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Abstract
Background  Variation in lipid changes in response to statin treatment is associated with genetic polymorphism. Sterolin-1, 
encoded by ABCG5, and sterolin-2, encoded by ABCG8, together form a sterol transporter. There are some reports indicat-
ing association of rs11887534 (ABCG8:c.55G > C) polymorphism with lipid concentrations, both prior to and after statin 
treatment. The aim of this study was to analyze both baseline plasma lipids and their concentrations in response to statin 
treatment with regard to ABCG8: rs11887534 polymorphism in Caucasian patients of Polish origin.
Methods  The study group consisted of 170 consecutive adult out-patients treated with atorvastatin or simvastatin for a 
minimum of 2 months. Concentrations of triglycerides (TG), total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-
cholesterol (HDL-C) were measured before and after statin treatment. The ABCG8 polymorphism was identified by mini-
sequencing genomic DNA extracted from peripheral blood leukocytes.
Results  There were no significant differences in regard to ABCG8 variants for baseline TG, TC, LDL-C and HDL-C as 
well as for TG, TC or LDL-C concentrations after statin treatment. However, patients carrying at least one C allele showed 
a decrease in post-statin HDL-C concentrations and the absolute and relative changes between post- and pre-statin HDL-C 
concentrations were negative in contrast to positive values in wild-type homozygotes.
Conclusions  Our results suggest that the c.55C allele of the ABCG8: rs11887534 polymorphism might be associated with 
decrease in HDL-cholesterol in response to statin treatment in Polish patients.
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Introduction

Statins are competitive inhibitors of the 3–hydroxyme-
thyl–3–methylglutaryl coenzyme A (HMG-CoA) reductase, 
which is a rate-limiting enzyme in cholesterol biosynthe-
sis [1]. A decrease in cellular cholesterol concentrations 
caused by statins stimulates cell-surface expression of low-
density lipoprotein (LDL) receptors on hepatocytes, which 

in turn increase the removal of circulating LDL cholesterol 
(LDL-C)[2]. Treatment with statins not only causes vari-
ous degrees of LDL-C decrease but also a decrease in total 
cholesterol and triglyceride concentrations as well as a 
HDL-C increase [3, 4]. Hasvold et al. indicated that statin-
induced changes in LDL-C and HDL-C are unrelated and 
many patients initiated on statins experience a paradoxical 
decrease in HDL-C [5]. There is also evidence that the inter-
individual variability in lipid response to treatment with 
statins may be associated with genetic polymorphisms [1, 
6–11].

The ABCG8 gene is located on chromosome 2p21 in a 
head-to-head orientation with the ABCG5 gene. ABCG5 
encodes sterolin-1 and ABCG8 encodes sterolin-2. Both 
sterolins are non-functional half-transporters which have 
to form the heterodimer to gain sterol transport function-
ality [12]. Loss-of-function mutations in either ABCG5 or 
ABCG8 have been identified as a cause of sitosterolemia, 
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a rare autosomal recessive disorder characterized by ele-
vated plasma levels of plant sterols due to increased intes-
tinal absorption of dietary sitosterol and decreased biliary 
sterol secretion [13, 14]. The majority of patients with 
sitosterolemia are characterized by normal to moderately 
elevated plasma cholesterol concentrations [15, 16]. On the 
other hand, the common ABCG8: c.55G > C polymorphism 
(rs11887534) has been reported to account for variability 
in plasma concentrations of: triglycerides, total cholesterol 
concentrations, LDL-C concentrations and HDL-C concen-
trations [14, 17–20] as well as for the variability in plasma 
lipid parameters in response to treatment with statins [7, 
14, 21]. However, other authors have not confirmed asso-
ciations of ABCG8: rs11887534 with plasma lipid levels 
[22–24]. In addition, till now only few studies on ABCG8: 
rs11887534 have been conducted with Slavic populations 
[22, 25]. Therefore, we decided to analyze both baseline 
plasma lipids and changes in their concentrations in response 
to statin treatment in regard to the ABCG8: rs11887534 pol-
ymorphism in Polish Caucasian patients.

Materials and methods

The study group consisted of 170 consecutive adults (52 
males and 118 females, aged from 38- to 84-years old) 
recruited in an outpatient clinic in Szczecin according to 
the protocol described previously [26]. All recruited par-
ticipants were Caucasian patients of Polish origin living 
in Szczecin, the largest city in West Pomerania. Inclusion 
criteria were as follows: age > 18 years old, the presence 
of a lipid disorder and treatment either with atorvastatin 
(10–20 mg per day) or with simvastatin (20–40 mg per 
day) for a minimum of 2 months. Exclusion criteria were: 
smoking, thyroid disease (hyperthyroidism or hypothy-
roidism), or if, after extensive interview, patients had not 

complied fully with instructions, including a diet low in 
fat. Clinical data from patients’ records included: age, gen-
der, body mass index (BMI) calculated as (body mass, kg)/
(height, m2), duration of statin treatment, the daily dose 
of statin, and the presence of arterial hypertension, dia-
betes mellitus or coronary artery disease (Table 1). Labo-
ratory data from patients’ records included: serum con-
centrations of triglycerides (TG), total cholesterol (TC), 
LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C). 
Lipid concentrations were measured before (time 1) and 
after (time 2) the statin treatments as described previously 
[26]. In addition, absolute (∆2–1 = time 2 − time 1) or rela-
tive (∆% = 100*(time 2 − time 1)/time 1) differences were 
calculated for TG, TC, LDL-C and HDL-C (Table 2). 
Peripheral blood samples (5 ml) were drawn before sta-
tin treatment and stored at − 20 °C until DNA isolation. 
All patients gave informed, written consent to participate 
in the study, which was approved by the bioethics com-
mittee at the Pomeranian Medical University, Szczecin, 
Poland. Genomic DNA was extracted from peripheral 
blood leukocytes using a commercially available DNA 
isolation kit (QIAamp Blood DNA Mini Kit, QIAGEN, 
Germany). Each DNA sample was used as a template for 
PCR to amplify a 130-bp ABCG8 sequence, including 
rs11887534. PCR was performed using: 5′–GCT​GGG​TCT​
AAG​AGA​GCT​GC–3′ as the forward primer and 5′–CTT​
CCC​ATT​GCT​CAC​TCA​CC–3′ as the reverse primer. Sub-
sequently, the PCR amplification products were purified 
using Exonuclease I and FastAP Thermosensitive Alkaline 
Phosphatase (ThermoFisher Scientific Inc., Waltham, MA 
USA) according to manufacturer procedures. The purified 
amplicons were subjected to a mini-sequencing reaction 
using an ABI PRISM SNaPshot Multiplex Kit (Applied 
Biosystems) with extension primer 5′–GAC​TGA​CTG​
ACT​GAC​TGA​CTG​ACT​GAC​TGA​CTG​ACT​TGC​TCA​
CTC​ACC​GAG​GTA​T–3′. Capillary electrophoresis of 

Table 1   Basic characteristics of patients in regard to their ABCG8 genotype

Quantitative data are presented as median (lower quartile, upper quartile)

Variable All ABCG8 genotype p

(n = 170) GG (n = 147) GC + CC (n = 22 + 1) GC + CC vs GG

Males, n (%) 52 (30.6) 47 (32.0) 5 (21.7) 0.455
Age (years) 66 (57, 73) 66 (56,73) 68 (59, 73) 0.408
BMI (kg/m2) 27.3 (24.4, 30.4) 27.2 (24.4, 30.4) 28.0 (24.2, 31.9) 0.684
Arterial hypertension, n (%) 134 (78.8) 118 (80.3) 16 (69.6) 0.372
Diabetes mellitus, n (%) 49 (28.8) 41 (27.9) 8 (34.8) 0.584
Coronary artery disease, n (%) 37 (21.8) 33 (22.4) 4 (17.4) 0.667
Duration of treatment with statin (months) 9 (4, 20) 9 (4, 19) 12 (5, 24) 0.630
Simvastatin equivalent dose (mg/day) 40 (20–40) 40 (20–40) 40 (20–40) 0.849
Patients using higher (≥ 40 mg/day) simvastatin 

equivalent dose, n (%)
85 (50.0) 73 (50.0) 12 (52.2) 1.000
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the mini-sequencing products was performed on an ABI 
PRISM 3100-Avant genetic analyzer (Applied Biosys-
tems). The mini-sequencing products were visualized and 
analyzed with GeneMapper™ v4.1 Software (Applied 
Biosystems). All DNA samples were genotyped using a 
blind method, i.e. the samples were anonymously labeled 
by one person and then genotyped by the second person.

Normal distribution of quantitative data was tested 
using Shapiro–Wilk tests. Since the majority of quantita-
tive variables were not normally distributed, we presented 
all of them as median values with lower (Q1) and upper 
quartiles (Q3). Quantitative data were compared between 
genotype groups using Mann–Whitney tests. Categorical 
data and the divergence of ABCG8 genotype frequencies 
from Hardy–Weinberg equilibrium were assessed using 
chi-squared tests. Statistical significance was defined as 
p < 0.05. We calculated the statistical power of the study 
to detect significant differences of relative changes (Δ%) 
in lipid parameters during statin treatment between gen-
otype groups, assuming that standard deviations of the 
changes were equal to 15% for TC, 20% for LDL-C, 25% 
for HDL-C and 50% for TG. The power with 170 subjects 
and a minor allele frequency of 7% was sufficient to detect 
with 80% probability true differences equivalent to 10% 
for TC, 13% for LDL-C, 16% for HDL-C and 32% for TG, 
between genotype groups using a dominant model. All 
data were analyzed using a data analysis software system 
(Dell Statistica, version 13. Dell Inc. 2016, software.dell.
com).

Results

There were 147 GG homozygotes (86.5%), 22 GC het-
erozygotes (12.7%) and one CC homozygote (0.6%) in the 
studied group, and ABCG8: rs11887534 genotype distribu-
tion conformed to expected Hardy–Weinberg equilibrium 
(p = 0.582). The frequency of the minor ABCG8: c.55C 
allele was 7.1%. No significant differences in gender com-
position, age, BMI, prevalence of arterial hypertension, 
frequency of diabetes mellitus, prevalence of coronary 
artery disease, duration of treatment with statin and fre-
quency of patients treated with a higher (≥ 40 mg/day) 
simvastatin equivalent dose were found between subjects 
homozygous for the wild-type ABCG8 allele (c.55G) and 
individuals having at least one mutated allele (GC or CC 
genotype) (Table 1).

There were also no significant differences in regard to 
ABCG8 variants for baseline TG, TC, LDL-C and HDL-C 
concentrations, for TG, TC or LDL-C concentrations after 
treatment with statin as well as for absolute and relative 
differences in TG, TC or LDL-C levels. The only signifi-
cant differences between both genotype groups of patients 
concerned HDL-C concentrations after statin use as well 
as absolute and relative changes in HDL-C concentrations. 
In contrast to GG homozygotes, patients with GC + CC 
genotypes showed a decrease in post-statin HDL-C con-
centrations, and negative absolute and relative differences 
in HDL-C concentrations (Table 2).

Table 2   Lipid parameters of the patients in regard to their ABCG8 genotype

Lipids concentrations and absolute differences in lipid concentrations are measured in millimols per liter (mmol/l). The relative differences in 
lipid concentrations are expressed as a percentage. Data are presented as median (lower quartile, upper quartile)

Variable Time code All ABCG8 genotype p

(n = 170) GG (n = 147) GC + CC (n = 22 + 1) GC + CC vs GG

TG 1 1.57 (1.26, 2.18) 1.59 (1.28, 2.29) 1.46 (1.11, 1.81) 0.089
2 1.26 (0.97, 1.77) 1.25 (0.97, 1.84) 1.28 (0.87, 1.55) 0.571
∆2–1 − 0.34 (− 0.82, 0.02) − 0.36 (− 0.94, 0.01) − 0.02 (− 0.65, 0.15) 0.183
∆% − 24.5 (− 46.3, 2.1) − 25.4 (− 47.4, 0.6) − 2.0 (− 39.7, 9.6) 0.234

TC 1 6.66 (6.01, 7.38) 6.73 (6.06, 7.36) 6.37 (5.26, 7.59) 0.238
2 4.51 (4.01, 5.13) 4.53 (4.04, 5.15) 4.27 (3.76, 4.92) 0.294
∆2–1 − 2.10 (− 2.88, − 1.37) − 2.12 (− 2.77, − 1.37) − 1.94 (− 2.64, − 1.45) 0.680
∆% − 31.0 (− 40.2, − 22.1) − 31.1 (− 40.2, − 22.0) − 31.0 (− 41.1, − 23.6) 0.973

LDL-C 1 4.36 (3.66, 5.04) 4.37 (3.68, 5.04) 4.08 (3.43, 4.65) 0.330
2 2.42 (2.00, 2.95) 2.41 (1.97, 2.98) 2.55 (2.01, 2.92) 0.911
∆2–1 − 1.86 (− 2.59, − 1.09) − 1.92 (− 2.59, − 1.21) − 1.47 (− 2.59, − 0.94) 0.272
∆% − 44.2 (− 53.4, − 29.4) − 44.3 (− 53.6, − 30.3) − 34.9 (− 51.3, − 25.0) 0.432

HDL-C 1 1.45 (1.42, 1.66) 1.45 (1.22, 1.63) 1.45 (1.24, 1.92) 0.466
2 1.42 (1.22, 1.66) 1.45 (1.22, 1.71) 1.27 (1.11, 1.53) 0.028
∆2–1 0.00 (− 0.23, 0.21) 2.00 (− 7.0, 0.21) − 0.13 (− 0.44, − 0.02) 0.003
∆% 0.0 (− 14.6, 14.3) 3.1 (− 12.9, 15.9) − 9.8 (− 25.3, − 1.8) 0.002
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Discussion

The ABCG8 locus is one of many loci identified to be 
associated with blood lipid levels [27–29]. The c.55G > C 
transversion (rs11887534) in the ABCG8 gene causes the 
substitution of aspartic acid (Asp, D) by histidine (His, 
H) at amino acid position 19 (p.Asp19His) of the stero-
lin-2. An aspartic acid at amino acid position 19 is highly 
conserved from plants to vertebrates and its substitution 
by histidine results in the loss of negative charge [14]. 
Therefore, it has been speculated that this conformational 
change might increase the function of the ABCG5/ABCG8 
transporter [19]. However, there are no experimental 
reports confirming the influence of rs11887534 on the 
expression or activity of this transporter so far [21, 30].

The frequency of the minor ABCG8: c.55C allele of 
7.1% in our patients was very similar to its frequency pre-
viously reported by Krawczyk et al. in Poles (7.5%) [25] 
or by Hubacek in Czechs, who are also of Slavic origin 
(6.7%)[22]. The prevalence of rs11887534 in Polish sub-
jects was also close to its frequencies in other European 
populations, which ranged from 5.4 to 10.6% [10, 24, 31].

There was no significant association between ABCG8: 
rs11887534 polymorphism and plasma concentrations of 
triglycerides, total cholesterol, LDL-cholesterol and HDL-
cholesterol in our studied patients. The lack of such asso-
ciations has also been reported not only in Czech patients 
[22], but also in healthy white subjects of non-Hispanic 
origin in the Dallas metropolitan area [23], in a cohort of 
Indian patients with coronary artery disease [21] and in a 
large cohort of Dutch patients with heterozygous familial 
hypercholesterolemia [24]. However, the results of a study 
by Kajinami et al. carried out in 338 multi-ethnic patients 
in the USA revealed that plasma cholesterol concentrations 
in subjects carrying at least one minor ABCG8: c.55C 
allele were significantly lower than in wild-type homozy-
gotes [14]. Gylling et al. reported that in mildly hypercho-
lesterolemic Finns the minor ABCG8: rs11887534 variant 
was associated not only with lower total cholesterol but 
also with lower LDL cholesterol [18]. In addition, Acal-
ovschi et al. have found that both plasma cholesterol and 
plasma triglycerides were lower in Romanian patients car-
rying at least one mutated rs11887534 allele as compared 
to wild-type homozygous subjects [17]. In turn, Junyent 
et al. revealed that the participants of the Boston Puerto 
Rican Health Study carrying the minor rs11887534 allele 
displayed lower concentrations of HDL-C only if they 
were smokers [20]. In contrast to these aforementioned 
results, Chen et al. showed that the ABCG8: c.55C allele in 
Taiwanese subjects consuming an ordinary Chinese diet (a 
diet with lower cholesterol and higher phytosterol content 

compared to a Western diet) was associated with both 
higher total cholesterol and higher LDL-cholesterol [19].

Reports concerning the efficacy of statin treatment in 
regard to ABCG8: rs11887534 polymorphism are scarce [7, 
14, 21]. In 2004 Kajinami et al. revealed that post-atorvasta-
tin TC and post-atorvastatin LDL-C were significantly lower 
and adjusted percent reductions of LDL-C concentrations 
were significantly greater in subjects carrying at least one 
minor ABCG8: rs11887534 allele (c.55C) as compared to 
GG homozygotes [14]. Srivastava et al. reported that post-
treatment TC was significantly lower, and percent reduction 
of LDL-C was significantly greater, in Indian patients with 
coronary artery disease having at least one ABCG8: c.55C 
allele than in subjects with GG homozygous genotype. How-
ever, the ABCG8: rs1887534 polymorphism in these patients 
was not independently associated with both absolute or a 
percent reduction in LDL-C in stepwise multiple regression 
analysis including: age, gender, pretreatment lipid levels 
and ABCG8 genotype as independent variables [21]. On the 
other hand, Chien et al. revealed a significant association 
of an ABCG8 haplotype including wild-type rs11887534 
with reduction in LDL-C after statin treatment in a Chinese 
population [7].

In contrast to above reports, we have found no associa-
tion of ABCG8: rs11887534 polymorphism with response 
of LDL-C, total cholesterol and triglyceride levels to statin 
treatment. However, we have revealed a significant decrease 
in HDL cholesterol after statin use in our patients carrying 
at least one minor c.55C allele as compared with wild-type 
ABCG8 homozygotes. Ethnic-dependent differences, both 
in the frequency of ABCG8 polymorphism and in the preva-
lence of environmental factors (e.g. dietary habits), should 
be taken into consideration as major reasons for the incon-
sistency of results among studies.

Treatment with statin usually moderately increases the 
serum concentration of HDL cholesterol in a majority of 
patients but some patients experience a paradoxical decrease 
in HDL-C levels after such pharmacotherapy [32]. In addi-
tion, Ota et al. suggested that a paradoxical decrease in HDL 
cholesterol after statin treatment might be an independent 
predictor for long-term adverse cardiovascular events in 
patients with acute myocardial infarction [32]. Hasvold 
et al. noted a decrease in HDL-C of > 0.1 mmol/l in 20% of 
patients treated with statins (96% of the cohort were initi-
ated on simvastatin with a mean dose of 20 mg/day), and the 
group of patients with reduction in HDL-C comprised more 
women, had a higher HDL-C at baseline (1.69 mmol/L) and 
less diabetes compared with the unchanged HDL-C group 
[5]. In our study more than 34% of patients (58 out of 170 
subjects) experienced an HDL-C lowering of > 0.1 mmol/l, 
but this phenomenon was not associated with gender, base-
line HDL-C or the prevalence of diabetes. As our study 
was based on data from patients’ records in a primary care 
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clinic, perhaps some unmeasured or unregistered confound-
ers may have influenced our results. Hasvold et al. have also 
suggested that low compliance to statin treatment should 
be taken into consideration as a potential explanation of 
paradoxical decreases in serum HDL cholesterol [5]. We 
observed no significant difference in frequency of the reduc-
tion of LDL cholesterol > 0.5 mmol/l between GC + CC 
patients and GG wild-type homozygotes (95.6% and 89.1%, 
respectively). In addition, no significant differences between 
both aforementioned groups were found in duration of treat-
ment with statin, in simvastatin equivalent dose or in the 
frequency of patients using higher (≥ 40 mg/day) simvastatin 
equivalent dose. Therefore, both low compliance to use of 
statin or low adequacy of treatment with statin should be 
rather excluded as the reasons for the paradoxical HDL-C 
decreases. On the other hand, despite the crucial role of the 
ABCG5/ABCG8 transporter in the induction of reverse cho-
lesterol transport [33], the mechanism underlying the reduc-
tion in HDL cholesterol in ABCG8: c.55C carriers treated 
with statins remains unclear. Junyent et al. have suggested 
that the rs3806471 polymorphism, with a change located 
in the binding motif for FXR (Farnesoid X Receptor) in 
the ABCG8 promoter, might modulate the expression of 
this gene [20]. In addition, Habeos revealed that simvasta-
tin decreases the expression of FXR at both the RNA and 
protein levels and down-regulates its DNA-binding activ-
ity [34]. However, there is no strong linkage disequilibrium 
between rs3806471 and rs11887534 in European subjects 
[35].

Limitations of the study are the study design and the fairly 
low sample size. In contrast to previous studies by Kajinami 
et al. [14], Srivastava et al. [21] or Chien et al. [7] we car-
ried out a retrospective observational study in 170 subjects 
whose data (except ABCG8 genotypes) were obtained from 
available medical records of a single-outpatient clinic. The 
majority of patients with dyslipidaemia in this clinic were 
treated either with simvastatin or with atorvastatin, and other 
statins (e.g. rosuvastatin) or cholesterol absorption inhibitor 
(ezetimibe) were used to a marginal extent. Therefore, we 
are fully aware that our results should be interpreted with 
caution and need to be replicated using a larger sample size 
of patients qualified in randomized manner to the groups 
treated with CYP3A4-metabolized statins (simvastatin or 
atorvastatin), non-CYP3A4-metabolized statins (fluvastatin, 
pravastatin or rosuvastatin) or ezetimibe. Ezetimibe, a selec-
tive cholesterol absorption inhibitor blocking Niemann-Pick 
C1 like-1 (NPC1L1) protein, is effective in sitosterolemia 
caused by ABCG5/ABCG8 mutations but Caamano et al. 
reported no association between ABCG8: rs11887534 poly-
morphism and lipid response (including HDL changes) to 
treatment with ezetimibe [36]. On the other hand, Zsiros 
et al. revealed that NPC1L1: c.-133A > G polymorphism 
modifies the ApoA1 response to ezetimibe and therefore, 

rather than altering HDL concentration, may alter the 
effects of ezetimibe on the structure and function of HDL 
particles [37].

In conclusion, our results suggest that the c.55C allele 
of ABCG8: rs11887534 polymorphism might be associated 
with paradoxical decrease in HDL cholesterol levels in 
response to the statin treatment of Polish patients.
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