolated).

Relationships between included continuous base-
line covariates and the relative hazard are illustrated in 
Figure 3. The hazard was lower for lower values of NLR 
and ALP, where the relative hazard related to the 2.5th per-
centile of the observed covariate data (i.e., 1.6 and 45 U/L, 
respectively) ranged between 0.69–0.72 and 0.80–0.84, 
respectively. The opposite relationship was predicted for 
LYM and the relative hazard was 1.73 for the 2.5th per-
centile (i.e., 0.5 109/L) of the observed LYM. The median 
relationships tended to be rather steep at predictions be-
yond the covariate value corresponding to the 97.5th value 
(except for LYM), although these predictions were related 
to wide CIs. Extrapolations of the relative hazard should, 

therefore, be done cautiously for covariate values larger 
than the 97.5th percentile. The relative hazard for patients 
with high PD-L1 expression in comparison to patients with 
low PD-L1 expression was similar in the C2YE (0.604) and 
C2YASOT (0.615).

Table 2 Summary of included baseline covariates and model-derived 
predictors

Data set

Included baseline 
covariates (first 

SCM)

Included 
model-derived 

predictors
Included in the 

final model

AAD LYM
ALP

PD-L1 expressiona 

RCFB-TS(t) (c-f.) LYM
ALP

RCFB-TS(t) (c-f.)

C2YE NLR
ALP

PD-L1 expressiona 

RCFB-TS(t) 
(ext.)

NLR
ALP

PD-L1 
expressiona 

RCFB-TS(t) (ext.)

C2YASOT NLR
ALP

Smokingb 
PD-L1 expressiona 

RCFB-TS(t) 
(ext.)

NLR
ALP

PD-L1 
expressiona 

RCFB-TS(t) (ext.)

C5MALD NLR
ALP

Racec 
Smokingb 

AST

RCFB-TS(t) 
(ext.)

NLR
ALP

RCFB-TS(t) (ext.)

AAD, all available data; ALP, alkaline phosphatase; AST, aspartate ami-
notransferase; C2YE, data censored no later than at a cutoff date set 2 years 
earlier than in AAD; C2YASOT, data censored no later than 2 years after start 
of treatment for each individual patient; C5MALD, data censored a maximum 
of 5 months after last dose; c-f., carried forward 3 weeks after last dose; ext., 
extrapolated based on empirical Bayes estimates after last observed tumor 
size measurement; LYM, lymphocyte count; NLR, neutrophil/lymphocyte 
ratio; PD-L1, programmed death-ligand 1; RCFB-TS(t), time course of tumor 
size relative change from baseline; SCM, stepwise covariate modeling.
aPD-L1+ immune cells/tumor mass  <  5% or PD-L1+ tumor cells/tumor 
mass < 50% vs. PD-L1+ immune cells/tumor mass ≥ 5% or PD-L1+ tumor 
cells/tumor mass ≥ 50%. bFormer/never vs. current. cWhite vs. not white.

Table 3 Final parameter estimates and corresponding RSEs in the final models

 

Value (RSE, %)

AAD C2YE C2YASOT C5MALD

Scaleexp. (week-1) 9.69 × 10-3 (12) 8.12 × 10-3 (15) 7.95 × 10-3 (48) –

ScaleGomp. (week-1) – – – 6.39 × 10-3 (56)

ShapeGomp. (week-1) – – – −17.8 × 10-3 (62)

βALP (L/U) 5.90 × 10-3 (22) 4.84 × 10-3 (44) 4.67 × 10-3 (87) 5.12 × 10-3 (8.4)

βLYM (L/109 cells) -0.780 (37) – – –

βNLR – 0.154 (31) 0.159 (29) 0.175 (83)

βPD-L1 – −0.505 (63) −0.486 (67) –

βRCFB-TS(t) (c-f.) 1.44 (18) – – –

βRCFB-TS(t) (ext.) – 1.26 (55) 1.32 (17) 1.63 (39)

AAD, all available data; C2YE, data censored no later than at a cutoff date set 2 years earlier than in AAD; C2YASOT, data censored no later than 2 years 
after start of treatment for each individual patient; C5MALD, data censored a maximum of 5 months after last dose; βALP, parameter relating alkaline phos-
phatase to the hazard; βLYM, parameter relating lymphocyte count to the hazard; βNLR, parameter relating the neutrophil/lymphocyte ratio to the hazard; βPD-L1, 
parameter relating high expression of programmed death ligand-1 (parameterized as PD-L1+ immune cells/tumor mass ≥ 5% or PD-L1+ tumor cells/tumor 
mass ≥ 50%) to the hazard; βRCFB-TS(t) (c-f.), parameter relating the time course of tumor size relative change from baseline, carried forward 3 weeks after last 
dose to the hazard; βRCFB-TS(t) (ext.), parameter relating the time course of tumor size relative change from baseline, extrapolated based on empirical Bayes 
estimates after last observed tumor size measurement to the hazard.
RSEs were computed based on the R covariance matrix in NONMEM.



120

CPT: Pharmacometrics & Systems Pharmacology

Biomarker Prediction of OS in CIT
Netterberg et al.

Prediction of AAD
The KMVPCs illustrated good predictions of the AAD sce-
nario given the final C2YE and C2YASOT models, whereas 
the final C5MALD model resulted in misspecified predic-
tions (Figure 4). However, the misspecification based on 
the C5MALD model was expected due to the difference 
in distribution of event times (exponential for AAD and 
Gompertz for C5MALD) and its lack of long-term survivors 
after end of treatment. The KMMCVPCs showed in gen-
eral no apparent misspecification, although the effect of 
RCFB-TS(t) (extrapolated) was slightly overpredicted when 
AAD was predicted based on the final C2YE and C2YASOT 
models (Figure S4).

DISCUSSION

The current analysis was performed on data from a phase 
I study, which contained unusually rich information (e.g., 
PK, tumor size, biomarker, and OS). In addition, the data 
provided longer and more matured follow-up information 
compared with if the analysis had been performed on data 
from a phase III study at the same time this analysis was 
performed. Although the number of included patients was 
limited, we show the potential to use such early data to 
quantify important relationships between these variables.

In our analysis, the previously suggested PK-IL18-TS 
framework for atezolizumab19 was extended to include a re-
lationship with OS. Even though the tumor growth rate, both 

on normal and log scales (as reported by Claret et al. for pa-
tients with NSCLC treated with atezolizumab),5 resulted in 
model improvement in the current analysis, the  RCFB-TS(t) 
course provided an even better fit for all four models. The 
RCFB-TS(t) variable carried-forward 3 weeks after last dose 
performed best in the AAD model, whereas extrapolating 
the variable based on the empirical Bayes estimates pro-
vided the best fit in the C2YE, C2YASOT, and C5MALD 
models. Our results are comparable to those previously re-
ported in patients treated with checkpoint inhibitors, with 
respect to relationships between OS and TS-related metrics, 
where time to tumor growth and current rate of tumor size 
changes (Tardivon et al.), tumor growth rate (Claret et al.)  
and absolute TS time-course and percent change in TS 
over time (Zheng et al.) predicted OS in patients treated with 
checkpoint inhibitors.5–7 It is also reasonable to expect that 
these types of analyses will gain further interest and impact 
in the future.30

IL-18 and AUC were identified as predictors of TS in the 
earlier PK-IL18-TS analysis, where a high IL-18 response on 
day 21 after start of atezolizumab treatment was related to a 
sustained tumor growth inhibition. As mentioned above, the 
tumor growth rate has been identified as a predictor for OS 
in a similar group of patients,5 and the biomarker response 
may have potential to early assess the benefit of the treat-
ment. In contrast to our hypothesis, none of the IL-18 or 
ITAC (or atezolizumab AUC) model-derived variables were 
predictors of OS on top of being a predictor of TS changes.

Figure 2 Kaplan–Meier mean covariate visual predictive checks of the base and final models for all available data (AAD). The plots 
illustrate the observed mean of baseline lymphocyte count (left panel), baseline alkaline phosphatase (middle panel) and time course of 
tumor size relative change from baseline, carried forward 3 weeks after last dose (RCFB-TS(t) (c-f.); right panel) of patients remaining in 
the study (blue line) in comparison to the 95% confidence interval, generated from 100 simulations (green shaded area). Black vertical 
lines indicate censored events.
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Our analysis also addressed the value of long-term fol-
low-up data in phase I (i.e., would conclusions regarding 
predictors of OS be similar if patients were followed for a 
shorter time (C2YE and C2YASOT) or if data collected on 

OS 5 months after they stop taking the study treatment were 
ignored (C5MALD)). Patients followed for OS are allowed to 
receive a different treatment, which may confound the re-
sults, for example, the median time between last dose and 

Figure 3 Relative (to the median patient) hazard (logarithmic y-axis) illustrated for a change in the continuous baseline covariate value 
given parameter estimates (solid black lines) in the final model based on all available data (AAD; first panel), data censored no later 
than at a cutoff date set 2 years earlier than in all available data (C2YE; second panel), data censored no later than 2 years after start 
of treatment for each individual patient (C2YASOT; third panel), and data censored a maximum of 5 months after last dose (C5MALD; 
fourth panel). Shaded areas represent the 95% confidence interval, given the corresponding standard error, and are colored by 
covariate (i.e., pink; lymphocyte count (LYM, 109 cells/L), green; neutrophil/lymphocyte ratio (NLR), and blue; alkaline phosphatase 
(ALP, U/L). The relationships are illustrated for the observed range of the covariate value and dashed vertical lines represent the 2.5th 
and 97.5th percentiles of the observed covariate value. The horizontal grey line indicates no change in relative hazard (i.e., a patient 
with median values of all covariates and no change from tumor size baseline).
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Figure 4 Kaplan–Meier visual predictive checks of all available data (AAD) predicted with data censored no later than at a cutoff date 
set 2 years earlier than in AAD (C2YE; left panel), data censored no later than 2 years after start of treatment for each individual patient 
(C2YASOT; middle panel), and data censored a maximum of 5 months after last dose (C5MALD; right panel). The plots illustrate the 
observed Kaplan–Meier curve (blue line) in comparison to the 95% confidence interval, generated from 100 simulations (green shaded 
area). Black vertical lines indicate censored events.
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follow-up was 32 weeks in the current study. Included pre-
dictors were overall similar, as well as their corresponding 
parameter estimates (Table 3), among the four different cen-
soring strategies with C5MALD deviating the most.

The current analysis included relatively few patients 
(n  =  88), although it was larger than traditional phase I 
studies. In addition to that biomarkers were collected, an 
advantage of the analysis is that the study included more 
than a single dose level, in contrast to later clinical studies 
where dose-ranging is less common in oncology. The in-
clusion of multiple doses reduces the potential correlation 
between drug exposure and disease status and conse-
quently the selection bias. By allowing the survival data to 
influence the prediction of the individual TS time course, 
the impact of immortal time bias is minimized. In addition, 
similar to other model-based analyses with missing data,31 
it is reasonable to expect that immortal time bias is limited 
because TS can be predicted at any time point, also after 
progression.

Inclusion of baseline covariates provided predictive value, 
where ALP was the only of all explored baseline covariates 
that was included in all final models. The magnitude of the 
effect of ALP was similar across all models (4.67  ×  10−3–
5.90 × 10−3 L/U). ALP may be elevated in patients with liver 
disease and may, therefore, reflect patient status.32 ALP was 
also a significant predictor of OS in the univariate step in the 
analysis of phase II and III atezolizumab data in patients with 
NSCLC.5

NLR was included in three final models (C2YE, C2YASOT, 
and C5MALD) and LYM in the fourth (AAD). Neutrophils 
promote tumor activity by triggering inflammation in the mi-
croenvironment, whereas LYMs are cancer suppressors 
related to host immunity to cancer.33,34 It is consequently 
favorable to have more LYMs relative to neutrophils (i.e., a 
low NLR). Relationships between NLR and OS have been 
reported previously across both tumor-types and checkpoint 
inhibitors.6,35–37 NLR provided nearly as good improvement as 
LYM in the AAD model (1.7 × 10−4 vs. 1.0 × 10−4; Table S3) and 
could consequently have been exchanged to NLR with only 
minor worsening of the model fit. This was also confirmed in 
the KMMCVPC for NLR where AAD were well predicted by 
the models based on C2YE and C2YASOT data (Figure S4).

PD-L1 expression was a predictor of OS in the current 
analysis in the final C2YE and C2YASOT models, where 
patients with high PD-L1 expression had longer OS in 
comparison to patients with low PD-L1 expression. PD-L1 
expression was explored as a continuous variable and as 
a categorical variable in various ways but the parameter-
ization as described above consistently provided the best 
improvement of the model fit in the stepwise covariate mod-
eling (Table S3).

By comparing the included predictors in the final models 
(Table 2) it is clear that there were no major differences with 
respect to censoring strategy. The most significant differ-
ence was instead related to the distribution of the event times 
where the hazard decreased monotonically (Gompertz dis-
tribution with a negative shape parameter) in the C5MALD 
model, whereas it was time-constant in the other three 
models (exponential distribution). This difference was also 
obvious when comparing Kaplan–Meier curves (Figure 1). 

The C5MALD Kaplan–Meier curve illustrated a high prob-
ability to survive 5 months after last dose, whereas lower 
survival was reached at the time of censoring in the other 
three data sets. Regardless of similarities and differences 
among these four censoring strategies, the current analysis 
does not address which strategy provides the better op-
tion in order to handle potential confounding factors after 
treatment discontinuation. However, it can be assumed that 
the C5MALD strategy is the least influenced by other treat-
ments, but survival was overpredicted as discussed above. 
In addition, a 2-year shorter follow-up, in comparison to 
using AAD, had only minor impact on the final model with 
PD-L1 expression included or not, respectively. This was 
confirmed by predicting the AAD with the C2YE model with-
out major model misspecification (Figure 4 and Figure S4). 
Given these results, it would have been sufficient to analyze 
the data earlier and extrapolate to later time points.

An extension to the modeling framework, including 
atezolizumab PK, IL-18, and TS dynamics, by also including 
OS was successfully performed using data from the phase I 
study PCD4989g. The current analysis demonstrated that all 
explored TS-related model-derived variables improved the 
model fit, including tumor growth rate, but with RCFB-TS(t) 
as the best predictor of OS, a finding independent of how 
the data were censored. Identification of baseline covariates, 
including LYM/NLR, ALP, and PD-L1 expression, were also 
independent of censoring time and their estimated effects 
on OS were similar in all models. It was also shown that the 
C2YE and C2YASOT models, but not C5MALD, successfully 
predicted AAD, suggesting that patients could have been 
followed for a shorter time without loss of important informa-
tion related to OS. The proposed framework could be used 
to evaluate similar studies applied in different settings (e.g., 
other checkpoint inhibitors and tumor types).

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Figure S1. Kaplan–Meier curves for the four different censoring strate-
gies together with the corresponding risk table.
Figure S2. Kaplan–Meier mean covariate visual predictive checks of the 
base and final models.
Figure S3. Kaplan–Meier visual predictive checks stratified by PD-L1 
expression in the base and final models.
Figure S4. Kaplan–Meier mean covariate visual predictive checks and 
Kaplan–Meier visual predictive checks stratified by PD-L1 expression 
of all available data predicted with the final censored 2 years earlier, 
censored 2 years after start of treatment and censored 5 months after 
last dose models.
Table S1. Summary statistics of evaluated baseline covariates.
Table S2. Comparison of parameter estimates in the previous and 
re-estimated PK-IL18-TS models.
Table S3. Summary of all covariates providing a P value < 0.05 in the 
baseline covariate stepwise covariate modeling.
Supinfo. Example data set and NONMEM control stream for the AAD 
PK-IL18-TS-OS model.

Funding. The performed analysis was supported by Genentech Inc. 
and the Swedish Cancer Society.



123

www.psp-journal.com

Biomarker Prediction of OS in CIT
Netterberg et al.

Conflict of Interest. I.N. was supported by a grant from Genentech 
Inc. I.N. and L.F. have acted as paid consultants to Genentech Inc. for other 
projects. R.B., Y.C., H.W., C.-C.L., J.-Y.J. are Genentech employees. As Deputy 
Editor-in-Chief for CPT: Pharmacometrics & Systems Pharmacology, Lena 
Friberg was not involved in the review or decision process for this paper.

Author Contributions. I.N., R.B., Y.C., H.W., C.C.L., J.Y.J., and 
L.E.F. wrote the manuscript. I.N., R.B., and L.E.F. designed the research. 
I.N., R.B., Y.C., H.W., C.C.L., J.Y.J., and L.E.F performed the research. I.N. 
and L.E.F. analyzed the data.

 1. US Department of Health and Human Services, Food and Drug Administration, 
Oncology Center of Excellence, Center for Drug Evaluation and Research (CDER) & 
Center for Biologics Evaluation and Research (CBER) Clinical Trial Endpoints for the 
Approval of Cancer Drugs and Biologics. Guidance for Industry. (2018).

 2. Claret, L. et al. Model-based prediction of phase III overall survival in colorectal can-
cer on the basis of phase II tumor dynamics. J. Clin. Oncol. 27, 4103–4108 (2009).

 3. Claret, L. et al. Evaluation of tumor-size response metrics to predict overall survival 
in Western and Chinese patients with first-line metastatic colorectal cancer. J. Clin. 
Oncol. 31, 2110–2114 (2013).

 4. Bender, B.C., Schindler, E. & Friberg, L.E. Population pharmacokinetic-pharmaco-
dynamic modelling in oncology: a tool for predicting clinical response. Br. J. Clin. 
Pharmacol. 79, 56–71 (2015).

 5. Claret, L. et al. A model of overall survival predicts treatment outcomes with 
atezolizumab versus chemotherapy in non-small cell lung cancer based on early 
tumor kinetics. Clin. Cancer Res. 24, 3292–3298 (2018).

 6. Zheng, Y. et al. Population modeling of tumor kinetics and overall survival to identify 
prognostic and predictive biomarkers of efficacy for durvalumab in patients with 
urothelial carcinoma. Clin. Pharmacol. Ther. 103, 643–652 (2018).

 7. Tardivon, C. et al. Association between tumor size kinetics and survival in urothelial 
carcinoma patients treated with atezolizumab: implication for patient’s follow-up. 
Clin. Pharmacol. Ther. 106, 810–820 (2019). https ://doi.org/10.1002/cpt.1450

 8. Balar, A.V. & Weber, J.S. PD-1 and PD-L1 antibodies in cancer: current status and 
future directions. Cancer Immunol. Immunother. 66, 551–564 (2017).

 9. Marconcini, R. et al. Current status and perspectives in immunotherapy for meta-
static melanoma. Oncotarget 9, 12452–12470 (2018).

 10. Saudemont, A., Jespers, L. & Clay, T. Current status of gene engineering cell ther-
apeutics. Front. Immunol. 9, 153 (2018).

 11. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 
646–674 (2011).

 12. Chen, D.S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. 
Immunity 39, 1–10 (2013).

 13. Chen, D.S. & Mellman, I. Elements of cancer immunity and the cancer-immune set 
point. Nature 541, 321–330 (2017).

 14. Patel, S.P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer 
immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).

 15. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously 
treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre ran-
domised controlled trial. Lancet Lond. Engl. 389, 255–265 (2017).

 16. Garon, E.B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. 
Engl. J. Med. 372, 2018–2028 (2015).

 17. Grigg, C. & Rizvi, N.A. PD-L1 biomarker testing for non-small cell lung cancer: truth 
or fiction? J. Immunother. Cancer 4, 48 (2016). 

 18. Novick, D., Kim, S., Kaplanski, G. & Dinarello, C.A. Interleukin-18, more than a Th1 
cytokine. Semin. Immunol. 25, 439–448 (2013).

 19. Netterberg, I. et al. A PK/PD analysis of circulating biomarkers and their relation-
ship to tumor response in atezolizumab-treated non-small cell lung cancer pa-
tients. Clin. Pharmacol. Ther. 105, 486–495 (2019).

 20. Ning, Y.-M. et al. FDA approval summary: atezolizumab for the treatment of patients 
with progressive advanced urothelial carcinoma after platinum-containing chemo-
therapy. Oncologist 22, 743–749 (2017).

 21. Herbst, R.S. et al. Predictive correlates of response to the anti-PD-L1 antibody 
MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

 22. Eisenhauer, E.A. et al. New response evaluation criteria in solid tumours: revised 
RECIST guideline (version 1.1). Eur. J. Cancer Oxf. Engl. 45, 228–247 (2009).

 23. Wählby, U., Jonsson, E.N. & Karlsson, M.O. Assessment of actual significance 
levels for covariate effects in NONMEM. J. Pharmacokinet. Pharmacodyn. 28, 
231–252 (2001).

 24. Beal, S., Sheiner, L., Boeckmann, A. & Bauer, R. (eds) NONMEM 7.4 Users Guides. 
ICON plc, Gaithersburg, MD (1989–2018).

 25. Wade, J. & Karlsson, M.Combining PK and PD data during population PK/PD anal-
ysis. Abstract 139, PAGE 8 (1999). <https ://www.page-meeti ng.org/defau lt.as-
p?abstr act=139>

 26. Zhang, L., Beal, S.L. & Sheiner, L.B. Simultaneous vs. sequential analysis for pop-
ulation PK/PD data I: best-case performance. J. Pharmacokinet. Pharmacodyn. 30, 
387–404 (2003).

 27. Keizer, R.J., Karlsson, M.O. & Hooker, A. Modeling and simulation workbench for 
NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet. Syst. Pharmacol. 
2, e50 (2013). https ://doi.org/10.1038/psp.2013.24.

 28. Dosne, A.-G., Bergstrand, M. & Karlsson, M.O. An automated sampling importance 
resampling procedure for estimating parameter uncertainty. J. Pharmacokinet. 
Pharmacodyn. 44, 509–520 (2017).

 29. Hooker, A. & Karlsson, M.The Kaplan-Meier Mean Covariate plot (KMMC): a new 
diagnostic for covariates in time-to-event models. Abstract 2564, PAGE 21 (2012). 
<https ://www.page-meeti ng.org/defau lt.asp?abstr act=2564>

 30. US Food & Drug Administration (FDA) & International Society of Pharmacometrics 
(IsoP) FDA-ISoP Public Workshop: Model Informed Drug Development (MIDD) for 
Oncology Products. (2018).

 31. Gastonguay, M.R. et al. Missing data in model-based pharmacometric applications: 
points to consider. J. Clin. Pharmacol. 50, 63S–74S (2010). 

 32. Van Hoof, V.O. & De Broe, M.E. Interpretation and clinical significance of alka-
line phosphatase isoenzyme patterns. Crit. Rev. Clin. Lab. Sci. 31, 197–293  
(1994).

 33. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. 
Nature 454, 436–444 (2008).

 34. Gooden, M.J.M., de Bock, G.H., Leffers, N., Daemen, T. & Nijman, H.W. The prog-
nostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review 
with meta-analysis. Br. J. Cancer 105, 93–103 (2011).

 35. Bagley, S.J. et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of out-
comes in nivolumab-treated patients with advanced non-small-cell lung cancer. 
Lung Cancer Amst. Neth. 106, 1–7 (2017).

 36. Ogata, T. et al. Neutrophil-to-lymphocyte ratio as a predictive or prognostic fac-
tor for gastric cancer treated with nivolumab: a multicenter retrospective study. 
Oncotarget 9, 34520–34527 (2018).

 37. Cassidy, M.R. et al. Neutrophil to lymphocyte ratio is associated with outcome 
during ipilimumab treatment. EBioMedicine 18, 56–61 (2017).

© 2020 The Authors. CPT: Pharmacometrics & Systems 
Pharmacology published by Wiley Periodicals, Inc. on 
 behalf of the American Society for Clinical Pharmacology 
and Therapeutics. This is an open access article 
under the terms of the Creative Commons Attribution-
NonCommercial License, which permits use, distribution 
and reproduction in any medium, provided the original 
work is properly cited and is not used for commercial 
purposes.

https://doi.org/10.1002/cpt.1450
https://www.page-meeting.org/default.asp?abstract=139
https://www.page-meeting.org/default.asp?abstract=139
https://doi.org/10.1038/psp.2013.24
https://www.page-meeting.org/default.asp?abstract=2564
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

