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Biomechanical Factors in Psoriatic Disease: Defective 
Repair Exertion as a Potential Cause. Hypothesis 
Presentation and Literature Review
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Joining main clinical manifestations of psoriatic skin disorder are inflammatory arthritis and nail 
lesions. Repetitive microdamage has been postulated as a main triggering factor in lesions of psoriatic arthritis. 
This concept of psoriatic disease might also be admissible for triggering nail lesions because the nail is a frequently 
traumatized structure. Here, we aimed to describe the conjectural injury mechanisms of nail complex with regard to 
acting biomechanical factors. Tissue repair response to physical microdamage may be altered in psoriatic disease. 
It is plausible to consider that a defective repair process in the dysregulated prepsoriatic tissue may lead to innate 
immune activation and further development of autoinflammatory lesions, although excessive inflammation is known 
to impair wound healing. Recently published data have revealed the importance of mechanosensitive Wingless-type 
(Wnt) signaling in the pathophysiology of psoriasis and ankylosing spondylitis. The Wnt signaling system is involved 
in morphogenesis, repair, and regeneration as a biologic process main regulator. Wnt5a seems to be a dominating 
mediator in both psoriatic plaques and during the spondylitis process that might also be a linking molecule of psori-
atic response to mechanical stress. Future studies should focus on complex responsive interactions of tissue repair 
regulators regarded in psoriatic disease.

Introduction

Psoriasis is a nonscarring, inflammatory, and hyperprolifer-
ative chronic skin disease, likely unique to humans with a varied 
adult prevalence of 0.9% in the United States to 8.5% in Nor-
way, as it probably depends on geographic factors (1). Interac-
tions between genetic and immunologic variations with certain 
and unclear affecting environmental factors have supposed to 
result in psoriatic lesions. Trauma is a well‐known triggering fac-
tor for psoriatic skin lesions. Development of new lesions in the 
apparently normal skin secondary to trauma in patients with cer-
tain dermatoses has been called Koebner phenomenon after the 
German dermatologist Heinrich Koebner (2). Although it is typified 
as true Koebnerization along with lichen planus and vitiligo, pso-
riasis is most likely to have the highest incidence of the Koebner 
phenomenon (3,4). Besides, psoriatic lesion development is also 
a frequent consequence of localized trauma, including friction, 
shearing, stretching, and pressure (5–7). Therefore, tissue‐specific 
biomechanical triggering factors other than direct external injury 

should also be considered in terms of lesion development. Pso-
riatic lesions appear mostly on frequently stretched extensor skin 
surfaces during daily activities, bony promontories of the knee and 
elbow, where the joint flexion range of motion is excessive. Friction 
that occurs during lumbar movements due to waistbands may 
also traumatize the sacral skin. Another frequently involved site, 
the scalp is also a stretched skin tissue (8). Flexion of the cervical 
spine may also lead to an increase in tension, particularly on the 
occipital skin. All of the aforementioned dermal areas have insuffi-
cient subcutaneous support tissue.

Approximately, 20.0% to 30.0% of psoriasis patients are 
accompanied by psoriatic arthritis (PsA). PsA is classified as 
seronegative spondyloarthritis (SpA). The prototype disease 
of SpA is ankylosing spondylitis (AS). Researchers have put 
forth a role for mechanical stress and repetitive microdamage 
in triggering musculoskeletal lesions in both PsA and AS (9–
13). While axial spinal involvement is much less common and 
clinically more moderate in PsA, AS is characterized mainly 
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by symmetric and ascending spinal involvement. This finding 
might point to the fact that the spine is exposed to a stronger 
or perpetual stimulus in AS compared with psoriatic spondylitis 
but that it might not be segmental. In contrast, PsA is charac-
terized mainly by peripheral manifestations such as inflamma-
tory arthritis, enthesitis, and dactylitis. Even in the presence of 
psoriatic spondylitis, peripheral involvement is observed more 
frequently compared with AS (14). Therefore, PsA is an inflam-
matory disorder of more mobile musculoskeletal structures, 
unlike AS. This situation might also apply to the axial spine. The 
cervical spine, probably because of increased mobility during 
daily activities compared with the lumbosacral region, is more 
commonly involved in PsA. Mechanical stress–related chronic 
process of psoriatic lesion development in musculoskeletal 
structures may substantially be motion dependent (13,15).

Biomechanical factors and nail involvement

The average prevalence of nail lesions in patients with pso-
riasis can estimated to be more than 50%. The prevalence is 
much higher among patients with PsA. To date, it has been 
debated whether trauma is an actual cause of psoriatic nail 
lesions. Together with the consideration of the physical disuse of 
nail apparatus in modern humans, applied forces may contrib-
ute to the development of specific nail lesions. Pitting, onychol-
ysis, and splinter hemorrhages are the most frequently detected 
changes in fingernails, whereas onycholysis, crumbling, and 
subungual hyperkeratosis are the most frequently detected nail 
changes in toenails (16). It is known that matrix trauma that is 
due to manicure induces leukonychia (5). Furthermore, injury to 
the nail matrix in the transverse plane that occurs during nail 
cutting or nail filing may result in leukonychia, depending on the 
extent of shearing or the targeted site of applied pressure (17).

While working with hands, friction between the nail plate 
and nail bed may cause chronic mechanical trauma, leading to 
onycholysis and thickness. Parts of the nail, including the matrix, 
can also be repetitively exposed to compressive forces. As a spe-
cific injury mechanism of the proximal matrix, impacts between the 
harder dorsal nail plate layer and solid objects might theoretically 
lead to development of pitting that is due to Koebnerization by 
the high‐rated mechanical energy transmission (18). However, 
the density and Young’s modulus values of each nail plate layer 
may not be significantly different, and typewriting typifies this injury 
mechanism in desk workers, leading to chronic damage of the 
whole matrix and thereby resulting in the development of crum-
bling (19,20).

Considering this conjectural injury mechanism may be rea-
sonable because it can explain the co‐existence of distal inter-
phalangeal (DIP) joint involvement in patients with nail lesions on 
the same finger as well as accompanying extensor tendon inflam-
mation because the compressive stress wave may stand on fur-
ther to the DIP joint–related structures through the fibers of the 

extensor tendon, which envelopes the nail root, thereby leading to 
the co‐Koebnerization of the nail root and DIP joint (10,11,21,22). 
The Shearing effect of pulse on the nail matrix and, additionally, the 
reflection (tensile stress) should also be taken into consideration 
because the transmitted energy advances in different contiguous 
tissues with different densities. Impact speed is the main determi-
nant (19,23–28). However applied force during a pinch grip may 
be a more influental mechanical factor for the development of DIP 
arthritis overall. Nail involvement in the hand is less common in 
the little finger compared with other fingers, possibly because it is 
rarely used during working.

Psoriatic toenail involvement is most frequently detected in the 
big toe, which lacks the anatomic envelope mechanism of long fin-
gers (21,29). Toes bear much larger mechanical forces compared 
with fingers. The toenails may be exposed to repetitive mechan-
ical stress during walking, particularly at the end of the stance 
phase of the gait cycle. As the heel rise starts, the ground reaction 
force (GRF) vector (center of pressure) moves medially to the big 
toe, which is forced to an accelerated extension along with the 
other toes by the lever arm of the ankle propels the body forward. 
Overload of the big toe concomitant with the generated extension 
force applied to a repelling force to the extensor side structures 
leads to displacement toward the nail plate and increased in tissue 
pressure, particularly in the nail matrix contiguous to the hard nail 
plate and might result in time‐dependent development of crum-
bling. Toward toe off, the eccentric contraction of the musculus 
flexor hallucis longus fixes the big toe in full floor contact to under-
take the second lever arm function to maintain the forward motion 
of the body (push‐off phase) and thus bears most of the applied 
forces in comparison with other toes (30). Both lever arms pull the 
soft tissues to inferoposterior as the toes become hyperextended 
with a compression of the nail bed by the GRF. Repetitive shearing 
between the nail bed and the hard nail plate during this phase 
may cause the development of onycholysis and subungual hyper-
keratosis in severe cases. Although individual gait patterns may 
differ slightly, the human bipedal walking can be considered as an 
uniform movement. Thus, this biomechanical conjecture may be 
compatible with the involvement patterns of both toenail lesions 
and metatarsophalangeal arthritis (16,30–32).

Footwear can alter certain parameters of the gait cycle, 
such as decreased forefoot spreading and increased stance 
time. Shoes may decrease force dispersion, particularly dur-
ing the push‐off phase, by limiting the natural motion of the 
barefoot through application of external pressure and addi-
tional weight and however, also limits the toe extension range 
of motion in a variable degree, depending on the rigidity of the 
footwear. Although the second peak value of vertical GRF in 
the push‐off phase does not differ, the propulsive GRF may 
be altered (33). Ill‐fitted or narrow‐toed shoe wearing further 
decreases the weight bearing area, changes force distribution, 
and causes impingement of the nail complex. Static shearing 
of the nail bed occurs in women who wear high‐heeled shoes. 
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Shoes also traumatize the big toenail repetitively by impulsive 
forefront contact that may result in onycholysis (34). Collec-
tively, all of the aforementioned mechanical factors may explain 
why the big toenail is exposed to more repetitive microdam-
age and, consequently, might explain the higher frequency of 
developing psoriatic nail lesions in the big toe compared with 
other toes.

Further evidence

It has been revealed by imaging techniques that the main 
event in PsA may be enthesitis (35). In psoriasis patients without 
musculoskeletal symptoms, ultrasonographic enthesitis is quite 
frequent regardless of physical examination (36,37). It has been 
demonstrated in cadaveric studies that the changes associated 
with microdamage and inflammation are observed in SpA patients 
even in their normal joints and entheses (38). As the connections 
of the skeleton, enthesis‐related structures bear excessive tensile 
load, especially during movement. Overweight is more common 
in psoriatic patients than in the healthy population, causing higher 
mechanical stress in both lower limb joints and entheses. This 
condition is supported by the evidence that species with large 
body mass have increased incidence of axial SpA (39).

The persistent repair exertion in prepsoriatic tissue under 
continuous mechanical stress might result in either aberrant 
innate immune activation or a decreasing ability to terminate 
inflammation that occurs during the wound healing process, 
which further develops autoinflammatory lesions, although exces-
sive inflammation is known to impair wound healing (10,40–42). 
This assumption may point to a vulnerability to chronic physical 
damage in psoriasis patients, which may also be indicated by 
disruption of the basement membrane laminin layer as a specific 
feature, especially at the apex of dermal papillae in both involved 
and uninvolved skin (43–45). The main function of laminin is to 
aid anchoring and stabilization of the basal keratinocytes. As the 
earliest event in the lesion development process, this structural 
disorder leads to proliferation of unstable keratinocytes before the 
onset of inflammation and hyperkeratosis (46). Dysfunctionality in 
tissue laminin synthesis should be taken into consideration (47). 
Secondly, laminins are the extracellular macromolecules that play 
a regulatory role during wound healing. Application of laminin‐
derived peptides promote re‐epithelization, angiogenesis, and cell 
migration during wound healing as well as decrease inflammation 
and granulation (48).

The defective repair exertion as a potential 
cause

Cumulative tissue damage that is particularly due to bio-
mechanical factors that may trigger psoriatic lesion develop-
ment might result from person‐specific tissue dysregulation. If 
this alternative concept of psoriatic disease is true, it is plau-

sible to consider that a defective wound healing process in 
the dysregulated psoriatic tissue may lead to a vulnerability to 
chronic damage (13). Psoriatic plaques resemble the wound 
healing response with regard to many cellular and molecular 
mediators (41). Furthermore, the wound healing rate may be 
accelerated in both involved and uninvolved skin (49). Many 
genes activated during the wound healing process may be 
differentially involved either similarly or inversely in the molecu-
lar pathophysiology of psoriasis. Expressions of late cornified 
envelope (LCE)‐3 genes are upregulated in psoriatic skin which 
undertake an important role in the epidermal barrier repair 
following superficial injury of healthy skin (50). Other known 
psoriasis susceptibility genes consist of upregulated myeloid 
related protein (MRP) 8 (S100A8), MRP14 (S100A9), MRP8/
MRP14 heterodimer, and nuclear factor‐ƙ‐B‐inhibitor α (NFK-
BIA/IƙBα) as well as downregulated jun B proto‐oncogene 
and all were demonstrated to be significantly upregulated dur-
ing a short‐termed incisional wound model of neonatal mice 
(51–55). Based on this model, the early growth factor (Egr)‐1, 
c‐myc, FOS‐like antigen‐1 (Fra‐1), the mitogen‐activated 
protein kinases (MAP4K4), c‐Jun N‐terminal kinase  (JNK) 
pathway, retinol binding protein‐1, keratins (KRT6), plexins, 
osteopontin (deep dermal), cathepsin S, ephrin receptor B1 
(ephA2 in psoriasis), C‐X‐C motif chemokines (CXCL10), C‐C 
motif chemokine ligand family (CCL2/MCP‐1, CCL7), and C‐C 
motif chemokine receptors (CCR1) can additionally be listed 
as expressed genes of wound healing related similarly with 
psoriasis. However, the notch signaling, C‐fos, and mitogen‐
activated protein kinase phosphatase (MKP)‐1 may be down-
regulated in psoriatic lesions, contrary to what happens with 
wounds (56–73). It is worth noting that MRP8, MRP14, and 
MRP8/MRP14 expression was reported to be higher in the 
synovial sublining layer of PsA patients compared with rheu-
matoid arthritis (RA) and SpA (74).

Investigation of the effects of pharmacotherapeutic agents 
may offer some clues. Systemic treatment with certain drugs, 
such as β‐blockers, statins, corticosteroids, antimalarial drugs, 
and lithium, may flare or worsen psoriatic skin lesions. These 
drugs may also affect wound healing. Beta adrenergic blockades 
delay cutaneous wound healing, whereas propranolol improves 
wound healing in streptozotocin‐induced diabetic rats (75,76). 
Topical simvastatin improves wound healing in rats by its anti‐
inflammatory properties, increasing fibroblast proliferation and 
epithelization (77). Corticosteroids delay repair by affecting proin-
flammatory cytokines, and they have catabolic effects particu-
larly in the skin and connective tissue. To our knowledge, there 
is no relevant information in the literature regarding the effects of 
antimalarial drugs on wound healing. Lithium activates β‐catenin 
signaling through Wingless‐type (Wnt) signaling pathway medi-
ated mechanism, enhances tissue healing, increases cutaneous 
wound strength, and stimulates local mineralization after bone 
fracture (78–80). It inhibits cell migration as a specific effect.
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Wnt signaling system is required in all phases of wound 
healing. β‐Catenin has been shown to inhibit keratinocyte migra-
tion and activate fibroblast proliferation in cutaneous healing. It 
mediates the effects of transforming growth factor (TGF)‐β during 
healing (78). β‐Catenin can either inhibit or enhance the wound 
healing process, indicating the complex interactive responses. A 
previously published work has revealed a correlation between in 
vivo β‐catenin level and the tensile strength of the wound in mice 
after irradiation and lithium treatment increases wound strength 
in those expressing null alleles for β‐catenin as well (79). Psoriatic 
plaques are characterized distinctly with decreased extensibility 
and elasticity in both uninvolved and involved skin (81). Whether 
this structural finding might be associated with tissue Wnt system 
interactions have not yet been investigated. Decreased extensibil-
ity may lead to further mechanical stress to the tissues exposed to 
repetitive stretching. After dithranol treatment, mechanical param-
eters of psoriatic plaques have improved markedly (81).

Activated Wnt5a signaling in plaques and  
syndesmophytes

The Wnt signaling molecules are involved in crucial functions, 
including cellular proliferation and regeneration, tissue regulation, 
and immune development. The Wnt5a is differentially expressed 
in psoriatic plaques and is known as a suppressor of notch‐1 sig-
naling (82,83). In cultured keratinocytes, Wnt5a can be induced 
by proinflammatory cytokines interleukin (IL)‐1α, tumor necrosis 
factor (TNF)‐α, interferon (IFN)‐γ, as well as TGF‐α (84). Induc-
tion of Wnt5a in mesenchymal cells was supposed to adjust the 
accurate localization and timing of the TGF‐β signalization dur-
ing injury repair (85). TGF‐β and nerve growth factor may be the 
key regulatory molecules of the Koebner phenomenon (42,86). 
In psoriasis, homeostatic inhibition of Wnt signaling is impaired, 
and a shift away from canonical Wnt signaling toward noncanon-
ical system driven mainly by interactions of increased Wnt5a may 
exist. Moreover, circulating Wnt5a was reported to be significantly 
higher in psoriasis patients than in controls, especially in the obese 
patients (84,87). Theoretically, chronic injury may cause inappro-
priately prolonged Wnt signaling (88).

The Wnt signaling is also likely to play an important role in 
the syndesmophyte formation. Certain cytokines are capable of 
inducting Wnt proteins (84,89). It was suggested that pro‐inflam-
matory cytokines released during chronic inflammation in SpA 
may lead to subsequent new bone formation by upregulating β‐
catenin (90). Recently, Wnt3a, Wnt4, Wnt5a, Wnt7b, and Wnt10b 
were detected to be highly expressed in spinal ligaments of AS 
patients with syndesmophytes as osteoinductive Wnts, and their 
significantly elevated levels in the sera were reported to be corre-
lated with syndesmophyte progression as well (91). Wnt5a seems 
to be a master regulator of spondylitis response in AS because its 
serum level increases earlier, along with the Wnt9b and Wnt16b, 
in the patients without syndesmophytes. As the new bone for-

mation process starts, the Wnt5a level continues to increase in 
conjunction with the distinct activation of other osteogenic Wnts. 
However, the process of syndesmophyte formation that could be 
driven mainly by the Wnt signaling system may be related to the 
intensity of inflammatory stimulus. In vitro stimulation of a mono-
cyte cell line by low dosage of TNF‐α was demonstrated to induce 
persistent Wnt activity, whereas high dosage stimulation has no 
effect on Wnts with an increase in expression of canonical Wnt 
inhibitor dickkopf‐related protein (Dkk)‐1, also known as a sup-
pressor of bone formation. Thus, excessive release of TNF‐α in 
AS may impair the osteogenic Wnt activity and as well as repair 
response compatible with the TNF brake hypothesis (41,91,92). 
Besides that, Wnt5a may also have a role in the augmentation of 
psoriatic skin inflammation by forming a positive feedback loop 
with the inflammatory cytokines, thereby enabling the occurrence 
of cytokine storm (83).

Offering clues of Wnt5a

High circulating levels of Dkk‐1 were detected in the patients 
with axial SpA. Thus, Dkk‐1 measurement was suggested to 
be a good indicator of the presence and severity of osteopro-
liferative radiologic changes of spondylitis in PsA (93). However, 
capacity of Dkk‐1–mediated inhibition of active β‐catenin was 
demonstrated to decrease in AS; this dysfunctionality could be 
related to the strong activity of Wnt5a, as resembled in psoriatic 
plaques (82,84,94–96). Wnt5a signaling suppresses keratinocyte 
proliferation in normal skin, whereas it is required in perichondrium 
for regulating longitudinal skeletal outgrowth of developing long 
bones (84,97). However, as similar functions, while Wnt5a likely 
stimulates the anabolic new bone formation along with the canon-
ical Wnts in axial SpA, it seems to partially suppress canonical 
Wnts in psoriatic plaques and stimulates keratinocyte proliferation 
in conjunction with the absence of increased expression of Dkk‐1 
in psoriatic plaques contrary to the increased expression in the 
nonlesional psoriatic skin of unknown importance (98,99). How-
ever, it was reported that increased expression of Wnt5a alone 
does not have a psoriasiform effect in transgenic mice, although 
biologic systems in rodent dermal tissue may differ from humans 
(100). In contrast with canonical Wnts, activation of Wnt5a sign-
aling also fails to induce cartilage lesions in experimental osteo-
arthritis induced by collagenase and destabilization of the medial 
meniscus (101). Therefore, induction of Wnt5a might be related 
to a compensatory repair process in the aforementioned condi-
tions rather than primary damage. Prolonged activation of non-
canonical pathway via Wnt5a signaling was demonstrated to 
form regenerative changes evidently in cutaneous wound healing 
(102). Interestingly, despite the absence of frizzled‐4 (FZD4) recep-
tor, overexpressed Wnt5a triggering the Wnt/β‐catenin signaling 
pathway may also play an important role in the keloid pathogene-
sis, which is an aberrant wound healing process that responds to 
deep skin trauma (103).
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Molecular response to mechanical stretching of 
skin

Interactions of mechanical input with Wnt signaling system 
may promote tissue regulation. Wnt signaling systems, including 
the noncanonical pathway, have been revealed as being mech-
anosensitive (104). Biomechanical stimuli are required for cell 
behaviors during skeletal, joint, tendon, and ligament development 
through activating Wnt genes (105). Wnt5a or N‐cadherin–medi-
ated β‐catenin signaling is essential to mechanically induced mes-
enchymal stem cell (MSC) osteogenic differentiation in vitro (106).

Mechanical stretching of skin may promote skin tissue regen-
eration by upregulating the expression of genes related to hypoxia, 
vascularization, and cell proliferation (107). Mechanical stretching 
of the expanded skin leads to upregulated mRNA expressions 
of stromal‐derived factor (SDF)‐1α, hypoxia‐inducible factor 
(HIF)‐1α, and matrix metalloproteinase (MMP)‐2 in a rat model of 
tissue implantation. In vitro mechanical stretching of human MSCs 
causes upregulation of the genes of Janus kinase/signal transduc-
ers and activators of transcription (JAK‐STAT), cyclin D2, secreted 
frizzled‐related protein4 (SFRP4), and Wnt5b (107). SDF‐1α, HIFs, 
and MMP‐2 are highly expressed in psoriatic lesions (108–110). 
Upregulated C‐X‐C chemokine receptor type 4 (CXCR4)/SDF‐1α 
axis may also have potential proinflammatory effects in the patho-
physiology of RA and SpA, including PsA (111). JAK1 and JAK3 
upregulated in psoriasis are probably concomitant with overex-
pression of cyclins (82,112). However, expression of Wnt signal-
ing inhibitor SFRP4 is diminished in psoriatic skin, which inhibits 
excessive keratinocyte proliferation evoked by proinflammatory 
cytokines in vitro and decreases the severity of psoriasiform 
lesions in imiquimod‐induced mouse model (113). Wnt5b gene 
expression also tends to be lower in psoriatic plaques (84). Con-
sequently, main molecular behavioral difference that exist in pso-
riatic skin resulting from mechanical stress may occur in the Wnt 
signaling system. Thus, the probability that Wnt5a may be a key 
regulatory molecule of psoriatic response to mechanical stress 
has emerged. Whether Wnt5a induction in psoriasis is defective or 
compensative should be elucidated (82). A proposed paradigm of 
the altered repair response to chronic mechanical stress through 
Wnt5a signaling is shown in Figure 1.

Molecular response to mechanical stretching of 
tendon

Chronic tendinopathies are characterized with inflammation 
and matrix destruction. Repetitive mechanical stretching of ten-
dons can change the gene expression and protein synthesis of 
tenocytes and fibroblasts. Low‐magnitude stretching is regarded 
as anti‐inflammatory, whereas high‐magnitude stretching is proin-
flammatory (114). Cyclic stretching or mechanical load can induce 
gene expressions of IL‐1β, bone morphogenetic protein (BMP)‐2, 
cyclooxygenase (COX)‐2, MMP‐1, and MMP‐9 in conjunction 
with the increase in production of IL‐6 and PGE2 (114–118). 
Apart from mechanical load, the inflammatory cytokine response 
was suggested as another factor for matrix destruction in over-
use tendinopathies (119). Cyclic tensile strain can also induce an 
immediate but transient stress response by activating the stress‐
activated protein kinase (SAPK)/JNK pathway and extracellular 
signal‐regulated kinase 2 (ERK2/MAPK‐1). The JNK activity is 
suppressed in a time‐dependent manner possibly because of the 
adaptation of fibroblasts. Therefore, insufficient ability to suppress 
JNK activity may lead to apoptosis (120–122).

Molecular response to vibration and  
hypergravity

It should be noted that both changes in gravity and exposure 
to vibration may cause molecular response. Exposure to long‐
term whole body vibration (WBV), particularly at low frequencies, 
is a widely accepted etiologic cause of low back pain and disc 
herniation (123). Moreover, WBV is also associated with spinal 
radiographic damage in AS patients (124). Molecular changes 
secondary to an increase in gravity may also reflect the long‐term 
effects of gravitational acceleration on musculoskeletal system. 
Short‐term hypergravity of 1.8g was reported to induce IL‐6 
release from chondrocytes and to be capable of regulating genes 
in vitro related with cartilage integrity including downregulated 
BMP‐4, MMP‐3, MMP‐10, Wnt5a, and upregulated endothelin 
(EDN)‐1, whereas vibration within a broad spectrum of frequency 
upregulates IL‐6 and IL‐8 accompanied with the downregulation 
of growth factors such as epidermal growth factor (EGF), vascu-

Figure 1. A proposed paradigm of altered repair response to chronic mechanical stress through Wnt5a signaling
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lar endothelial growth factor (VEGF), and fibroblast growth factor 
(FGF)‐17 (125). Low‐frequency vibration was demonstrated to 
cause diffuse cellular neuroimmune response in the rat spinal cord 
possibly through activating the MAPKs indicated by the decrease 
in expressions of anti‐inflammatory cytokines concomitantly with 
the increase of some proinflammatory cytokines such as TNF‐α 
and IL‐6 (126,127). Besides, higher‐frequency WBV may lead to 
a decrease in systemic IL‐17 positive Th cell count counteracted 
with an increase of forkhead box P3 (FoxP3) positive Treg cells 
(128). All mentioned factors may be involved in axial SpA patho-
physiology (129–133).

Biomechanical factors in AS

We think that assessment of AS in terms of biomechanical 
factors should also be briefly mentioned. The bamboo spine 
characteristics may not be a frequently encountered feature of 
axial SpA in nonhuman primates (134,135). The thoracolumbar 
spinal musculature usually functions in humans with isometric 
contractions both consciously and unconsciously for balance 
control and trunk stabilization, rather than intentional motion 
requiring motor planning. The spinal insertions are exposed 
to constant stretching in AS, a consequence of axial myofas-
cial hypertonicity that might also point to a subclinical neural 
disorder (136). Interestingly, the neuropathic pain component 
was detected in patients with AS and accompanied with corti-
cal thinning in specific areas, including primary somatosensory 
cortex (perception of proprioception), insula (visceral sensa-
tion processing and autonomic regulation, vestibular function), 
supplementary motor area (learning and planning self‐initi-
ated complex movements), and gray matter abnormalities in 
the putamen (motor learning) and thalamus (sensory signal 
processing, preparation of voluntary movement, alertness) 
(137). Available evidence in the literature might not suggest 
a decrease in postural control of neural origin or a proprio-
ceptive deficit because this impairment is largely attributed to 
the mechanic changes secondary to the spondylitis process 
such as kyphosis, pelvic tilt, and flexion contracture of the hip 
(138,139). As a recent observation, eyes‐closed rehabilitation 
programs were reported to improve more marked balance 
impairment in AS and therefore might be admissible as a clue 
for the favorable effect of rehabilitation on proprioceptive acu-
ity (140). Besides, potential significance of the reported ves-
tibular dysfunction in AS patients should additionally be taken 
into consideration (141,142).

CONCLUSION

Biomechanical factors primarily affect musculoskeletal and 
dermal tissue integrity as well as functions. Lesion‐specific injury 
mechanisms of the nail apparatus should be discussed. While 
soft‐tissue mobility may contribute to the development of nail 

bed lesions, frequent increases in tissue pressure might result in 
time‐dependent development of crumbling. Offered postulations 
indicate that psoriatic patients may have a vulnerability to chronic 
physical damage in both skin and musculoskeletal tissues, particu-
larly to the tissue‐specific kinetic factors. However, robust evidence 
is needed. Investigations regarding disruption of the basement 
membrane laminin layer or strong activation of mechanosensi-
tive Wnt5a may provide direct evidence to support the concept 
of mechanical stress in the pathophysiology of psoriatic disease.
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